初2020届成都市青羊区中考数学九年级一诊数学试卷(含答案)
00-2020成都九年级各区一诊核心试题部分(九上期末)

20,24,25,27,28题目录锦江区2019 - 2020学年度(上)期末数学核心题20,23,24,25,27,28 (2)武侯区2019 - 2020学年度(上)期末数学核心题20,24,25,27,28 (6)青羊区2019 - 2020学年度(上)期末数学核心题20,23,24,25,27,28 (10)高新区2019 - 2020学年度(上)期末数学核心题20,24,25,27,28 (14)天府新区2019 - 2020学年度(上)期末数学核心题20,24,25,27,28 (18)金牛区2019 - 2020学年度(上)期末数学核心题20,24,25,27,28 (22)锦江区2019 - 2020学年度(上)期末数学核心题20,23,24,25,27,2820. (本小题满分10分)如图1,△ABD 内接于⊙O ,AD 是直径,∠BAD 的平分线交BD 于H ,交⊙O 于点C ,连接DC 并延长,交AB 的延长线于点E .(1)求证:AE =AD ; (2)若32BE AB ,求AHHC的值; (3)如图2,连接CB 并延长,交DA 的延长线于点F ,若AH =HC ,AF =6,求△BEC 的面积.图1A图223. 如图,在平面直角坐标系中,正方形ABCD 的面积为20,顶点A 在y 轴上,顶点C 在x 轴上,顶点D 在双曲线ky x=(0x >)的图象上,边CD 交y 轴于点E ,若CE =ED ,则k 的值为______.24. 如图,已知△ABC 中,CA =CB =4,∠C =45°,D 是线段AC 上一点(不与A ,C 重合),连接BD ,将△ABD 沿AB 翻折,使点D 落在点E 处,延长BD 与EA 的延长线交于点F . 若△BEF 是直角三角形,则AF 的长为______.25. 如图,在□ABCD中,BC =BD =10,1tan 2DBC ∠=,点E 是线段BC 上的一动点,连接DE ,过点D 作DP ⊥DE ,在射线DP 上取点F ,使得∠DFE =∠DBC ,连接CF ,则△DCF 周长的最小值为______.FEA如图1,在矩形ABCD 中,点P 是BC 边上一点,连接AP 交对角线BD 于点E ,BP =BE . 作线段AP 的中垂线MN 分别交线段DC ,DB ,AP ,AB 于点M ,G ,F ,N .(1)求证:∠BAP =∠BGN ; (2)若AB =6,BC =8,求PEEF的值; (3)如图2,在(2)的条件下,连接CF ,求tan ∠CFM 的值.图1图2B如图,在平面直角坐标系中,抛物线2y ax bx c =++的图象与x 轴交于(4,0)A ,B 两点,与y 轴交于点(0,2)C ,对称轴32x =与x 轴交于点H . (1)求抛物线的函数表达式;(2)直线1y kx =+(0k ≠)与y 轴交于点E ,与抛物线交于点P ,Q (点P 在y 轴左侧,点Q 在y 轴右侧),连接CP ,CQ ,若△CPQ,求点P ,Q 的坐标; (3)在(2)的条件下,连接AC 交PQ 于G ,在对称轴上是否存在一点K ,连接GK ,将线段GK 绕点G 逆时针旋转90°,使点K 恰好落在抛物线上,若存在,请直接写出点K 的坐标;若不存在,请说明理由.备用图武侯区2019 - 2020学年度(上)期末数学核心题20,24,25,27,2820. (本小题满分10分)如图,⊙O 是△ABC 的外接圆,AB 为⊙O 的直径,在△ABC 外侧作∠CAD =∠CAB ,过点C 作CD ⊥AD 于点D ,交AB 延长线于点P .(1)求证:PC 是⊙O 的切线;(2)若1tan 2BCP ∠=,2AD BC ⋅=(0m >),求⊙O 的半径;(用含m 的代数式表示)(3)如图2,在(2)的条件下,作弦CF 平分∠ACB ,交AB 于点E ,连接BF,且BF =PE 的长.图1P图2P24. 如图,点P为双曲线y=0x<)上一动点,连接OP并延长到点A,使PA=PO,过点A作x轴的垂线,垂足为B,交双曲线于点C. 当AC=AP时,连接PC,将△APC沿直线PC进行翻折,则翻折后的△'A PC与四边形BOPC的重叠部分(图中阴影部分)的面积是______.25. 如图,在矩形ABCD中,已知AB=3,BC=4,点P是边BC上一动点(点P不与点B,C重合),连接AP,作点B关于直线AP的对称点M,连接MP,作∠MPC的角平分线交边CD于点N. 则线段MN的最小值为______.如图,已知AC为正方形ABCD的对角线,点P是平面内不与点A,B重合的任意一点,连接AP,将线段AP绕点P顺时针旋转90°得到线段PE,连接AE,BP,CE.(1)求证:△APE∽△ABC;(2)当线段BP与CE相交时,设交点为M,求BPCE的值以及∠BMC的度数;(3)若正方形ABCD的边长为3,AP=1,当点P,C,E在同一直线上时,求线段BP的长.P备用图如图,在平面直角坐标系xOy中,抛物线2y ax c =+与x 轴交于A ,B 两点(点A 在点B 的左侧),交y 轴于点C ,经过B ,C两点的直线为y =(1)求抛物线的函数表达式;(2)点P 为抛物线上的动点,过点P 作x 轴的垂线,交直线BC 于点M ,连接PC ,若△PCM 为直角三角形,求点P 的坐标;(3)当P 满足(2)的条件,且点P 在直线BC 上方的抛物线上时,如图2,将抛物线沿射线BC 方向平移,平移后B ,P 两点的对应点分别为'B ,'P ,取AB 的中点E ,连接'EB ,'EP ,试探究''EB EP +是否存在最小值?若存在,求出这个最小值;若不存在,请说明理由.图1图2青羊区2019 - 2020学年度(上)期末数学核心题20,23,24,25,27,2820. (本小题满分10分)如图,在Rt△ABC中,AB⊥BC,以AB为直径的圆交AC于点D,E是BC的中点,连接DE.(1)求证:DE是⊙O的切线;(2)设⊙O的半径为r,求证:21 2r AD OE=⋅;(3)若DE=4,3sin5C=,求AD的长.EA B23. 如图,直线AB 交双曲线ky x=于A ,B 两点,交x 轴于点C ,且B 恰为线段AC 的中点,连结OA ,若 72OAC S ∆=,则k 的值为______.24. 在平面直角坐标系中,(1,0)A,B ,过点B 作直线BC ∥x 轴,点P 是直线BC 上的一个动点,以AP 为边在AP 右侧作Rt △APQ ,使∠APQ =90°,且:AP PQ =AB ,BQ ,则△ABQ 的周长的最小值为______.25. 如图,在矩形ABCD 中,AB =4,BC =6,点E 为对角线BD 的中点,点F 在CB 的延长线上,且1BF =,连接EF ,过点E 作EG ⊥EF 交BA 的延长线于点G ,连接GF 并延长交DB 的延长线于点H ,则EHGH=______.H(1)如图1,△ABC 为等边三角形,点D ,E 分别在边AB ,AC 上,将图形沿线段DE 所在的直线翻折,使点A 落在BC 边上的点F 处. 求证:BF CF BD CE ⋅=⋅;(2)如图2,按图1的翻折方式,若等边△ABC 的边长为4,当:3:2DF EF =时,求sin ∠DFB 的值; (3)如图3,在Rt △ABC 中,∠A =90°,∠ABC =30°,AC =D 是AB 边上的中点,在BC 的下方作射线BE ,使得∠CBE =30°,点P 是射线BE 上一个动点,当∠DPC =60°时,求BP 的长.图1图2CBC如图,一次函数122y x=-+的图象与坐标轴交于A,B两点,点C的坐标为(1,0)-,二次函数2y ax bx c=++的图象经过A,B,C三点.(1)求二次函数的解析式;(2)如图1,已知点(1,)D n在抛物线上,作射线BD,点Q为线段AB上一点,过点Q作QM⊥y轴于点M,作QN⊥BD于点N,过Q作QP∥y轴交抛物线于点P,当QM与QN的积最大时,求点P的坐标;(3)在(2)的条件下,连接AP,若点E为抛物线上一点,且满足∠APE=∠ABO,求点E的坐标.图1图2(备用图)高新区2019 - 2020学年度(上)期末数学核心题20,24,25,27,2820. (本小题满分10分)如图,在Rt△ABC中,∠ACB=90°,以AC为直径作⊙O,点D在⊙O上,BD=BC,DE⊥AC,垂足为点E,DE与⊙O和AB分别交于点M,F. 连接BO,DO,AM.(1)证明:BD是⊙O的切线;(2)若1tan2AMD∠=,AD=O的半径长;(3)在(2)的条件下,求DF的长.24. 如图,在平面直角坐标系xOy中,矩形OABC的边OA,OC分别在x轴,y轴上,OA=6,OC=4,点Q是AB边上一个动点,过点Q的反比例函数kyx=(0x>)与BC边交于点P. 若将△PBQ沿PQ折叠,点B的对应点E恰好落在对角线AC上,则此时反比例函数的解析式是______.25. 已知矩形ABCD的长和宽分别是n和1,其中n是正整数,若存在另一个矩形''''A B C D,它的周长和面积分别是矩形ABCD周长和面积的一半,则满足条件的n的最小值是______.如图,在△ABC与△EBD中,∠ABC=∠EBD=90°,AB=6,BC=3,EB=,BD=AE与直线CD交于点P.(1)求证:△ABE∽△CBD;(2)若AB∥ED,求tan∠PAC的值;(3)若△EBD绕点B逆时针旋转一周,直接写出线段AP的最大值与最小值.在平面直角坐标系xOy中,抛物线(3)(1)y a x x=-+与x轴交于A,B两点,与y轴交于点(0,C,连接AC,BC.(1)求抛物线的函数表达式;(2)抛物线的对称轴与x轴交于点D,连接CD,点E为第三象限抛物线上的一动点,EF∥BC,直线EF与抛物线交于点F,设直线EF的表达式为y kx b=+.①如图1,直线y kx b=+与抛物线对称轴交于点G,若△DGF∽△BDC,求k,b的值;②如图2,直线y kx b=+与y轴交于点M,与直线y=交于点H,若111ME MF MH-=,求b的值.图1图2天府新区2019 - 2020学年度(上)期末数学核心题20,24,25,27,2820. (本小题满分10分)如图,△ABC内接于⊙O,AB是直径,过点A作直线MN,且∠MAC=∠ABC.(1)求证:MN是⊙O的切线;(2)设D是弧AC的中点,连接BD交AC于点G,过点D作DE⊥AB于点E,交AC于点F.①求证:FD=FG;②若BC=3,AB=5,求AE的长.MBN24. 如图,点A在双曲线kyx=(0k≠)的第一箱箱的分支上,AB垂直x轴于点B,点C在x轴正半轴上,OC=2AB,点E在线段AC上,且AE=3EC,点D为OB的中点,连接CD,若△CDE的面积为1,则k 的值为______.25. 如图,矩形ABCD中,AB=3,BC=4,点E是AB边上一点,且AE,点F是BC上的任意一点,把△BEF沿EF翻折,点B的对应点为G,连接AG,CG,则四边形AGCD的面积的最小值为______.已知,在△ABC 和△EFC 中,∠ABC =∠EFC =90°,点E 在△ABC 内,且∠CAE +∠CBE =90°. (1)如图1,当△ABC 和△EFC 均为等腰直角三角形时,连接BF , ①求证:△CAE ∽△CBF ; ②若BE =2,AE =4,求EF 的长;(2)如图2,当△ABC 和△EFC 均为一般直角三角形时,AB EFk BC FC==,BE =1,AE =3,CE =4,求k 的值.图1图2已知,如图,抛物线2y ax bx c =++(0a ≠)的顶点为(1,9)M ,经过抛物线上的两点(3,7)A --,(3,)B m 的直线交抛物线的对称轴于点C .(1)求抛物线的解析式及点B 的坐标;(2)在抛物线上A ,M 两点之间的部分(不包含A ,M 两点),是否存在点D ,使得2DAC DCM S S ∆∆=?若存在,求出点D 的坐标;若不存在,请说明理由;(3)上下平移直线AB ,设平移后的直线与抛物线交于'A ,'B 两点('A 在左边,'B 在右边),且与y 轴交于点(0,)P n ,若''90A MB ∠=o ,求n 的值.备用图金牛区2019 - 2020学年度(上)期末数学核心题20,24,25,27,2820. (本小题满分10分)如图,在△ABC中,AB=AC,⊙O是△ABC的外接圆,连接OA,OB,OC,延长BO与AC交于点D,与⊙O交于点F,延长BA到点G,使得∠BGF=∠GBC,连接FG.(1)求证:FG是⊙O的切线;(2)若⊙O的半径为4.①当OD=3时,求AD的长度;②当△OCD是直角三角形时,求△ABC的面积.24. 在一个不透明的盒子里装有5个分别写有数字0,1,2,3,4的小球,它们除数字不同外其余全部相同. 现从盒子里随机摸出一个小球(不放回),设该小球上的数字为m ,再从盒子中随机摸出一个小球,设该小球上的数字为n ,点P 的坐标为2(,1)P m n -,则点P 落在抛物线24y x x =-+与x 轴所围成的区域内(含边界)的概率是______.25. 如图,二次函数223y x x =-++的图象与x 轴交于A ,B 两点,与y 轴交于点C ,对称轴与x 轴交于点D ,过点P 为y 轴上的一个动点,连接PDPD +的最小值为______.如图,在□ABCD 中,AB =4,∠B =45°,AC ⊥AB ,P 是BC 上一动点,过P 作AP 的垂线交CD 于E ,将△PCE 翻折得到△PCF ,延长FP 交AB 于H ,连接AE ,PE 交AC 于G .(1)求证:PH =PF ;(2)当BP =3PC 时,求AE 的长; (3)当2AP AH AB =⋅时,求AG 的长.如图,已知抛物线2y ax bx c =++(0a ≠)与x 轴交于点A ,B ,与y 轴交于点C ,其中点(1,0)A -,点(0,2)C ,且∠ACB =90°. (1)求抛物线的解析式;(2)点P 是线段AB 上 一动点,过P 作PD ∥AC 交BC 于D ,当△PCD 面积最大时,求点P 的坐标; (3)当M 是位于线段BC 上方的抛物线上一点,当∠ABC 恰好等于△BCM 中的某个角时,求点M 的坐标.。
