绝对值-初中数学知识点
初中数学七年级上册《绝对值》知识简要与举例

初中数学七年级上册《绝对值》知识简要与举例1.绝对值的概念是代数的重要概念之一,它是学习代数后续内容的基础.同时,利用绝对值的概念,能使我们进一步认识已学过的概念.例如,我们可以把任何一个有理数看成是由符号与绝对值两部分组成;又如,互为相反数的两个数,其实质是绝对值相等而符号相反的两个数.像-6和6,它们的符号相反,而其绝对值|-6|=|6|=6.2.理解绝对值的意义,应注意以下三点:(1)绝对值的非负性即任何一个数a的绝对值,总是非负的.即|a|≥0.当a≠0时,|a|>0;当a=0时,|a|=0.(2)绝对值相等的两个数或相等,或互为相反数.如|2|=|+2|=2,|+2|=|-2|=2.一般地,若|x|=|y|,则有x=y或x=-y.(3)学习了绝对值的几何意义后,数轴的概念、画法、利用数轴比较数的大小、相反数以及绝对值,借助数轴,这些知识便都联系到一起了.3.用正负数可以表示具有相反意义的量.但在实际生产和生活中,有时不考虑方向性.如:计算汽车的耗油量时,知道行驶单位路程的耗油量,只需求出汽车行驶的总路程,便可求出耗油量,与行驶的方向无关而汽车所走的路程就只需用正数表示,因此,引出绝对值的概念.4.绝对值的三种表达方法.(1)文字语言表达法(绝对值的概念):一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,零的绝对值是零.(2)用数学式子法:设a为任意有理数,则(3)绝对值的几何意义:一个数的绝对值就是表示这个数的点离开原点的距离.[例1]判断题(2)|-0.01|<0.( )(3)-(-4)<|-4|.( )(4)|a|=a.( )(5)当a≤0时,|a|+a=0.( )答案:(1)√;(2)×;(3)×;(4)×;(5)√.说明:在有理数的大小比较中,如果含有绝对值或相反数时,可先化简,然后再进行比较.[例2]填空题(5)______________与它的绝对值互为相反数;(6)如果|a|=|-7|,那么a=________.说明:如果两个数相等或互为相反数,那么这两个数的绝对值相等;反之,如果这两个数的绝对值相等,那么这两个数相等或互为相反数.[例3]a为何值时,下列各式成立?(1)|a|=a;(2)|a|=-a;(3)|a|≥a;(4)|a|<a;(5)|a|=5;(6)|a|=-5.解:(1)a≥0;(2)a≤0;(3)a为任意有理数时,都使|a|≥a成立;(4)a为任意有理数时,|a|<a都不成立;(5)a=±5;(6)a为任意有理数时,|a|=-5都不成立.说明:本题解决的关键是牢固掌握绝对值的非负性,即|a|≥0.另外,(3)、(4)小题还要准确理解有理数大小的比较法则.[例4]比较大小:[例5]把下列各数按照从大到小的顺序用“>”连接起来:说明:学了绝对值的概念之后,比较两有理数大小的基本方法,我们便有了两种:(1)数轴法;(2)绝对值法.在这小节的后一部分,介绍了利用绝对值比较两个负数的大小的办法.这既可巩固绝对值的概念,又把比较有理数大小的方法提高了一步.利用绝对值来比较两有理数大小的方法是我们常用的方法之一.前面提到绝对值的概念是代数中重要的概念之一,我们应该很好地掌握它.[例6](1)若a>3,则|a-3|=________;(2)若a=3,则|a-3|=________;(3)若a<3,则|a-3|=________.分析:要想正确地化简|a-3|的结果.关键是确定a-3的符号.当a>3时,a -3>0,即a-3为正,由正数的绝对值是它本身,可得结果为a-3;当a=3时,a -3=0,所以|a-3|=|0|=0;当a<3时,a-3<0,即a-3为负数,由负数的绝对值等于它的相反数可得|a-3|=-(a-3).解:(1)a>3时,|a-3|=a-3;(2)a=3时,|a-3|=0;(3)a<3时,|a-3|=-(a-3)说明:由本题的解法说明,化简含有字母的式子的绝对值时,必须先讨论这个式子的计算结果的正负性.否则会出现错误,如|a-3|=a-3(×).。