2020年成都市六区县中考数学一诊试卷 (含答案解析)

2020年成都市六区县中考数学一诊试卷一、选择题(本大题共10小题,共30.0分)1.数轴上,到−3对应点距离为5个单位长度的数是()A. −8或1B. 8C. −8或2D. 22.下图是由6个完全相同的小正方体组成的几何体,其俯视图为()A.B.C.D.3.十三届全国人大一次会议3月5日上午9时在人民大会堂开幕,听取国务院总理李克强关于政府工作的报告.报告中指出:加大精准脱贫力度,今年再减少农村贫困人口1000万以上,完成易地扶贫搬迁2800000人.其中2800000用科学记数法表示为()A. 2.8×106B. 2.8×105C. 28×105D. 0.28×1074.下列运算正确的是()A. a+a2=a3B. (a2)3=a6C. (x−y)2=x2−y2D. a2a3=a65.已知直线m//n,将一块含30°角的直角三角板ABC按如图方式放置(∠ABC=30°),其中A,B两点分别落在直线m,n上,若∠1=20°,则∠2的度数为()A. 20°B. 30°C. 45°D. 50°6.已知反比例函数y=2k−3的图象经过(1,1),则k的值为()xA. −1B. 0C. 1D. 27.解分式方程xx−1−1=3(x−1)(x+2),去分母,得:x(x+2)−(x−1)(x+2)=3,解得,x=1.则下列结论:①x=1是原分式方程的解;②x=1不是原分式方程的解;③x=1是方程x(x+2)−(x−1)(x+2)=3的解;④原分式方程无解.其中,正确的结论有()A. 1个B. 2个C. 3个D. 4个8.有一组数据:1,2,3,6,这组数据的方差是()A. 2.5B. 3C. 3.5D. 49.如图,△ABC内接于⊙O,OC⊥OB,OD⊥AB于点D,交AC于点E,已知⊙O的半径为1,则AE2+CE2的值为()A. 1B. 2C. 3D. 410.如图,抛物线y1=ax2+bx+c(a≠0),其顶点坐标为A(−1,3),抛物线与x轴的一个交点为B(−3,0),直线y2=mx+n(m≠0)与抛物线交于A,B两点,下列结论:①2a−b=0,②abc>0,③方程ax2+bx+c=3有两个相等的实数根,④抛物线与x轴的另一个交点是(1,0),⑤当−3<x<−1时,有y2<y1.其中正确结论的个数是()A. 5B. 4C. 3D. 2二、填空题(本大题共9小题,共36.0分)11.代数式√x−4中x的取值范围是______.12.如图,菱形ABCD的边长为6,∠ABC=60°,则对角线AC的长是_________.13.点A(x1,y1),B(x2,y2)是反比例函数y=1x的图象上两点,若0<x1<x2,则y1、y2的大小关系是______ .14.如图,已知在△ABC中,AB=AC=5,BC=8,点D是边BC的中点,E是线段BA上一点(与点B.A不重合),直线DE交CA的延长线于F点,当FE=FA时,则tan∠AEF=______.15.比较大小:−√5−12______ −12(填“>”或“<”).16.一次数学考试中,九年(1)班和(2)班的学生数和平均分如表所示,则这两班平均成绩为______ 分.班级人数平均分(1)班5285(2)班488017.若m,n是方程x2+2015x−1=0的两个实数根,则m2n+mn2−mn的值等于______ .18.如图,△AOB为等边三角形,点A在第四象限,点B的坐标为(4,0),过点C(−4,0)作直线l交AO于D,交AB于E,且点E在某反比例函数y=kx(k≠0)图象上,当△ADE和△DCO的面积相等时,k的值为.19.若点A(m,n)在一次函数y=3x+b的图像上,且3m−n>2,则b的取值范围为_________.三、解答题(本大题共9小题,共84.0分)20.(1)计算:√8−2−1+(1−√3)0−4cos45°.(2).解不等式组:{3−2×(x−1)>0x+32−1≤x,并写出符合不等式组的整数解.21.先化简,再求值:xx2−2x+1÷(x+1x2−1+1),其中x=√3+1.22.学校为了提高学生跳远科目的成绩,对全校500名九年级学生开展了为期一个月的跳远科目强化训练.王老师为了了解学生的训练情况,强化训练前,随机抽取了该年级部分学生进行跳远测试,经过一个月的强化训练后,再次测得这部分学生的跳远成绩,将两次测得的成绩制作成图所示的统计图和不完整的统计表(满分10分,得分均为整数).训练后学生成绩统计表成绩/分6分7分8分9分10分人数/人1385n根据以上信息回答下列问题:(1)训练后学生成绩统计表中n=________,并补充完成下表:平均分中位数众数训练前7.5________ 8训练后________ 8________(2)若跳远成绩9分及以上为优秀,估计该校九年级学生训练后比训练前达到优秀的人数增加了多少?(3)经调查,经过训练后得到9分的五名同学中,有三名男生和两名女生.王老师要从这五名同学中随机抽取两名同学写出训练报告,请用列表或画树状图的方法,求所抽取的两名同学恰好是一男一女的概率.23.某渔船向正东方向航行,上午8点在A处时发现渔船、小岛B和小岛C在同一条直线上,渔船以30海里/小时的速度继续向正东方向航行,上午10点到达位于小岛C的正南方向上的D处,此时小岛B在渔船的西偏北63°的方向上,如图,已知小岛C在小岛B的东偏北45°的方向上,求小岛B和小岛C之间的距离.(结果精确到1海里,参考数据:sin63°≈0.9,cos63°≈0.5,tan63°≈2.0,√2≈1.4)(k≠0)的图象交于点A(−2,a)和24.在平面直角坐标系xOy中,直线y=−x+2与反比例函数y=kx点B.(1)求反比例函数的表达式和点B的坐标;<−x+2的解集.(2)直接写出不等式kx25.如图,C、D为⊙O上两点,AB为直径,E在AB延长线上,且AD平分∠CAB,过D点的直线EF⊥AF,交AC的延长线于点F,连接BD.(1)求证:EF是⊙O的切线;(2)若EB:ED=1:√3,⊙O的半径为r,当r=4时,求FC的长.26.大润发超市在销售某种进货价为20元/件的商品时,以30元/件售出,每天能售出100件.调查表明:这种商品的售价每上涨1元/件,其销售量就将减少2件.(1)为了实现每天1600元的销售利润,超市应将这种商品的售价定为多少?(2)设每件商品的售价为x元,超市所获利润为y元.①求y与x之间的函数关系式;②物价局规定该商品的售价不能超过40元/件,超市为了获得最大的利润,应将该商品售价定为多少?最大利润是多少?27.已知点O是正方形ABCD对角线BD的中点.(1)如图1,若点E是OD的中点,点F是AB上一点,且使∠CEF=90°,过点E作MN//AD,交AB于点M,交CD于点N,∠AEM=∠FEM.(2)如图2,若点E是OD上一点,点F是AB上一点,且使DEDO =AFAB=14,请判断△EFC形状,并说明理由(3)如图3,若E是OD上的动点(不与O,D重合),连接CE,过E点作EF⊥CF,交AB于点F,当DEDO =mn时,请猜想AFAB的值(请直接写出结论)28.如图,直线AB经过x轴上一点A(3,0),且与抛物线y=ax2+1相交于B、C两点,点B的坐标为(1,2).(1)求抛物线和直线AB的解析式;(2)若点D是抛物线上一点,且D在直线BC下方,若S△BCD=3,求点D的坐标;(3)设抛物线顶点为M,问在抛物线上是否存在点P使△PMC是以MC为直角边的直角三角形?若存在,请求出点P的坐标;若不存在,请说明理由.【答案与解析】1.答案:C解析:此题主要考查了数轴的特征和应用,要熟练掌握,解答此题的关键是熟记数轴上两点之间的距离的求法.数轴上,到−3对应点距离为5个单位长度的数表示的点有可能在−3对应点的左边,也有可能在−3对应点的右边,据此求解即可.解:数轴上,到−3对应点距离为5个单位长度的数是:−3−5=−8或−3+5=2.故选C.2.答案:B解析:本题考查了简单组合体的三视图,从上面看得到的图形是俯视图.根据从上面看得到的图形是俯视图,据此可得答案.解:从上面看第一排是三个小正方形,第二排右边是一个小正方形,故选B.3.答案:A解析:解:2800000用科学记数法表示为2.8×106,故选:A.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a的值以及n的值.4.答案:B解析:此题主要考查了合并同类项以及完全平方公式和幂的乘方运算、同底数幂的乘法运算等知识,正确应用相关法则是解题关键.直接利用合并同类项法则以及完全平方公式和幂的乘方运算法则、同底数幂的乘法运算法则计算得出答案.解:A、a+a2,无法计算,故此选项错误;B、(a2)3=a6,正确;C、(x−y)2=x2−2xy+y2,故此选项错误;D、a2a3=a5,故此选项错误;故选B.5.答案:D解析:解:∵直线m//n,∴∠2=∠ABC+∠1=30°+20°=50°,故选:D.根据平行线的性质即可得到结论.本题考查了平行线的性质,熟练掌握平行线的性质是解题的关键.6.答案:D解析:本题考查了反比例函数图象上点的坐标特征:函数图象上的点的坐标满足函数解析式.将点的坐标代入反比例函数解析式即可解答.得,解:将点(1,1)代入y=2k−3x2k−3=1,解得:k=2,故选D.7.答案:C解析:此题考查了分式方程的解法.注意解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.注意解分式方程一定要验根.根据解分式方程的方法步骤对每个小题作出判断即可得出结论.解:当x=1时,x−1=0,∴x=1不是原分式方程的解,故①错误,②正确;③x=1是方程x(x+2)−(x−1)(x+2)=3的解,故③正确;④当x=1时,x−1=0,∴x=1不是原分式方程的解,原分式方程无解,故正确.其中,正确的结论有②③④共3个.故选C.8.答案:C解析:本题考查方差的定义:一般地设n个数据,x1,x2,…x n的平均数为x−,则方差s2=1n[(x1−x−)2+(x2−x−)2+⋯+(x n−x−)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.先求平均数,再代入公式s2=1n[(x1−x−)2+(x2−x−)2+⋯+(x n−x−)2],计算即可.解:x−=(1+2+3+6)÷4=3,s2=14[(1−3)2+(2−3)2+(3−3)2+(6−3)2]=3.5.故选:C.9.答案:B解析:【试题解析】本题考查的是三角形的外接圆与外心,垂径定理,勾股定理,三角形外角性质,熟练掌握这些知识是解题的关键.连接BE,根据垂径定理得到AD=DB,得到EA=EB,∠EBA=∠BAC,由圆周角定理得∠BAC=1 2∠BOC=12×90∘=45∘,得到△BEC是直角三角形,根据勾股定理计算即可.解:连接BE,∵OD⊥AB,∴AD=DB,∴DE垂直平分AB,∴EA=EB,∴∠EBA=∠BAC.∵∠BAC=12∠BOC=12×90∘=45∘,∴∠EBA=45∘.∴∠BEC=∠EBA+∠BAC=45∘+45∘=90∘.