初中数学 什么是绝对值关系

初中数学什么是绝对值关系绝对值关系是初中数学中的一个重要概念,它涉及到数的绝对值的概念和性质。
在本文中,我将详细介绍什么是绝对值关系、绝对值的定义和性质,以及如何应用绝对值关系解决实际问题。
1. 绝对值的定义和性质绝对值是数的非负值,表示该数与零之间的距离。
对于任意实数x,它的绝对值记作| x |,满足以下性质:(1)非负性质:| x | ≥ 0,即绝对值永远是一个非负数。
(2)零的绝对值为零:| 0 | = 0。
(3)正数的绝对值:对于正数x,| x | = x。
(4)负数的绝对值:对于负数x,| x | = -x。
(5)绝对值的倒数:对于非零数x,| 1 / x | = 1 / | x |。
(6)绝对值的乘积:对于数a和b,| ab | = | a | × | b |。
(7)绝对值的和:对于数a和b,| a + b | ≤ | a | + | b |。
2. 绝对值关系的概念绝对值关系是指在数的运算和比较中,根据绝对值的性质所建立的一系列关系。
绝对值关系可以帮助我们更好地理解和解决与数的绝对值相关的问题。
在绝对值关系中,我们常常会遇到以下几种情况:(1)求绝对值:已知一个数x,求它的绝对值| x |。
(2)绝对值的相等:已知两个数a和b,如果它们的绝对值相等,即| a | = | b |,那么可以得到a = b或a = -b。
(3)绝对值的大小比较:已知两个数a和b,如果它们的绝对值不等,即| a | ≠ | b |,那么可以根据绝对值的性质进行大小比较。
(4)绝对值的运算:已知两个数a和b,通过绝对值的运算,可以得到它们的和、差、积以及商的绝对值。
3. 绝对值关系的应用绝对值关系在数学中有着广泛的应用。
以下是一些常见的应用场景:(1)解绝对值方程:绝对值方程是指含有绝对值符号的方程,如| x | = a,其中a是一个已知的数。
通过绝对值关系的性质,可以将绝对值方程转化为两个不同的方程,从而求解出未知数x的值。
初中数学 绝对值

——绝 对 值姓名: 成绩:【要点提示】一、绝对值的概念1.定义:一个数的绝对值就是数轴上表示a 的点与原点的距离,数a 的绝对值记作a ,读作a 的绝对值。
2.绝对值的代数意义:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值还是0。
3.绝对值的几何意义:一个数的绝对值就是表示这个数的点到原点的距离,离原点的距离越远,绝对值越大,离原点的距离越近,绝对值越小。
4绝对值的非负性:由于距离总是正数或0,故有理数的绝对值不可能是负数,即对任意有理数a ,总有a ≥0。
5.互为相反数的两个数的绝对值相等,但绝对值相等的两个数相等或互为相反数。
6.绝对值等于它本身的数一定是非负数,绝对值等于它的相反数的数一定是非正数。
二、绝对值的求法绝对值是一种运算,这个运算符号是“”,求一个数的绝对值就是想办法去掉绝对值符号,对于任意有理数a ,有 (1)(0)0(0)(0)a a a a a a >⎧⎪==⎨⎪-<⎩(2)(0)(0)a a a a a ≥⎧⎨-<⎩ (3)(0)(0)a a a a a >⎧⎨-≤⎩ 【典型例题】例1.求下列各数的绝对值。
(1)34= ; (2)13-= ; (3)144-= ; (4)132= ; 例2.(1)一个数的绝对值是3,则这个数是 。
(2)一个数的绝对值是0,则这个数是 。
(3)有没有一个数的绝对值是-4? 。
思考:a 与0的大小关系例3.(1)若2m -=,求m 的值;(2)若a b =,则a b 与的关系是什么?例4.写出绝对值不大于3的所有整数,并求出它们的和。