∴△BEC是直角三角形,在直角△BEC中,BE2+CE2=BC2,∵BC2=2OC2=2,∴BE2+CE2=2,即AE2+CE2=2.故选B.10.答案:A解析:本题是二次函数综合题,考查了二次函数图象与系数的关系、抛物线的对称性和从函数观点看方程和不等式,解答关键是数形结合.根据抛物线的图象特征和对称性可得①②④;将方程ax2+bx+c=3转化为函数图象求交点问题可得③;通过数形结合可得⑤.解:由抛物线对称轴为直线x=−b2a=−1,b=2a,则①正确;由图象,ab同号,c>0,则abc>0,则②正确;方程ax2+bx+c=3可以看做是抛物线y=ax2+bx+c与直线y=3求交点横坐标,由抛物线顶点为(−1,3),则直线y=3过抛物线顶点.∴方程ax2+bx+c=3有两个相等的实数根.故③正确;由抛物线对称轴为直线x=−1,与x轴的一个交点(−3,0),由对称性得抛物线与x轴的另一个交点为(1,0),则④正确;∵A(−1,3),B(−3,0),直线y2=mx+n与抛物线交于A,B两点∴当−3<x<−1时,抛物线y1的图象在直线y2上方,则y2<y1,故⑤正确.故选:A.11.答案:x≥4解析:解:由题意,得x−4≥0,解得x≥4.故答案为:x≥4.根据被开方数是非负数,可得答案.此题考查了二次根式的意义和性质.概念:式子√a(a≥0)叫二次根式.性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.12.答案:6解析:解:∵四边形ABCD是菱形,∴AB=BC,∵∠ABC=60°,∴△ABC是等边三角形,∴AC=AB=6.故答案为:6.由菱形ABCD中,∠ABC=60°,易证得△ABC是等边三角形,继而求得对角线AC的长.此题考查了菱形的性质以及等边三角形的判定与性质.注意证得△ABC是等边三角形是关键.13.答案:y1>y2解析:先根据反比例函数的解析式判断出函数图象所在的象限,再根据0<x 1<x 2判断两点是否在函数图象的同一个分支上,再由函数的增减性即可解答.本题比较简单,考查的是反比例函数的性质,解答此题的关键是熟练掌握反比例函数的增减性. 解:∵反比例函数y =1x 中,k =1>0,∴此函数的图象在一、三象限,在每一象限内y 随x 的增大而减小,∵0<x 1<x 2,∴A 、B 两点均在第三象限, ∵x 1<x 2, ∴y 1>y 2. 故答案为y 1>y 2. 14.答案:247解析:解:作BM ⊥CF 于M ,连接AD .∵AB =AC ,BD =DC ,∴AD ⊥BC ,∴∠ADC =90°,AD =√52−42=3,∵12⋅BC ⋅AD =12⋅AC ⋅BM ,∴BM =245,∴AM =√52−(245)2=75,∵FE =EA ,∴∠FEA =∠FAE ,∴tan∠FEA =tan∠FAE =BM AM =247.故答案为247.作BM ⊥CF 于M ,连接AD.承办方求出BM 、AM 即可解决问题;本题考查解直角三角形、等腰三角形的性质等知识,解题的关键是学会添加常用辅助线,属于中考常考题型.15.答案:<解析:解:∵√5−1>1,∴√5−12>12,∴−√5−12<−12; 故答案为:<.先比较出√5−1与1的大小关系,再比较出√5−12与12的大小关系,最后根据两个负数比较大小,绝对值大的反而小,即可得出答案.此题考查了实数的大小比较,解题的关键是根据两个负数比较大小,绝对值大的反而小. 16.答案:82.6解析:此题考查了加权平均数,熟练掌握加权平均数的定义是解本题的关键.根据加权平均数的定义计算即可得到结果.解:根据题意得:5252+48×85+4852+48×80=44.2+38.4=82.6(分),则这两班平均成绩为82.6分,故答案为:82.6 17.答案:2016解析:本题考查了根与系数关系的应用,能熟记根与系数关系的内容是解此题的关键,若x 1、x 2是一元二次方程ax 2+bx +c =0(a 、b 、c 为常数,a ≠0)的两个根,则x 1+x 2=−b a ,x 1⋅x 2=c a . 根据根与系数的关系得出m +n =−2015,mn =−1,变形后代入求出即可.解:∵m ,n 是方程x 2+2015x −1=0的两个实数根,∴m +n =−2015,mn =−1,∴m 2n +mn 2−mn=mn(m+n)−mn=−1×(−2015)−(−1)=2016,故答案为:2016.18.答案:−3√3解析:本题主要考查了用待定系数法求反比例函数的解析式和反比例函数系数k的几何意义,熟练掌握反比例函数的几何意义是解题的关键.连接AC,由B的坐标得到等边三角形AOB的边长,得到A的坐标,AO=OC,利用等边对等角得到一对角相等,再由∠AOB=60°,得到∠ACO=30°,可得出∠BAC 为直角,由△ADE与△DCO面积相等,且△AEC面积等于△AED与△ADC面积之和,△AOC面积等于△DCO面积与△ADC面积之和,得到△AEC与△AOC面积相等,进而确定出AE的长,可得出E为AB 中点,E的坐标,将E的坐标代入反比例解析式中求出k的值,即可确定出反比例函数解析式.解:连接AC,∵点B的坐标为(4,0),△AOB为等边三角形,∴AO=OC=4,点A的坐标为(2,−2√3),∴∠OCA=∠OAC,∵∠AOB=60°,∴∠ACO=30°,∠B=60°,∴∠BAC=90°,由A(2,−2√3),C(−4,0),易得到AC=4√3,×AE×∵S△ADE=S△DCO,S△AEC=S△ADE+S△ADC,S△AOC=S△DCO+S△ADC,∴S△AEC=S△AOC=12×CO×2√3,AC=12即 12⋅AE ⋅4√3=12×4×2√3,∴AE =2,∴E 点为AB 的中点,E(3,−√3),把E 点(3,−√3)代入y =k x 中得:k =−3√3.故答案为−3√3. 19.答案:b <−2解析:【试题解析】本题考查了一次函数图象上点的坐标特征.由点A 的坐标结合一次函数图象上点的坐标特征,可得出3m +b =n ,再由3m −n >2,得出b <−2,即可求解.解:∵点A(m,n)在一次函数y =3x +b 的图象上,∴3m +b =n ,∴3m −n =−b ,∵3m −n >2,∴−b >2,即b <−2.故答案为b <−2.20.答案:解:(1)原式=2√2−12+1−4×√22, =2√2+12−2√2,=12.(2){3−2(x −1)>0①x +3−1≤x②解不等式①可得:x<52,解不等式②可得:x≥1,则该不等式组的解集为1≤x<52,该不等式组的整数解为1,2.解析:本题考查的是负指数幂,零指数幂,特殊三角函数值,一元一次不等式组的特殊解有关知识.(1)首先对该式进行变形,然后再进行计算即可解答案;(2)首先解出该不等式组的解集,然后再求整数解即可.21.答案:解:xx2−2x+1÷(x+1x2−1+1)=x(x−1)2÷x+1+x2−1x2−1=x(x−1)2⋅(x+1)(x−1)x(x+1)=1x−1,当x=√3+1时,原式=√3+1−1=√33.解析:根据分式的加法和除法可以化简题目中的式子,然后将x的值代入即可解答本题.本题考查分式的化简求值,解答本题的关键是明确分式化简求值的方法.22.答案:解:(1)n=3.补充如下:(2)500×(5+320×100%−2+120×100%)=125(人);(3)由题意,可列表如下:男1男2男3女1女2男1(男1,男2)(男1,男3)(男1,女1)(男1,女2)男2(男2,男1)(男2,男3)(男2,女1)(男2,女2)男3(男3,男1)(男3,男2)(男3,女1)(男3,女2)女1(女1,男1)(女1,男2)(女1,男3)(女1,女2)女2(女2,男1)(女2,男2)(女2,男3)(女2,女1)∴共有20种情况,所抽取的两位同学恰好是一男一女的情况有12种,∴P(所抽取的两位同学恰好是一男一女)=1220=35.解析:此题考查了列表法或树状图法求概率以及条形统计图的知识,也考查了平方数,中位数,众数等,用到的知识点为:概率=所求情况数与总情况数之比.(1)通过观察条形图,训练学生总人数为:4+6+7+2+1=20(人),∴n=20−(1+3+8+5)=3(人).训练后的平均分为6+3×7+8×8+9×5+10×320=8.3,训练前的中位数为(8+8)/2=7.5,训练后的众数为8,故答案为3;8.3;7.5;8;(2)(3)见答案.23.答案:解:由题意得,AD=30×2=60海里,过B作BE⊥CD于E,∵∠CBE=45°,∴∠C=45°,∵∠AD=90°,∴∠A=∠C=45°,∴CD=AD=60,∵BE ⊥CD ,AD ⊥CD ,∴BE//AD ,∴∠DBE =∠ADB =63°,∴DE =BE ⋅tan63°=2BE ,∴BE +2BE =CD =60,∴BE =20,∴BC =√2BE =60√2≈84海里,答:小岛B 和小岛C 之间的距离约为84海里.解析:根据题意求得AD =30×2=60海里,过B 作BE ⊥CD 于E ,得到CD =AD =60,根据平行线的性质得到∠DBE =∠ADB =63°,根据三角函数的定义得到DE =BE ⋅tan63°=2BE ,于是得到结论.本题考查的是解直角三角形的应用−方向角问题,正确根据题意画出图形、准确标注方向角、熟练掌握锐角三角函数的概念是解题的关键.24.答案:解:(1)把A(−2,a)代入y =−x +2中,得:2+2=a ,即a =4把A(−2,4)代入y =k x 中,得k =−8,即y =−8x ,联立方程组{y =−x +2y =−8x , 解得:{x =−2y =4或{x =4y =−2, 则B(4,−2);(2)如图:k x <−x +2的解集x <−2或0<x <4.解析:此题主要考查了反比例函数与一次函数的交点问题、待定系数法求函数解析式;熟练掌握待定系数法求直线解析式是解决问题的关键.(1)由点A在直线y=−x+2上,即可求出a的值,从而可得点A的坐标,根据点A在反比例函数y=kx 的图象上,即可求出反比例函数的解析式,然后将一次函数与反比例函数联立方程组,解方程组即可求出点B的坐标;(2)根据一次函数y=−x+2与反比例函数y=−8的交点坐标即可得不等式的解集.x25.答案:(1)证明:如图,连接OD,则OD=OA,∴∠,2=∠3,∵AD平分∠CAB,∴∠1=∠2,∴∠1=∠3,∴OD//AF,又∵EF⊥AF,∴OD⊥EF,∵OD是⊙O的直径,∴EF是⊙O的切线;(2)解:∵AB为⊙O的直径,∴∠ADB=90°,∴∠3+∠ODB=90°,由(1)可知,∠ODB+∠EDB=90°,∴∠EDB=∠3=∠2,∵∠E=∠E,∴△EDB∽△EAD,∴EBED =EDEA,∵EBED =√3,∴EDEA =√3,∴EA=√3ED=√3×√3EB=3EB,∴EB=r=4,在Rt△ODE中,,∴∠E=30°,连接BC,则BC⊥AF,∴BC//EF,∴∠ABC=∠E=30°,在Rt△ACB中,AC=12AB=4,在Rt△AFE中,AF=12AE=6,∴FC=AF−AC=6−4=2.解析:本题考查了圆周角定理,切线的判定和性质,角平分线定义,平行线的判定和性质以及直角三角形的性质等知识,掌握和灵活运用圆周角定理是解题关键.(1)连接OD,只要证明OD⊥EF即可证明EF是⊙O的切线;(2)首先证明△EDB∽△EAD,得到EB=4,然后利用解直角三角形证明∠E=30°,再根据直角三角形的性质即可求出FC的长.26.答案:解:(1)设商品的定价为x元,由题意,得(x−20)[100−2(x−30)]=1600,解得:x=40或x=60;答:售价应定为40元或60元.(2)①y=(x−20)[100−2(x−30)],即y=−2x2+200x−3200;②∵a=−2<0,∴当x=−b2a =−2002×(−2)=50时,y取最大值;又x≤40,且当x<50时y随x的增大而增大,则在x=40时,y取最大值,即y最大值=1600,答:售价为40元/件时,此时利润最大,最大利润为1600元.解析:本题主要考查一元二次方程的应用、二次函数的应用,理解题意找到题目蕴含的相等关系,并据此列出方程或函数解析式是解题的关键.(1)设商品的定价为x元,根据总利润=单件利润×销售量,列出关于x的一元二次方程求解可得;(2)①根据(1)中相等关系即可得函数解析式;②根据二次函数的性质即可得最大值.27.答案:(1)证明:如图1中,∵在正方形ABCD中,BD是对角线,∴AD=CD,DE=DE,∠ADE=∠CDE=45°,∴△ADE≌△CDE(SAS.)∴∠EAD=∠ECD,又∵MN//AD,∴∠EAD=∠AEM,∴∠AEM=∠ECD,∵MN⊥CD,∴∠ENC=90°,又∵∠CEF=90°,∴∠FEM+∠CEN=∠CEN+∠ECD=90°,∴∠FEM=∠ECD,∴∠AEM=∠FEM.(2)解:结论:△EFC是等腰直角三角形.理由如下:如图2中,过点E作MN//AD,交AB于点M,交CD于点N.∴MN⊥AB,MN⊥CD,∵点O是BD的中点,∴BD=2OD.∵DEDO =14,∴DEDB =18,∴BEBD =78,∵MN//AD,∴△BME∽△BAD,∴BMBA =BEBD=78,∴AMBA =18,∴AB=8AM.∵AFAB =14,∴AB=4AF.∴AF=2AM.∴AM =FM .∴△FEM≌△AEM(S.A.S.),∴EF =EA.∠FEM =∠AEM .仿(1)可证EA =EC ,∠AEM =∠EAD =∠ECD ,∴EF =EC ,∠FEM =∠ECD ,∵∠ECD +∠CEN =90°,∴∠FEM +∠CEN =90°,∴∠FEC =180°−(∠FEM +∠CEN)=180°−90°=90°,∴△EFC 是等腰直角三角形.(3)解:如图3中,当DE DB =m n 时,AF AB =2m n ,理由同(1);解析:(1)由正方形的性质得出∠ABD =45°,∠BAD =∠ABC =∠BCD =∠ADC =90°,AE =CE ,由HL 证明Rt △AME≌Rt △ENC ,得出∠AEM =∠ECN ,再由角的互余关系即可得出结论;(2)结论:△EFC 是等腰直角三角形.理由如下:如图2中,过点E 作MN//AD ,交AB 于点M ,交CD 于点N ,想办法证明EA =EF =EC ,∠CEF =90°即可得出结论;(3)同(1)即可得出答案.本题是综合题目,考查了正方形的性质、全等三角形的判定与性质、平行线分线段成比例定理、等腰直角三角形的判定、线段垂直平分线的性质、等腰三角形的判定与性质等知识;本题综合性强,有一定难度.28.答案:解:(1)将点A 、B 的坐标代入一次函数表达式:y =kx +b 得:{0=3k +b 2=k +b ,解得:{k =−1b =3, 故直线AB 的表达式为:y =−x +3…②,同理将点B 的坐标代入抛物线表达式并解得:抛物线的表达式为:y=x2+1…②;(2)联立①②并解得:x=1或−2,故点C(−2,5),如图1,过点D作y轴的平行线交BC于点H,设点D(x,x2+1),则点H(x,−x+3),则S△BCD=3=12×DH×(x B−x C)=12(−x+3−x2−1)×(1+2),解得:x=0或−1,故点D(−1,2)或(0,1);(3)如图2,点M的坐标为:(0,1),点C(−2,5),则直线CM函数表达式中的k值为:−2,①当∠PCM=90°时,则直线CP的函数表达式为:y=12x+m,将点C的坐标代入上式并解得:m=6,故直线PC的表达式为:y=12x+6…③,联立②③并解得:x=−2或52(舍去−2),故点P的坐标为:(52,294);②当∠CMP(P′)=90°时,同理可得:点P(P′)(12,54 ),综上,点P的坐标为:(52,294)或(12,54).解析:(1)将点A、B的坐标代入一次函数表达,即可求解;(2)则S△BCD=3=12×DH×(x B−x C)即可求解;(3)分∠PCM=90°、∠CMP(P′)=90°两种情况,分别求解即可.本题考查的是二次函数综合运用,涉及到一次函数、直角三角形的性质、图形的面积计算等,其中(3),要注意分类求解,避免遗漏.。
【难点解析】2022年四川省成都市青羊区中考数学一模试题(含详解)

2022年四川省成都市青羊区中考数学一模试题 考试时间:90分钟;命题人:数学教研组 考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I 卷(选择题 30分) 一、单选题(10小题,每小题3分,共计30分) 1、若42x y +=,则代数式2244x xy y -+的值为( ) A .6B .8C .12D .162、如图所示,动点P 从第一个数0的位置出发,每次跳动一个单位长度,第一次跳动一个单位长度到达数1的位置,第二次跳动一个单位长度到达数2的位置,第三次跳动一个单位长度到达数3的位置,第四次跳动一个单位长度到达数4的位置,……,依此规律跳动下去,点P 从0跳动6次到达1P 的位置,点P 从0跳动21次到达2P 的位置,……,点1P 、2P 、3P ……n P 在一条直线上,则点P 从0跳动( )次可到达14P 的位置.A .887B .903C .909D .1024 ·线○封○密○外3、将正方体的表面分别标上数字1,2,3,并在它们的对面分别标上一些负数,使它的任意两个相对面的数字之和为0,将这个正方体沿某些棱剪开,得到以下的图形,这些图形中,其中的x 对应的数字是﹣3的是( )A .B .C .D .4、已知2250x x --=的两个根为1x 、2x ,则12x x +的值为( )A .-2B .2C .-5D .55、已知50A ∠=,则∠A 的补角等于( )A .40B .50C .130D .1406、小明同学将某班级毕业升学体育测试成绩(满分30分)统计整理,得到下表,则下列说法错误的是( ).A .该组数据的众数是28分B .该组数据的平均数是28分C .该组数据的中位数是28分D .超过一半的同学体育测试成绩在平均水平以上7、如图,ABC 中,AB AC ==8BC =,AD 平分4B C ∠交BC 于点D ,点E 为AC 的中点,连接DE ,则ADE 的面积是( )A .20B .16C .12D .10 8、如图,要在二次函数()y x 2x =-的图象上找一点(),M a b ,针对b 的不同取值,所找点M 的个数,有下列三种说法:①如果3b =-,那么点M 的个数为0;②如果1b =.那么点M 的个数为1;③如果3b =,那么点M 的个数为2.上述说法中正确的序号是( )A .①B .②C .③D .②③ 9、地球赤道的周长是40210000米,将40210000用科学记数法表示应为( ) A .74.02110⨯ B .640.2110⨯ C .4402110⨯ D .80.402110⨯ 10、若反比例函数k y x =的图象经过点()2,2P -,则该函数图象不经过的点是( ) A .(1,4) B .(2,-2) C .(4,-1) D .(1,-4) 第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分) 1、请写出一个开口向下且过点(0,﹣4)的抛物线表达式为 _________________. 2、在平面直角坐标系中,直线l :y =y −1与x 轴交于点y 1,如图所示依次作正方形y 1y 1y 1y 、正方形y 2y 2y 2y 1、…、正方形y y y y y y y y −1,使得点y 1、2A 、y 3、…在直线1上,点y 1、y 2、3C 、…在y 轴正半轴上,则点y y 的坐标是________. ·线○封○密○外3、如图,海中有一个小岛A,一艘轮船由西向东航行,在点y处测得小岛A在它的北偏东60°方向上,航行12海里到达点y处,测得小岛A在它的北偏东30°方向上,那么小岛A到航线yy的距离等于____________海里.4、有理数y,y,y在数轴上表示的点如图所示,化简|y+y|−|y−y|−2|y+y|=__________.BC ,yy为△yyy的角平分线.M为5、如图,在△yyy中,∠yyy=90°,yy=5,4yy边上一动点,N为线段yy上一动点,连接yy、yy、yy,当yy+yy取得最小值时,△yyy的面积为______.三、解答题(5小题,每小题10分,共计50分)1、在数轴上,表示数m 与n 的点之间的距离可以表示为|m ﹣n |.例如:在数轴上,表示数﹣3与2的点之间的距离是5=|﹣3﹣2|,表示数﹣4与﹣1的点之间的距离是3=|﹣4﹣(﹣1)|.利用上述结论解决如下问题: (1)若|x ﹣5|=3,求x 的值; (2)点A 、B 为数轴上的两个动点,点A 表示的数是a ,点B 表示的数是b ,且|a ﹣b |=6(b >a ),点C 表示的数为﹣2,若A 、B 、C 三点中的某一个点是另两个点组成的线段的中点,求a 、b 的值.2、下列是我们常见的几何体,按要求将其分类(只填写编号). (1)如果按“柱”“锥球”来分,柱体有______,椎体有______,球有______;(2)如果按“有无曲面”来分,有曲面的有______,无曲面的有______.3、我们将平面直角坐标系xOy 中的图形D 和点P 给出如下定义:如果将图形D 绕点P 顺时针旋转90°得到图形'D ,那么图形'D 称为图形D 关于点P 的“垂直图形”.已知点A 的坐标为()2,1-,点B 的坐标为(0,1),ABO 关于原点O 的“垂直图形”记为'A'B'O △,点A 、B 的对应点分别为点','A B . (1)请写出:点'A 的坐标为____________;点'B 的坐标为____________; (2)请求出经过点A 、B 、'B 的二次函数解析式; (3)请直接写出经过点A 、B 、'A 的抛物线的表达式为____________. ·线○封○密·○外4、如图,有一块直角三角形纸片,两直角边6AC =cm ,8BC =cm ,现将直角边AC 沿直线AD 对折,使它落在斜边AB 上,且与AE 重合,求CD 的长.5、一位同学在阅读课外书的时候,学到了一种速算方法,也让我们一起来看看吧!123100(1100)(299)(5051)++++=++++++,他发现这样的数对一共有50对,且每一对数和都101,所以原式()1100505050=+⨯=;同样地,()()2461002100498++++=++++…+(5052+),这样的数对一共有25对,且每一对数和都是102,所以原式(2100)252550=+⨯=;(1)请仔细观察以上算式的特点及运算规律,请你运用你的发现看看下列式子哪些具有上述特点,能运用上述规律来运算,并把这样式子的结果算出来:①1357199+++++; ②371115195199++++++;③12358132134+++++++;(2)在上面的①式中,请你通过增加或减少和中最后面奇数的个数,探寻本题计算规律,请用一个含字母n 的式子表示你的发现;(3)另外,该同学还有一个有趣发现:311=,3352+=,379113++=,3131517194+++=,…,以此类推,你能写出第50个式子的结果并写出等式左边第一个数吗?说出你的理由.-参考答案-一、单选题1、D【分析】对已知条件变形为:24-=-x y ,然后等式两边再同时平方即可求解.【详解】 解:由已知条件可知:24-=-x y ,上述等式两边平方得到:2(2)16-=x y , 整理得到:224416-+=x xy y , 故选:D . 【点睛】本题考查了等式恒等变形,完全平方公式的求值等,属于基础题,计算过程中细心即可. 2、B 【分析】 由题意可得:跳动1236++=个单位长度到1,P 从1P 到2P 再跳动45615++=个单位长度,归纳可得:从上一个点跳动到下一个点跳动的单位长度是连续的三个正整数的和,从而可得答案. 【详解】 解:由题意可得:跳动1236++=个单位长度到1,P 从1P 到2P 再跳动45615++=个单位长度, ······ 归纳可得: 结合143=42, 所以点P 从0跳动到达14P 跳动了: 123404142 1142429032个单位长度. ·线○封○密○外故选B【点睛】本题考查的是数字规律的探究,有理数的加法运算,掌握“从具体到一般的探究方法及运用发现的规律解题”是关键.3、A【分析】根据正方体的表面展开图,相对的面之间一定相隔一个正方形,求出各选项的x的值即可.【详解】解: A.x=-3B.x=-2C.x=-2D.x=-2故答案为:A【点睛】本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.4、B【分析】直接运用一元二次方程根与系数的关系求解即可.【详解】解:∵2250x x--=的两个根为1x、2x,∴122=()21x x -+-=故选:B 【点睛】本题主要考查了一元二次方程根与系数的关系,若1x 、2x 为一元二次方程20ax bx c ++=的两个实数根,则有12=b x x a +-,12=c x x a . 5、C【分析】若两个角的和为180,︒ 则这两个角互为补角,根据互补的含义直接计算即可.【详解】 解: 50A ∠=,∴ ∠A 的补角为:18050130,故选C【点睛】 本题考查的是互补的含义,掌握“利用互补的含义,求解一个角的补角”是解本题的关键. 6、B 【分析】 由众数的含义可判断A ,由平均数的含义可判断B ,D ,由中位数的含义可判断C , 从而可得答案. 