例5.如果a 的相反数是最大的负整数,b 是绝对值最小的数,那么a 与b 的和是多少?例6.有理数,,a b c 在数轴上对应的点分别为A ,B ,C ,其位置如图所示,试化简a b c a b c c ++-++-【经典练习】一、填空题1.31-的绝对值是 ,31的绝对值是 , 的绝对值是31. 2.一个正数的绝对值为8,这个数是 ,一个负数的绝对值为8,这个数是 .3. 的绝对值是它本身, 的绝对值是它的相反数.4.若0>a ,则=a ;若0<a ,则=a ;若0=a ,则=a .5.若a a =,则a 0,若a a -=,则a 0.6. 的绝对值比它的本身大.7.一个数的绝对值等于3,则这个数可能是 .二、选择题8.下列等式中,成立的是( )A 、33±=+B 、()33--=-C 、33±=±D 、3131=-- 9.下列计算中,错误的是( )A 、1257=-+-B 、04.03.034.0=---C 、535154=--D 、311312213=---B C 0 A10.如果两个数的绝对值相等,那么这两个数必满足( )A 、相等B 、都是0C 、互为相反数D 、相等或互为相反数11.下列各式中,不正确的是( )A 、01.001.0->-B 、001.001.0->-C 、⎪⎭⎫ ⎝⎛--<--3131 D 、2.32.3->-- 12.下列判断正确的是( )A 、若b a =,则b a =B 、若b a =,则b a =C 、若b a <,则b a <D 、若b a >,则b a > 三、解答题13.试写出:(1)绝对值小于5的所有负整数 ;(2)绝对值小于5.2而又大于2.1的所有整数 .14.已知一组数;4,-3,21-,+5.1,214-,0,-2.2.在这组数中: (1)绝对值最大的数为 ;绝对值最小的数为 ;(2)相反数最大的数为 ;相反数最小的数为 .15.如图,直线上有三个不同的点A 、B 、C ,且AB ≠BC ,那么,到A 、B 、C 三点距离的和最小的点( )A 、是B 点B 、是AC 的中点 C 、是AC 外一点D 、有无穷多个 16.对任意有理数a ,式子1a -,1a +,1a -+,1a +中,取值不为0的是 。
初一数学绝对值知识点、考点及例题梳理

初一数学绝对值知识点、考点及例题梳理绝对值是初一上册数学的重难点之一,很多同学绝对值的学习中都存在着一些问题,所有问题的根源大都是对绝对值的概念理解不透彻,没有建立起完整的知识体系,在此梳理下在绝对值学习中需要注意的一些要点。
在绝对值的学习中,首先需要去理解和掌握的就是绝对值的概念,什么是绝对值呢?在数轴上,一个数所对应的点与原点之间的距离。
在概念的理解中需要注意,绝对值这个概念是从数轴引出的,它表示的是距离,绝对值本质上是数轴上两点之间的距离,哪两点之间的距离呢?表示某个数的点和原点。
那么由绝对值的定义,我们可以得到有关绝对值的那些性质呢?因为绝对值表示的是距离,从日常经验可知,距离最小为0,不可能为负数,所以就得出了绝对值最重要的一条性质:绝对值具有非负性。
从绝对值的定义出发,结合绝对值的非负性,可以得到绝对值的代数意义,也看成是绝对值性质的推广:正数的绝对值等于它本身;0的绝对值是0;负数的绝对值等于它的相反数。
以上三条需要牢记。
这是求绝对值和简化绝对值的方法基础。
除过绝对值的定义和性质之外,在绝对值的学习中还需要注意以下细节和要点:任何数都有绝对值,只有一个,而且是非负的。
但是有两个数的绝对值等于正数,而且是相反的。
很多同学容易漏掉其中的一个,比较容易出错。
在有关绝对值的运算,在解含有绝对值的方程中,经常需要运用到分类讨论思路。
绝对值的概念来源于数轴,代表数轴上两点之间的距离。
绝对值与数轴有着密切的关系,在绝对值相关题目的分析和求解中,一定要注意数形结合思想的应用。
特别是在绝对值的几何意义的理解和应用上,需要结合数轴来分析和解决。
绝对值等于它本身的数是正数和0,绝对值等于它的相反数的数是负数和0.1.解决问题的关键是理解绝对值的定义和性质,把握其非负性。
2、求一个数的绝对值,先判定这个数是正数、负数还是0,再根据绝对值的性质确定最终的结果。
3、利用绝对值比较两个负数的大小:两个负数比较大小,绝对值大的反而小。
七年级绝对值知识点总结

七年级绝对值知识点总结在初中数学中,绝对值是一个重要的概念,也是许多数学题目必不可少的一部分。
本文将对七年级绝对值的基础知识进行总结。
一、什么是绝对值绝对值是一个数与0之间的距离,因此它的值永远是正数。