【详解】解:由28分出现14次,出现的次数最多,所以该组数据的众数是28分,故A 不符合题意; 该组数据的平均数是1253+265+2710+2814+2912+30650 175+130+270+392+348+180=27.950 故B 符合题意;·线○封○密○外50个数据,按照从小到大的顺序排列,第25个,26个数据为28分,28分,所以中位数为:28+28=282(分),故C不符合题意;因为超过平均数的同学有:14+12+6=32,所以超过一半的同学体育测试成绩在平均水平以上,故D不符合题意;故选B【点睛】本题考查的是平均数,众数,中位数的含义,掌握“根据平均数,众数,中位数的含义求解一组数据的平均数,众数,中位数”是解本题的关键.7、D【分析】根据等腰三角形三线合一的性质可得AD⊥BC,CD=BD,再根据勾股定理得出AD的长,从而求出三角形ABD的面积,再根据三角形的中线性质即可得出答案;【详解】解:∵AB=AC,AD平分∠BAC,BC=8,∴AD⊥BC,142CD BD BC===,∴10 AD,∴11·4102022ADCS CD BC==⨯⨯=,∵点E为AC的中点,∴11201022ADE ADCS S==⨯=,故选:D 【点睛】本题考查了勾股定理,三角形的面积公式,等腰三角形三线合一的性质,熟记性质并准确识图是解题的关键. 8、B【分析】把点M 的坐标代入抛物线解析式,即可得到关于a 的一元二次方程,根据根的判别式即可判断. 【详解】解:∵点M (a ,b )在抛物线y =x (2-x )上,()2b a a ∴=- 当b =-3时,-3=a (2-a ),整理得a 2-2a -3=0, ∵△=4-4×(-3)>0, ∴有两个不相等的值, ∴点M 的个数为2,故①错误; 当b =1时,1=a (2-a ),整理得a 2-2a +1=0, ∵△=4-4×1=0, ∴a 有两个相同的值, ∴点M 的个数为1,故②正确; 当b =3时,3=a (2-a ),整理得a 2-2a +3=0, ∵△=4-4×3<0, ∴点M 的个数为0,故③错误; 故选:B . 【点睛】 本题考查了二次函数图象上点的坐标特征,一元二次方程根的判别式,熟练掌握二次函数与一元二次方程的关系是解题的关键.·线○封○密○外9、A【分析】科学记数法的形式是:10n a ⨯ ,其中1a ≤<10,n 为整数.所以 4.021a =,n 取决于原数小数点的移动位数与移动方向,n 是小数点的移动位数,往左移动,n 为正整数,往右移动,n 为负整数.本题小数点往左移动到4的后面,所以7.n =【详解】解:4021000074.02110,故选:A【点睛】本题考查的知识点是用科学记数法表示绝对值较大的数,关键是在理解科学记数法的基础上确定好,a n 的值,同时掌握小数点移动对一个数的影响.10、A【分析】 由题意可求反比例函数解析式4y x=-,将点的坐标一一打入求出xy 的值,即可求函数的图象不经过的点.【详解】 解:因为反比例函数k y x =的图象经过点(2,2)P -, 所以4k =-,选项A 1444xy =⨯=≠-,该函数图象不经过的点(1,4),故选项A 符合题意;选项B ()224xy =⨯-=-,该函数图象经过的点(2,-2),故选项B 不符合题意; 选项C ()414xy =⨯-=-,该函数图象经过的点(4,-1),故选项C 不符合题意;选项B ()144xy =⨯-=-,该函数图象经过的点(1,-4),故选项D 不符合题意; 故选A.【点睛】考查了反比例函数图象上点的坐标特征,熟练运用反比例函数图象上点的坐标满足其解析式是本题的关键. 二、填空题 1、y =﹣x 2﹣4(答案不唯一) 【分析】 根据二次函数的性质,二次项系数小于0时,函数图象的开口向下,再利用过点(0,﹣4)得出即可. 【详解】 解:∵抛物线开口向下且过点(0,﹣4), ∴可以设顶点坐标为(0,﹣4), 故解析式为:y =﹣x 2﹣4(答案不唯一). 故答案为:y =﹣x 2﹣4(答案不唯一). 【点睛】本题考查了二次函数图象的性质,是开放型题目,答案不唯一.2、(2y −1,2y −1) 【分析】根据一次函数图象上点的坐标特征结合正方形的性质可得出点A 1、B 1的坐标,同理可得出A 2、A 3、A 4、A 5、…及B 2、B 3、B 4、B 5、…的坐标,根据点的坐标的变化可找出变化规律“B n (2n -1,2n -1)(n 为正整数)”,依此规律即可得出结论. 【详解】 ·线○封○密○外解:当y=0时,有x-1=0,解得:x=1,∴点A1的坐标为(1,0).∵四边形A1B1C1O为正方形,∴点B1的坐标为(1,1).同理,可得出:A2(2,1),A3(4,3),A4(8,7),A5(16,15),…,∴B2(2,3),B3(4,7),B4(8,15),B5(16,31),…,∴B n(2n-1,2n-1)(n为正整数),故答案为:(2y−1,2y−1)【点睛】本题考查了一次函数图象上点的坐标特征、正方形的性质以及规律型:点的坐标,根据点的坐标的变化找出变化规律“B n(2n-1,2n-1)(n为正整数)”是解题的关键.3、6√3【分析】如图,过点A作AD⊥BC于D,根据题意可知∠EBA=60°,∠FCA=30°,EB⊥BC,FC⊥BC,可得∠ABD=30°,∠ACD=60°,∠CAD=30°,根据外角性质可得∠BAC=30°,可得AC=BC,根据含30°角的直角三角形的性质可得出CD的长,利用勾股定理即可求出AD的长,可得答案.【详解】如图,过点A作AD⊥BC于D,根据题意可知∠EBA=60°,∠FCA=30°,EB⊥BC,FC⊥BC,BC=12,∴∠ABD=30°,∠ACD=60°,∠CAD=30°,∴∠BAC=∠ACD-∠ABD=30°,∴AC=BC=12,∴CD =12AC =6,∴AD =√yy 2−yy 2=√122−62=6√3. 故答案为:6√3 【点睛】 本题考查方向角的定义、三角形外角性质、含30°角的直角三角形的性质及勾股定理,三角形的一个外角,等于和它不相邻的两个内角的和;30°角所对的直角边,等于斜边的一半;熟练掌握相关性质及定义是解题关键. 4、−3y −3y ## 【分析】 根据数轴得出y +y ,y −y ,1b 的符号,再去绝对值即可. 【详解】 由数轴得y <y <0<y,|y |<|y |, ∴y +y <0,y −y <0,y +y >0, ∴|y +y |−|y −y |−2|y +y |=−(y +y )+y −y −2(y +y ) =−y −y +y −y −2y −2y =−3y −3y . ·线○封○密·○外故答案为:−3y−3y.【点睛】本题主要考查了数轴和绝对值,掌握数轴、绝对值以及合并同类项的法则是解题的关键.5、18 5【分析】利用点M关于AC的对称点确定N点,当y、y、y′三点共线且yy′⊥yy时,yy+yy′的长取得最小值,再利用三角形的面积公式求出yy′,在利用勾股定理求yy′后即可求出△yyy 的面积.【详解】∵yy为△yyy的角平分线,将yy沿yy翻折,∴y的对应点y′一定在yy边上.∴yy+yy=yy+yy′∴当y、y、y′三点共线且yy′⊥yy时,yy+yy′的长取得最小值∵在yy△yyy中,yy=5,4BC ,∴yy=3∵y△yyy=12yy⋅yy′=12yy⋅yy∴yy′=125∴在yy △yy′y 中,yy′=√yy 2−y′y 2=95=yy∴y △yyy =12yy ⋅yy =12×95×4=185. 【点睛】 本题考查了最短路径问题以及勾股定理,灵活运用勾股定理是解题的关键.三、解答题1、(1)x =8或x =2 (2)a =﹣5,b =1或a =4,b =10或a =﹣14,b =﹣8 【分析】 (1)根据两点间的距离公式和绝对值的意义,可得答案; (2)分类讨论:①C 是AB 的中点,②当点A 为线段BC 的中点,③当点B 为线段AC 的中点,根据线段中点的性质,可得答案. (1) 解:因为|x ﹣5|=3, 所以x ﹣5=3或x ﹣5=﹣3, 解得x =8或x =2; (2) 因为|a ﹣b |=6(b >a ),所以在数轴上,点B 与点A 之间的距离为6,且点B 在点A 的右侧. ①当点C 为线段AB 的中点时, ·线○封○密○外如图1所示,132AC BC AB===.∵点C表示的数为﹣2,∴a=﹣2﹣3=﹣5,b=﹣2+3=1.②当点A为线段BC的中点时,如图2所示,AC=AB=6.∵点C表示的数为﹣2,∴a=﹣2+6=4,b=a+6=10.③当点B为线段AC的中点时,如图3所示,BC=AB=6.∵点C表示的数为﹣2,∴b=﹣2﹣6=﹣8,a=b﹣6=﹣14.综上,a =﹣5,b =1或a =4,b =10或a =﹣14,b =﹣8.【点睛】本题考查了数轴上两点间的距离,线段的中点,以及一元一次方程的应用,注意数轴上到一点距离相等的点有两个,分类讨论是解(2)题关键. 2、(1)①②⑥;③④;⑤(2)②③⑤;①④⑥【分析】 (1)根据立体图形的特点从柱体的形状特征考虑. (2)根据面的形状特征考虑. (1) 解:∵(1)是四棱柱,(2)是圆柱,(3)是圆锥,(4)是棱锥,(5)是球,(6)是三棱柱, ∴柱体有(1),(2),(6),锥体有(3),(4),球有(5), 故答案为:(1),(2),(6);(3),(4);(5); (2) ∵(2)(3)(5)有曲面,其它几何体无曲面, ∴按“有无曲面”来分,有曲面的有(2),(3),(5),无曲面的有:(1),(4),(6), 故答案为:(2),(3),(5);(1),(4),(6).【点睛】本题考查了认识立体图形,解决本题的关键是认识柱体的形状特征.3、(1)(1,2);(1,0)·线○封○密·○外(2)212133y x x =--+ (3)212133y x x =++ 【分析】(1)根据旋转的性质得出'OB OB =,''AB A B =;(2)利用待定系数法进行求解解析式即可;(3)利用待定系数法求解解析式即可,或利用与(2)中对对称轴相同,开口方向相反可以快速得出答案.(1)解:根据题意作下图:根据旋转的性质得:'1OB OB ==,''0(2)2AB A B ==--=,∴'(1,2)A ,'(1,0)B ,故答案是:(1,2);(1,0);(2)解:设过点A 、B 、'B 的二次函数解析式为:2,(0)y ax bx c a =++≠,将点(2,1),(0,1),'(1,0)A B B -分别代入2,(0)y ax bx c a =++≠中得:21(2)210a b cc a b c ⎧=--+⎪=⎨⎪=++⎩, 解得:12,,133a b c =-=-=, 212133y x x ∴=--+; (3) 解:设过点A 、B 、'A 的二次函数解析式为:2,(0)y ax bx c a =++≠, 将点(2,1),(0,1),'(1,2)A B A -分别代入2,(0)y ax bx c a =++≠中得: 21(2)212a b c c a b c ⎧=--+⎪=⎨⎪=++⎩, 解得:12,,133a b c ===, 212133y x x ∴=++; 故答案为:212133y x x =++. 【点睛】 本题考查了旋转的性质,利用待定系数法求解解析式,解题的关键是掌握待定系数法求解解析式. 4、CD 长为3cm【分析】在Rt ABC中,由勾股定理得AB =,由折叠对称可知CD DE =,6AE AC ==cm ,90BED ∠=︒,BE AB AE =-,设DE CD x ==,则8BD x =-,在Rt BDE 中,由勾股定理得222BD DE BE =+,计算求解即可. 【详解】·线○封○密○外解:∵6AC =cm ,8BC =cm∴在Rt ABC 中, AB =由折叠对称可知CD DE =,6AE AC ==cm ,90BED ∠=︒∴1064BE AB AE =-=-=cm设DE CD x ==,则8BD x =-∴在Rt BDE 中,由勾股定理得222BD DE BE =+即()22284x x -=+解得3x =∴CD 的长为3cm .【点睛】本题考查了轴对称,勾股定理等知识.解题的关键在于找出线段的数量关系.5、(1)①10000;②5050;③87(2)1+3+5++(2y −3)+(2y −1)=y 2(3)第50个式子为:2451+2453+2457++2549=503, 等式的左边第1个数为:2451.【分析】(1)①根据阅读部分提供的方法可得:1357199+++++一共有199+1=1002个数,分成50组,每组的和为200,从而可得答案;②根据阅读部分提供的方法可得:371115195199++++++一共有199+1=504个数,分成25组,每组的和为202,从而可得答案;③由12358132134+++++++可得前面两个数的和等于后一个数,再计算即可.(2)分两种情况讨论:当n 为偶数时,当n 为奇数时,再利用从具体到一般的探究方法矩形探究即可;(3)由311=,3352+=,379113++=,3131517194+++= ,可发现左边第一个数有:1=0×1+1,3=1×2+1,7=2×3+1,13=3×4+1,, 归纳可得:第n 行第一个数为:11,n n 右边为3,n 后续的奇数为:(y −1)y +3,(y −1)y +5,,(y −1)y +(2y −1), 再应用规律,从而可得答案. (1) 解:①1357199+++++=(1+199)+(3+197)+⋅⋅⋅+(99+101) 2005010000 ②371115195199++++++=(3+199)+(7+195)+⋅⋅⋅+(99+103) 202255050 ③12358132134+++++++155212134 87= (2) 解:∵1+3+5+7=8×7+12×12=16,1+3+5+7+9+11=12×11+12×12=36, 19911135719920010000,22++++++=⨯⨯= 当n 为偶数时, 1352321n n 221112,22n n n 511511356,222·线○封○密·○外911911357910,222当n 为奇数时,13572321n n 21112112222n n n 22222,4n nn n n n n 综上:21352321n n n (n 为正整数)(3) 解: 311=,3352+=,379113++=,3131517194+++=,可发现左边第一个数有:1011,3121,7231,13341,, 归纳可得:第n 行第一个数为:11,n n 右边为3,n后续的奇数为:13,15,,121,n n n n n n n所以第50行第一个数为:5015012451,后续奇数为:2453,2455,24572549,,,所以第50个式子为:3245124532457254950,等式的左边第1个数为:2451.【点睛】本题考查的是有理数的加法与乘法的运算,乘方运算,数字运算规律的探究,列代数式,掌握“从具体到一般的探究方法得到规律并运用规律解决问题”是解本题的关键.·线○封○密·○外。
成都市青羊实验联合中学九年级数学上册第一单元《一元二次方程》检测(含答案解析)

一、选择题1.关于x 的一元二次方程()2230x a a x a +-+=的两个实数根互为倒数,则a 的值为( )A .-3B .0C .1D .-3或0 2.如图,若将上图正方形剪成四块,恰能拼成下图的矩形,设1a =,则b =( )A 51-B 51+C 53+D 21 3.若用配方法解方程24121x x +=,通常要在此方程两边同时加上一个“适当”的数,则下面变形恰当的是( )A .2221212412122x x ⎛⎫⎛⎫++=+ ⎪ ⎪⎝⎭⎝⎭B .22241212112x x ++=+C .2412919x x ++=+D .241212112x x ++=+4.已知a ,b ,c 分别是三角形的三边长,则关于x 的方程()()220a b x cx a b ++++=根的情况是( )A .有两个不相等的实数根B .有两个相等的实数根C .有且只有一个实数根D .没有实数根 5.方程(2)2x x x -=-的解是( )A .2B .2-,1C .1-D .2,1- 6.下列一元二次方程中,没有实数根的是( ) A .(2)(2)0x x -+= B .220x -=C .2(1)0x -=D .2(1)20x ++=7.一元二次方程2304y y +-=,配方后可化为( ) A .21()12y +=B .21()12y -=C .211()22y +=D .213()24y -= 8.若方程()200++=≠ax bx c a 中,,,a b c 满足420a b c ++=和420a b c -+=,则方程的根是( )A .1,0B .1,0-C .1,1-D .2,2-9.若关于x 的方程(m ﹣1)x 2+mx ﹣1=0是一元二次方程,则m 的取值范围是( ) A .m ≠1 B .m =1C .m ≥1D .m ≠0 10.已知关于x 的二次方程()21210--+=k x kx (k ≠1),则方程根的情况是( )A .没有实数根B .有两不等实数根C .有两相等实数根D .无法确定 11.不解方程,判断方程2x 2+3x ﹣4=0的根的情况是( )A .有两个相等的实数根B .有两个不相等的实数根C .只有一个实数根D .没有实数根12.如图,BD 为矩形ABCD 的对角线,将△BCD 沿BD 翻折得到BC D '△,BC '与边AD 交于点E .若AB =x 1,BC =2x 2,DE =3,其中x 1、x 2是关于x 的方程x 2﹣4x+m =0的两个实根,则m 的值是( )A .165B .125C .3D .2二、填空题13.方程2(3)30x x -+=的二次项系数为________,一次项系数为________,常数项为________.该方程判别式的值为_________,由此可以判断它的根的情况为___________. 14.解方程:268x x +=-解:两边同时加_________,得26x x ++________8=-+________则方程可化为(_______)2=________两边直接开平方得_____________即_________或_____________所以1x =__________,2x =___________.15.关于x 的方程()210x k x x -++=有两个相等的实数根,则k =_______. 16.写出有一个根为1的一元二次方程是______.17.某商贸公司2017年盈利100万元,2019年盈利144万元,且2017年到2019年每年盈利的增长率相同,则该公司2018年盈利_____万元.18.已知关于x 的一元二次方程2230ax x +-=有两个不相等的实数根,则a 的取值范围是______.19.有一人患了流感,经过两轮传染后共有81人患了流感,若每轮传染中平均每个人传染的人数相同,那么第三轮过后,共有______人患有流感.20.对于任意实数a 、b ,定义:a ◆b =a 2+ab +b 2.若方程(x ◆2)﹣5=0的两根记为m 、n ,则(m +2)(n +2)=_____.三、解答题21.解下列方程:(1)2x 2﹣4x +1=0;(2)(2x ﹣1)2=(3﹣x )2.22.解方程:22350x x --= (请用两种方法解方程)23.解答下列各题.(1)解方程:2(1)90x --=.(2)已知1x =,求225x x -+的值.24.阅读下列材料,解答问题.222(25)(37)(52)x x x -++=+.解:设25,37m x n x =-=+,则52m n x +=+, 原方程可化为222()m n m n +=+,0mn ,即(25)(37)0x x -+=.250x ∴-=或370x +=,解得1257,23x x ==-. 请利用上述方法解方程:222(45)(32)(3)x x x -+-=-.25.解下列方程(1)2280x x +-=;(2)(2y +1)2-25=0;(3)24430t t --=;(4)2(m +3)=m 2-9 .26.解方程.(1)230x x +-=. (2)4(21)12x x x -=-.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】根据方程两个实数根互为倒数,得到两根之积为1,利用根与系数的关系求出a 的值即可.【详解】解:∵关于x 的一元二次方程x 2+(a 2-3a )x+a=0的两个实数根互为倒数,∴x 1•x 2=a=1.【点睛】本题考查了根与系数的关系,能熟记根与系数的关系的内容是解此题的关键,注意:已知一元二次方程ax 2+bx+c=0(a 、b 、c 为常数,a≠0,b 2-4ac≥0)的两根是x 1,x 2,那么x 1+x 2=-b a ,x 1•x 2=c a. 2.B解析:B【分析】根据上图可知正方形的边长为a+b ,下图长方形的长为a+b+b ,宽为b ,并且它们的面积相等,由此可列出(a+b )2=b(a+b+b),解方程即可求得结论.【详解】解:根据题意得:正方形的边长为a+b ,长方形的长为a+b+b ,宽为b ,则(a+b )2=b(a+b+b),即a 2﹣b 2+ab=0, ∴2)10a a b b +-=(,解得:12a b -±=, ∵a b >0,∴a b =,∴当a=1时,b ==, 故选:B .【点睛】 本题考查了图形的拼接、解一元二次方程、正方形的面积、长方形的面积,正确理解题意,找到隐含的数量关系列出方程是解答的关键.3.C解析:C【分析】把原方程变形为2(2)621x x +⨯=,将2x 看成未知数,方程两边都加上一次项系数一半的平方即可.【详解】解:方程24121x x +=变形为2(2)621x x +⨯=, 2(2)62+91+9x x +⨯=∴2412919x x ++=+故选:C本题考查了解一元二次方程的应用,关键是能正确配方.4.D解析:D【分析】由于这个方程是一个一元二次方程,所以利用根的判别式可以判断其根的情况.而()()2(2)4c a b a b =-++,根据三角形的三边关系即可判断.【详解】∵a ,b ,c 分别是三角形的三边,∴a+b >c .∴c+a+b >0,c-a-b <0,∴()()2(2)4c a b a b =-++2244()c a b =-+()()40c a b c a b =++--<,∴方程没有实数根.故选:D .【点睛】本题主要考查了三角形三边关系、一元二次方程的根的判别式等知识点.重点是对2244()c a b -+进行因式分解.5.D解析:D【分析】先移项得到x (2﹣x )+(2﹣x )=0,然后利用因式分解法解方程.【详解】解:x (2﹣x )+(2﹣x )=0,(2﹣x )(x +1)=0,2﹣x =0或x +1=0,所以x 1=2,x 2=﹣1.故选:D .【点睛】本题考查了解一元二次方程﹣因式分解法:先把方程的右边化为0,再把左边通过因式分解化为两个一次因式的积的形式,那么这两个因式的值就都有可能为0,这就能得到两个一元一次方程的解,这样也就把原方程进行了降次,把解一元二次方程转化为解一元一次方程的问题了(数学转化思想).6.D解析:D【分析】分别利用因式分解法和直接开平方法解一元二次方程、一元二次方程的根的判别式即可得.【详解】A 、由因式分解法得:122,2x x ==-,此项不符题意;B 、由直接开平方法得:120x x ==,此项不符题意;C 、由直接开平方法得:121x x ==,此项不符题意;D 、方程2(1)20x ++=可变形为2230x x ++=,此方程的根的判别式2241380∆=-⨯⨯=-<,则此方程没有实数根,此项符合题意; 故选:D .【点睛】本题考查了解一元二次方程,熟练掌握各解法是解题关键.7.A解析:A【分析】根据配方法解一元二次方程的步骤计算可得.【详解】解:∵2304y y +-=, ∴y 2+y=34, 则y 2+y+14=34+14, 即(y+12)2=1, 故选:A .【点睛】本题主要考查解一元二次方程-配方法,用配方法解一元二次方程的步骤:①把原方程化为ax 2+bx+c=0(a≠0)的形式;②方程两边同除以二次项系数,使二次项系数为1,并把常数项移到方程右边; ③方程两边同时加上一次项系数一半的平方;④把左边配成一个完全平方式,右边化为一个常数;⑤如果右边是非负数,就可以进一步通过直接开平方法来求出它的解,如果右边是一个负数,则判定此方程无实数解.8.D解析:D【分析】联立420a b c ++=和420a b c -+=,前式减后式,可得0b =,前式加后式,可得4c a =-,将a 、c 代入原方程计算求出方程的根.【详解】∵根据题意可得:420420a b c a b c ++=⎧⎨-+=⎩①②, ①-②=40b =,得0b =,①+②=820a c +=,∴解得:0b =,4c a =-.将a 、b 、c 代入原方程()200++=≠ax bx c a 可得, ∵240ax bx a +-=,240ax a -=24ax a =∴2x =±故选:D .