用符号表示则为|a|,a为任意一个实数,则当a≥0时,|a|=a当a<0时,|a|=-a二、绝对值的运算法则1.绝对值与加减运算对于任意实数a,b,则①|a+b|≤|a|+|b|②|a-b|≥|a|-|b|特别地,当a,b同号时①式改为|a+b|=|a|+|b|;当a,b异号时,②式改为|a-b|=|b|-|a|2.绝对值与乘法运算对于任意实数a,b,则|ab|=|a|·|b|特别地,若a,b的符号相同,则|a|·|b|=ab,反之,|a|·|b|=-ab3.绝对值与除法运算对于任意a≠0,b≠0,则|a/b|=|a|/|b|三、绝对值的应用1. 解绝对值方程对于任意实数a,则|a|=b的解为a=b或a=-b,即把|a|看作一个未知数,转换为一元一次方程求解,得到方程的解即为绝对值方程的解。
例如,|2x-3|=7,可转化为2x-3=7和2x-3=-7两个方程,解得x=5和x=-2.2. 求绝对值大小根据绝对值的定义及运算法则,可以求出有关绝对值的大小。
例如,|3-8|=|-5|=5,|5·(-6)|=|-30|=30。
3. 比较大小根据绝对值的定义,对于任意实数a,b,有|a|>|b|,当且仅当a>b或a<-b。
例如,比较|-5|和|3|,由于|-5|>-3,因此|-5|>|3|。
四、绝对值相关的常用不等式1.柯西-施瓦茨不等式对于任意n个实数a1,a2,…… ,an和b1,b2,……,bn,有|(a1b1+a2b2+……+anbn)|≤√(a1²+a2²+……+an²)√(b1²+b2²+……+ bn²)2. 三角不等式对于任意两个实数a,b,则|a+b|≤|a|+|b|3. 平均值不等式对于任意n个正数a1,a2,……,an,则(a1+a2+……+an)/n ≥ √(a1·a2·……·an)五、总结本文主要总结了七年级数学中绝对值的基础知识及运算法则,并介绍了绝对值在方程求解、大小比较、不等式证明等方面的应用。
初中数学知识点精讲精析 绝对值

1.3 绝对值学习目标1. 理解绝对值的概念及表示法。
2. 理解数的绝对值的几何意义。
知识详解1.绝对值的几何意义及表示方法(1)概念:在数轴上,一个数所对应的点到原点的距离叫做这个数的绝对值。
(2)表示方法:数a的绝对值记作︱a︳。
注意:(1)绝对值最小的数是0.(2)互为相反数的两个数的绝对值相等。
(3)绝对值相等的两个数可能相等也可能互为相反数。
(4)绝对值等于一个正数的数有两个,且它们互为相反数。
2. 绝对值的代数定义一般地,一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;零的绝对值是零。
互为相反数的两个数的绝对值相等。
绝对值的代数定义,用式子可以表示为:︱a︳=a(a>0)或0(a=0)或-a(a<0)。
求一个数的绝对值有两种方法:(1)根据几何定义画数轴,利用它到原点的距离来求;(2)判断已知数的正、负或0,根据代数定义来求。
【典型例题】例1:下列说法正确的是( ).A.|-5|表示-5的绝对值,等于-5B.负数的绝对值等于它本身C.-10距离原点10个单位长度,所以-10的绝对值是10D.绝对值等于它本身的数有两个,是0和1【答案】C【解析】例2①若|x|=2 013,则x=2 013;②2332-=+;③绝对值最小的有理数是1;④0没有绝对值;⑤一个有理数的绝对值一定是非负数.正确的个数为( ).A.1 B.2 C.3 D.4【答案】A【解析】绝对值是2 013的数是±2 013;2233-=,3322+=;绝对值最小的有理数是0;0的绝对值是0;正数的绝对值是正数,负数的绝对值是它的相反数,也是正数,0的绝对值是0.所以⑤正确.例3:|-2|的值等于()A.2B.-2C.±2D【答案】A【解析】|-2|=2【误区警示】易错点1:绝对值的值1. -4的绝对值是()A.4B.1 4C.-4D.±4【答案】A【解析】-4的绝对值是4易错点2:化简2.化简下列各数的符号:(1)-{-[+(-10)]};(2)-[-(+5)]【答案】(1)-{-[+(-10)]}=-10;(2)-[-(+5)]=5.