【点睛】本题考查解一元二次方程,联立关于a 、b 、c 的方程组,由方程组推出a 、b 、c 的数量关系是解题关键.9.A解析:A【分析】根据一元二次方程的定义可得m ﹣1≠0,再解即可.【详解】解:由题意得:m ﹣1≠0,解得:m≠1,故选:A .【点睛】本题考查了一元二次方程的定义,注意掌握只含有一个未知数,并且未知数的最高次数是2的整式方程叫一元二次方程.10.B解析:B【分析】根据方程的系数结合根的判别式,可得出△21432k ⎛⎫=-+ ⎪⎝⎭>0,由此即可得出:无论k (k≠1)为何值,该方程总有两个不相等的实数根.【详解】在方程()21210--+=k x kx 中, ∵1a k =-,2b k =-,1c =,∴()()224241b ac k k =-=---214302k ⎛⎫=-+> ⎪⎝⎭, ∴无论k (k≠1)为何值,该方程总有两个不相等的实数根.故选:B .【点睛】本题考查了根的判别式,解题的关键是熟练掌握“当△>0时,方程有两个不相等的实数根”. 11.B解析:B【分析】求出根的判别式,只要看根的判别式△=b 2-4ac 的值的符号就可以了.【详解】解:∵△=b 2﹣4ac =9﹣4×2×(﹣4)=41>0,∴方程有两个不相等的实数根,故选:B .【点睛】本题考查了根的判别式,一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.12.A解析:A【分析】利用根与系数的关系得到x 1+x 2=4,x 1x 2=m ,AB +12BC =4,m =AB×12BC ,再利用折叠的性质和平行线的性质得到∠EBD =∠EDB ,则EB =ED =3,所以AE =AD−DE =5−2AB ,利用勾股定理得到AB 2+(5−2AB )2=32,解得AB 或AB (舍去),则BC =205+,然后计算m 的值. 【详解】 ∵x 1、x 2是关于x 的方程x 2−4x +m =0的两个实根,∴x 1+x 2=4,x 1x 2=m ,即AB +12BC =4,m =AB×12BC , ∵△BCD 沿BD 翻折得到△BC′D ,BC′与边AD 交于点E ,∴∠CBD =∠EBD ,∵AD ∥BC ,∴∠CBD =∠EDB ,∴∠EBD =∠EDB ,∴EB =ED =3,在Rt △ABE 中,AE =AD−DE =BC−3=8−2AB−3=5−2AB ,∴AB 2+(5−2AB )2=32,解得AB 或AB (舍去),∴BC =8−2AB ,∴m =12×205+=165. 故选:A .【点睛】本题考查了根与系数的关系:若x 1,x 2是一元二次方程ax 2+bx +c =0(a≠0)的两根时,x 1+x 2=−b a ,x 1x 2=c a.也考查了矩形的性质和折叠的性质. 二、填空题13.2-6312有两个不相等的实数根【分析】先将方程化为一般形式再计算出判别式的值根据结果判断根的情况【详解】解:化简可得:二次项系数为2一次项系数为-6常数项为3该方程判别式的值为由此可以判断它的根的解析:2 -6 3 12 有两个不相等的实数根【分析】先将方程化为一般形式,再计算出判别式的值,根据结果判断根的情况.【详解】解:化简可得:22630x x -+=,二次项系数为2,一次项系数为-6,常数项为3, 该方程判别式的值为()2642312--⨯⨯=,由此可以判断它的根的情况为:有两个不相等的实数根,故答案为:2;-6;3;12;有两个不相等的实数根.【点睛】本题考查了一元二次方程,解题的关键是掌握定义和根的判别式. 14.999x+31x+3=±1x+3=1x+3=-1-2-4【分析】根据配方法求解即可【详解】解:两边同时加9得99则方程可化为1两边直接开平方得x+3=±1即x+3=1或x+3=-1所以-2-4故答案解析:9 9 9 x+3 1 x+3=±1 x+3=1 x+3=-1 -2 -4【分析】根据配方法求解即可.【详解】解:两边同时加9,得26x x ++98=-+9,则方程可化为()23x +=1,两边直接开平方得x+3=±1,即x+3=1或x+3=-1,所以1x =-2,2x =-4.故答案为:9;9;9;x+3;1;x+3=±1;x+3=1;x+3=-1;-2;-4.【点睛】本题考查了配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数. 15.-1【分析】根据方程有两个相等的实数根可得判别式△=0可得关于k 的一元二次方程解方程求出k 值即可得答案【详解】∵方程有两个相等的实数根∴解得:k1=k2=-1故答案为:-1【点睛】此题主要考查了根的解析:-1【分析】根据方程()210x k x x -++=有两个相等的实数根可得判别式△=0,可得关于k 的一元二次方程,解方程求出k 值即可得答案.【详解】∵方程()221(1)0x k x x x k x k -++=---=有两个相等的实数根, ∴()2140k k =-+=, 解得:k 1=k 2=-1,故答案为:-1.【点睛】此题主要考查了根的判别式,对于一元二次方程ax 2+bx+c=0(a≠0),根的判别式△=b 2-4ac ,当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根;熟练掌握相关知识是解题关键.16.(答案不唯一)【分析】有一个根是1的一元二次方程有无数个只要含有因式x1的一元二次方程都有一个根是1【详解】可以用因式分解法写出原始方程然后化为一般形式即可如化为一般形式为:故答案为:【点睛】本题考 解析:20x x -=(答案不唯一)【分析】有一个根是1的一元二次方程有无数个,只要含有因式x -1的一元二次方程都有一个根是1.【详解】可以用因式分解法写出原始方程,然后化为一般形式即可,如()10x x -=,化为一般形式为:20x x -=故答案为:20x x -=.【点睛】本题考查的是一元二次方程的根,有一个根是1的一元二次方程有无数个,写出一个方程就行.17.120【分析】设平均年增长率为x 列式求出年平均增长率即可算出结果【详解】解:设平均年增长率为x 根据题意得:整理得:开方得:解得:(舍去)则平均年增长率为20∴该公司2018年盈利100(1+20)=解析:120【分析】设平均年增长率为x ,列式()21001144x +=,求出年平均增长率,即可算出结果.【详解】解:设平均年增长率为x ,根据题意得:()21001144x +=,整理得:()21 1.44x +=,开方得:1 1.2x +=±,解得:10.2x =,2 2.2x =-(舍去),则平均年增长率为20%,∴该公司2018年盈利100(1+20%)=120(万元).故答案为:120.【点睛】本题考查一元二次方程的应用,解题的关键是掌握增长率问题的求解方法. 18.且【分析】根据题意一元二次方程有两个不相等的实数根可知根的判别式据此解一元一次不等式即可解题注意二次项系数不为零【详解】关于x 的一元二次方程有两个不相等的实数根即且故答案为:且【点睛】本题考查一元二 解析:13a >-且0a ≠.【分析】根据题意,一元二次方程2230ax x +-=有两个不相等的实数根,可知根的判别式2=40b ac ∆->,据此解一元一次不等式即可解题,注意二次项系数不为零.【详解】关于x 的一元二次方程2230ax x +-=有两个不相等的实数根,2=40b ac ∴∆->即224(3)0a -⨯-> 4120a +>13a ∴>-且0a ≠故答案为:13a >-且0a ≠.【点睛】本题考查一元二次方程根的判别式、一元一次不等式、一元二次方程的定义等知识,是重要考点,难度较易,掌握相关知识是解题关键. 19.729【分析】设每轮传染中平均每人传染了x 人根据经过两轮传染后共有81人患了流感可求出x 进而求出第三轮过后共有多少人感染【详解】设每轮传染中平均每个人传染的人数为x 人由题意可列得解得(舍去)即每轮传 解析:729【分析】设每轮传染中平均每人传染了x 人,根据经过两轮传染后共有81人患了流感,可求出x ,进而求出第三轮过后,共有多少人感染.【详解】设每轮传染中平均每个人传染的人数为x 人,由题意可列得,()1181x x x +++=,解得18x =,210x =-(舍去),即每轮传染中平均每个人传染的人数为8人,经过三轮传染后患上流感的人数为:81881729+⨯=(人).故答案为:729.【点睛】本题考查理解题意的能力,先求出每轮传染中平均每人传染了多少人,然后求出三轮过后,共有多少人患病.20.-1【分析】根据新定义可得出mn 为方程x2+2x−1=0的两个根利用根与系数的关系可得出m +n =−2mn =−1变形(m +2)(n +2)得到mn +2(m +n )+4然后利用整体代入得方法进行计算【详解】解析:-1【分析】根据新定义可得出m 、n 为方程x 2+2x−1=0的两个根,利用根与系数的关系可得出m +n =−2、mn =−1,变形(m +2)(n +2)得到mn +2(m +n )+4然后利用整体代入得方法进行计算.【详解】解:∵(x ◆2)﹣5=x 2+2x +4﹣5,∴m 、n 为方程x 2+2x ﹣1=0的两个根,∴m +n =﹣2,mn =﹣1,∴(m +2)(n +2)=mn +2(m +n )+4=﹣1+2×(﹣2)+4=﹣1.故答案为﹣1.【点睛】本题考查了一元二次方程ax 2+bx +c =0(a≠0)的根与系数的关系:若方程两根为x 1,x 2,则x 1+x 2=b a -,x 1•x 2=c a. 三、解答题21.(1)x 1=1+2,x 2=1﹣2;(2)x 1=﹣2,x 2=43 【分析】(1)利用配方法解一元二次方程;(2)利用因式分解法解方程.【详解】(1)解:2x 2﹣4x +1=0,x 2﹣2x =﹣12, x 2﹣2x +1=﹣12+1,即(x ﹣1)2=12,∴x ﹣1=±2,∴x 1=1+2,x 2=1﹣2; (2)解:(2x ﹣1)2=(3﹣x )2.(2x ﹣1)2﹣(3﹣x )2=0,[(2x ﹣1)+(3﹣x )][(2x ﹣1)﹣(3﹣x )]=0,∴x +2=0或3x ﹣4=0,∴x 1=﹣2,x 2=43. 【点睛】本题考查一元二次方程的解法,熟练掌握配方法、因式分解法、公式法,并熟练运用是关键.22.152x =,21x =- 【分析】采用公式法和因式分解法求解即可.【详解】解:方法1:∵a =2,b =-3,c =-5,∴2449b ac ∆=-=,∴x =∴152x =,21x =-;方法2:()()2510x x -+=∴ 152x =,21x =-. 【点睛】 本题考查解一元二次方程,根据方程的特点选择合适的求解方法是解题的关键. 23.(1)14x =,22x =-;(2)6.【分析】(1)方程整理后,直接开平方即可求解;(2)代数式225x x -+配方整理成()214x -+后,把x 的值代入计算即可.【详解】(1)由原方程得2(1)9x -=, ∴13x -=±,解得:14x =,22x =-;(2)∵2225(1)4x x x -+=-+,将1x =代入得:原式)2114=-+ 24=+6=.【点睛】本题考查了解一元二次方程-直接开平方法以及求代数式的值,熟练掌握完全平方公式是解本题的关键.24.x 1=54,x 2=23【分析】 设m =4x -5,n =3x -2,则m -n =(4x -5)-(3x -2)=x -3,代入后求出mn =0,即可得出(4x -5)(3x -2)=0,求出即可.【详解】解:(4x -5)2+(3x -2)2=(x -3)2,设m =4x -5,n =3x -2,则m -n =(4x -5)-(3x -2)=x -3,原方程化为:m 2+n 2=(m -n )2,整理得:mn =0,即(4x -5)(3x -2)=0,∴4x -5=0,3x -2=0,∴x 1=54,x 2=23. 【点睛】本题考查了解一元二次方程,能把一元二次方程转化成(4x -5)(3x -2)=0是解此题的关键.25.(1)x 1=-4,x 2=2;(2)y 1=2,y 2=-3;(3)t 1=32,t 2=12-;(4)m 1=-3,m 2=5【分析】(1)根据因式分解法即可求解;(2)可以变形为:(2y +1)2=25,直接开方求解(3)常数项移到右边,两边加上一次项系数一半的平方,开方即可求出解;(4)先移项,使方程右边为零,然后将方程左边进行因式分解,使分解后的两个一次因式分别为零,即可解答.【详解】(1)x 2+2x -8=0,(x +4)(x -2)=0,则x +4=0或x -2=0,解得x =-4或x =2(2) (2y +1)2-25=0;(2y+1)2=25,∴2y+1=±5,∴y 1=2,y 2=-3;(3)24430t t --=;4t 2−4t=3,4t 2−4t+1=3+1,(2t−1)2=4,∴2t−1=±2,∴t 1=32 ,t 2=12- (4)2(m +3)=m 2-92(m +3)-(m +3)(m-3)=0(m +3)(2-m+3)=0∴m+3=0或5−m=0,∴m 1=-3,m 2=5.【点睛】此题考查解一元二次方程-直接开平方法,解一元二次方程-配方法,解一元二次方程-因式分解法,解题关键在于掌握运算法则.26.(1)12x x ==.(2)1211,24x x ==-. 【分析】(1)用配方法解即可;(2)先移项然后提取公因式,即可求解.【详解】(1)23+=x x , ∴211344x x ++=+, ∴211324x ⎛⎫+= ⎪⎝⎭,∴122x +=±.12x x ∴== (2)移项,得4(21)(21)0x x x -+-=, 提取公因式,得(21)(41)0x x -+=, 210x ∴-=或410x +=,1211,24x x ∴==-. 【点睛】本题考查了一元二次方程的解法,掌握基本解法并熟练进行解题是关键.。