【解析】【综合提升】针对训练1.求下列各式的值:|+2 013|,|-3.9|,-56-,-|+18|2.求下列各数的绝对值:+11,-3.4,0,3 2 -3.13-=()A.3 B.-3C.1 3D.1 3 -1.【答案】|+2 013|=2 013,|-3.9|=3.9,-56-=-56,-|+18|=-18.【解析】2.【答案】|+11|=11,|-3.4|=3.4,|0|=0,33 22 -=【解析】可根据绝对值的意义,即根据“正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0”进行求解。
初中数学绝对值知识点总结

初中数学绝对值知识点总结
绝对值的实质含义表示的是一段距离,谁与谁的距离呢?可以借助数轴来表示,求一个数的绝对值就是求这个数到原点的距离。
在数轴上,最短的距离是0,其他距离都是正的,所以绝对值就有了一个性质,叫作非负性,用字母表示就是丨a丨≥0。
求一个数的绝对值,通常要看这个数的正负性,如果是正数,那么这个数的绝对值就是它本身,如果是负数,那么这个数的绝对值就是它的相反数,例如-3到原点有3个单位长,所以-3的绝对值应该等于3,0的绝对值是0,因为0到0的距离就是0。
因此,只要数学的学习不仅仅是刷题练习,需要先把定义理解透彻,在此基础上再来进行练习,就会事半功倍,而且掌握的非常牢固了。
既然2和-2都到原点有两个单位长,那么它们两个的绝对值就是相等的,所以就有了这个结论:互为相反数的两个数绝对值相等。
但这句话反过来说是否同样成立呢?如果两个数的绝对值相等,那么这两个数一定互为相反数吗?答案是否定的,还有另一种情况这两个数也有可能相等。
因此,若丨a丨=丨b丨
a和b就有两种情况,相等,或互为相反数。
含绝对值的还有几种常考题型,例如几个非负数相加等于0,那么每个非负数都等于0,原数和它绝对值的商通常为±1,在笔记中,大家可以看一下,以及含绝对值符号的式子化简,同样也是重中之重,贯穿整个初中,化简经常遇到,要好好学习掌握住它!
绝对值的定义,性质,应用。
初中数学绝对值归纳总结

初中数学绝对值归纳总结绝对值是数学中的一种基本概念,它代表一个数与零的距离,无论这个数是正数、负数还是零。
在初中数学中,绝对值是一个重要的知识点,掌握绝对值的性质和运算规律对于解决数学问题至关重要。
本文将对初中数学中绝对值的相关知识进行归纳总结,分为以下几个方面进行阐述。
一、绝对值的定义及性质绝对值的定义:对于任意实数x,其绝对值表示为|x|,|x|的值等于x 与0之间的距离,即|x|=x(x≥0),|x|=-x(x<0)。
绝对值的性质:1. 非负性:对于任意实数x,|x|≥0。
2. 同号性:如果实数a和b同号,则|a|=|b|。
3. 零性:只有当实数a等于0时,|a|=0。
4. 正负性:对于任意非零实数a,有|-a|=|a|。
二、绝对值的运算1. 绝对值的加减法:对于任意实数a和b,有|a+b|≤|a|+|b|和|a-b|≥||a|-|b||。
2. 绝对值的乘法:对于任意实数a和b,有|ab|=|a|·|b|。
三、绝对值的应用1. 解绝对值不等式:对于绝对值不等式|ax+b|<c(a≠0,b、c为已知实数),可分解为一个以x为中心的两个线性不等式,并通过解这两个线性不等式得到解集。
2. 求绝对值平均:对于给定的一组数x₁、x₂、⋯、xₙ,求它们的绝对值平均等于求这组数的绝对值之和除以数的个数。
3. 应用于坐标系:在二维坐标系中,点(x, y)到原点的距离等于√(x²+y²),可以看作是x和y的绝对值之和。
四、绝对值的常见错误1. 错误地交换了绝对值与幂运算的顺序,导致运算结果错误。
2. 误认为|x+y|=|x|+|y|,在绝对值的加法运算中,需要注意其结果不一定等于各绝对值之和。
3. 忽略了绝对值的非负性,得出错误的结论。
绝对值作为数学中常见的概念之一,在初中阶段的数学学习中扮演着重要的角色。
通过深入理解绝对值的定义、性质和运算规律,掌握解决绝对值相关问题的方法和技巧,能够帮助学生在数学学习和解题过程中更加灵活和高效。