成都市青羊区2020年中考九年级数学一诊测试题(含解析)

2020年四川省成都市青羊区中考数学一诊试卷A卷一.选择题(共10小题)1.(﹣2)×=()A.﹣2 B.1 C.﹣1 D.2.用配方法解一元二次方程x2+4x﹣3=0时,原方程可变形为()A.(x+2)2=1 B.(x+2)2=7 C.(x+2)2=13 D.(x+2)2=19 3.下列几何体的主视图是三角形的是()A.B.C.D.4.一个盒子装有除颜色外其它均相同的2个红球和3个白球,现从中任取2个球,则取到的是一个红球、一个白球的概率为()A.B.C.D.5.下列性质中,菱形具有而矩形不一定具有的是()A.对角线相等B.对角线互相平分C.对角线互相垂直D.邻边互相垂直6.如图,在△ABC中,AC=1,BC=2,AB=,则sin B的值是()A.B.C.2 D.7.如图,A、B、C是半径为3的⊙O上的三点,已知∠C=30°,则弦AB的长为()A.3 B.6 C.3.5 D.1.58.若点A(﹣5,y1),B(﹣3,y2),C(2,y3)在反比例函数y=的图象上,则y1,y2,y3的大小关系是()A.y1<y3<y2B.y1<y2<y3C.y3<y2<y1D.y2<y1<y39.某种品牌运动服经过两次降价,每件零售价由560元降为315元,已知两次降价的百分率相同,求每次降价的百分率.设每次降价的百分率为x,下面所列的方程中正确的是()A.560(1+x)2=315 B.560(1﹣x)2=315C.560(1﹣2x)2=315 D.560(1﹣x2)=31510.如图,已知∠DAB=∠CAE,那么添加下列一个条件后,仍然无法判定△ABC∽△ADE的是()A.=B.=C.∠B=∠D D.∠C=∠AED 二.填空题11.在△ABC中,若∠C=90°,cos∠A=,则∠A等于.12.方程2x﹣4=0的解也是关于x的方程x2+mx+2=0的一个解,则m的值为.13.如图,在△ABC中,已知∠ACB=130°,∠BAC=20°,BC=2,以点C为圆心,CB为半径的圆交AB于点D,则BD的长为.14.二次函数y=ax2+bx+c的图象如图,则点(,)在第象限.三.解答题15.(1)计算:﹣4sin45°+(2019﹣π)0﹣32(2)解方程:(x+5)(x+1)=2116.如图,点P是菱形ABCD的对角线BD上一点,连接CP并延长,交AD于E,交BA的延长线于点F.(1)求证:∠DCP=∠DAP;(2)如果PE=3,EF=5,求线段PC的长.17.为了解市民对全市创卫工作的满意程度,某中学数学兴趣小组在全市甲、乙两个区内进行了调查统计,将调查结果分为不满意,一般,满意,非常满意四类,回收、整理好全部问卷后,得到下列不完整的统计图.请结合图中信息,解决下列问题:(1)求此次调查中接受调查的人数.(2)求此次调查中结果为非常满意的人数.(3)兴趣小组准备从调查结果为不满意的4位市民中随机选择2位进行回访,已知4位市民中有2位来自甲区,另2位来自乙区,请用列表或用画树状图的方法求出选择的市民均来自甲区的概率.18.如图,一航船在A处测到北偏东60°的方向有一灯塔B,航船向东以每小时20海里的速度航行2小时到达C处,又测到灯塔B在北偏东15°的方向上.求此时航船与灯塔相距多少海里?(结果保留根号)19.如图,已知一次函数y1=kx+b的图象与x轴相交于点A,与反比例函数y2=相交于B (﹣1,5),C(,d)两点.(1)利用图中条件,求反比例和一次函数的解析式;(2)连接OB,OC,求△BOC的面积.20.如图,在Rt△ABC中,AB⊥BC,以AB为直径的圆交AC于点D,E是BC的中点,连接DE.(1)求证:DE是⊙O的切线;(2)设⊙O的半径为r,证明r2=AD•OE;(3)若DE=4,sin C=,求AD之长.B卷一,填空题21.点P(a,b)是直线y=x﹣2上一点,则代数式a2﹣2ab+b2﹣1的值为.22.有五张正面分别标有数﹣7,0,1,2,5的不透明卡片,它们除数字不同外其余全部相同.现将它们背面朝上,洗匀后从中任取一张,将卡片上的数记为a,则使关于x的方程﹣2=有正整数解的概率为.23.如图,直线AB交双曲线y=于A、B两点,交x轴于点C,且B恰为线段AC的中点,连结OA.若S△OAC=,则k的值为.24.在平面直角坐标系中,A(1,0),B(0,),过点B作直线BC∥x轴,点P是直线BC上的一个动点,以AP为边在AP右侧作Rt△APQ,使∠APQ=90°,且AP:PQ=1:,连结AB、BQ,则△ABQ周长的最小值为.25.如图,在矩形ABCD中,AB=4,BC=6,点E为对角线BD的中点,点F在CB的延长线上,且BF=1,连接EF,过点E作EG⊥EF交BA的延长线于点G,连接GF并延长交DB的延长线于点H,则=.26.某厂按用户需求生产一种产品,成本每件20万元,规定每件售价不低于成本,且不高于40万元.经市场调查,每年的销售量y(件)与每件售价x(万元)满足一次函数关系,部分数据如下表:售价x(万元/件)25 30 35销售量y(件)50 40 30 (1)求y与x之间的函数表达式;(2)设商品每年的总利润为W(万元),求W与x之间的函数表达式(利润=收入﹣成本);(3)试说明(2)中总利润W随售价x的变化而变化的情况,并指出售价为多少万元时获得最大利涧,最大利润是多少?27.(1)如图1,△ABC为等边三角形,点D、E分别为边AB、AC上的一点,将图形沿线段DE所在的直线翻折,使点A落在BC边上的点F处.求证:BF•CF=BD•CE.(2)如图2,按图1的翻折方式,若等边△ABC的边长为4,当DF:EF=3:2时,求sin ∠DFB的值;(3)如图3,在Rt△ABC中,∠A=90°,∠ABC=30°,AC=2,点D是AB边上的中点,在BC的下方作射线BE,使得∠CBE=30°,点P是射线BE上一个动点,当∠DPC =60°时,求BP的长;28.如图,一次函数y=x+2的图象与坐标轴交于A、B两点,点C的坐标为(﹣1,0),二次函数y=ax2+bx+c的图象经过A、B、C三点.(1)求二次函数的解析式;(2)如图1,已知点D(1,n)在抛物线上,作射线BD,点Q为线段AB上一点,过点Q 作QM⊥y轴于点M,作QN⊥BD于点M,过Q作QP∥y轴交抛物线于点P,当QM与QN的积最大时,求点P的坐标;(3)在(2)的条件下,连接AP,若点E为抛物线上一点,且满足∠APE=∠ABO,求点E的坐标.参考答案与试题解析A卷一.选择题(共10小题)1.(﹣2)×=()A.﹣2 B.1 C.﹣1 D.【分析】根据有理数乘法的法则进行计算即可.【解答】解:(﹣2)×=﹣1,故选:C.2.用配方法解一元二次方程x2+4x﹣3=0时,原方程可变形为()A.(x+2)2=1 B.(x+2)2=7 C.(x+2)2=13 D.(x+2)2=19 【分析】把方程两边加上7,然后把方程左边写成完全平方式即可.【解答】解:x2+4x=3,x2+4x+4=7,(x+2)2=7.故选:B.3.下列几何体的主视图是三角形的是()A.B.C.D.【分析】主视图是从物体正面看,所得到的图形.【解答】解:A、圆柱的主视图是矩形,故此选项错误;B、圆锥的主视图是三角形,故此选项正确;C、球的主视图是圆,故此选项错误;D、正方体的主视图是正方形,故此选项错误;故选:B.4.一个盒子装有除颜色外其它均相同的2个红球和3个白球,现从中任取2个球,则取到的是一个红球、一个白球的概率为()A.B.C.D.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与取到的是一个红球、一个白球的情况,再利用概率公式求解即可求得答案.【解答】解:画树状图得:∵共有20种等可能的结果,取到的是一个红球、一个白球的有12种情况,∴取到的是一个红球、一个白球的概率为:=.故选:C.5.下列性质中,菱形具有而矩形不一定具有的是()A.对角线相等B.对角线互相平分C.对角线互相垂直D.邻边互相垂直【分析】菱形的性质有:四边形相等,两组对边分别平行,对角相等,邻角互补,对角线互相垂直且平分,且每一组对角线平分一组对角.矩形的性质有:两组对边分别相等,两组对边分别平行,四个内角都是直角,对角线相等且平分.【解答】解:(A)对角线相等是矩形具有的性质,菱形不一定具有;(B)对角线互相平分是菱形和矩形共有的性质;(C)对角线互相垂直是菱形具有的性质,矩形不一定具有;(D)邻边互相垂直是矩形具有的性质,菱形不一定具有.故选:C.6.如图,在△ABC中,AC=1,BC=2,AB=,则sin B的值是()A.B.C.2 D.【分析】利用正弦函数的定义计算即可.【解答】解:∵在△ABC中,∠ACB=90°,AC=1,BC=2,AB=,∴sin B=.故选:B.7.如图,A、B、C是半径为3的⊙O上的三点,已知∠C=30°,则弦AB的长为()A.3 B.6 C.3.5 D.1.5【分析】根据圆周角定理求出∠AOB,根据等边三角形的判定求出△AOB是等边三角形,再根据等边三角形的性质得出即可.【解答】解:∵∠C=30°,∴根据圆周角定理得:∠AOB=2∠C=60°,∵OA=OB=3,∴△AOB是等边三角形,∴AB=OA=3,故选:A.8.若点A(﹣5,y1),B(﹣3,y2),C(2,y3)在反比例函数y=的图象上,则y1,y2,y3的大小关系是()A.y1<y3<y2B.y1<y2<y3C.y3<y2<y1D.y2<y1<y3【分析】直接利用反比例函数图象的分布,结合增减性得出答案.【解答】解:∵点A(﹣5,y1),B(﹣3,y2),C(2,y3)在反比例函数y=的图象上,∴A,B点在第三象限,C点在第一象限,每个图象上y随x的增大减小,∴y3一定最大,y1>y2,∴y2<y1<y3.故选:D.9.某种品牌运动服经过两次降价,每件零售价由560元降为315元,已知两次降价的百分率相同,求每次降价的百分率.设每次降价的百分率为x,下面所列的方程中正确的是()A.560(1+x)2=315 B.560(1﹣x)2=315C.560(1﹣2x)2=315 D.560(1﹣x2)=315【分析】设每次降价的百分率为x,根据降价后的价格=降价前的价格(1﹣降价的百分率),则第一次降价后的价格是560(1﹣x),第二次后的价格是560(1﹣x)2,据此即可列方程求解.【解答】解:设每次降价的百分率为x,由题意得:560(1﹣x)2=315,故选:B.10.如图,已知∠DAB=∠CAE,那么添加下列一个条件后,仍然无法判定△ABC∽△ADE的是()A.=B.=C.∠B=∠D D.∠C=∠AED 【分析】利用相似三角形的判定依次判断可求解;【解答】解:∵∠DAB=∠CAE,∴∠DAE=∠BAC,A、若,且∠DAE=∠BAC,无法判定△ABC∽△ADE,故选项A符合题意;B、若,且∠DAE=∠BAC,可判定△ABC∽△ADE,故选项B不符合题意;C、若∠B=∠D,且∠DAE=∠BAC,可判定△ABC∽△ADE,故选项C不符合题意;D、若∠C=∠AED,且∠DAE=∠BAC,可判定△ABC∽△ADE,故选项D不符合题意;故选:A.二.填空题11.在△ABC中,若∠C=90°,cos∠A=,则∠A等于60°.【分析】直接利用特殊角的三角函数值求出即可.【解答】解:∵在△ABC中,∠C=90°,cos∠A=,∴∠A=60°,故答案为:60°.12.方程2x﹣4=0的解也是关于x的方程x2+mx+2=0的一个解,则m的值为﹣3 .【分析】先求出方程2x﹣4=0的解,再把x的值代入方程x2+mx+2=0,求出m的值即可.【解答】解:2x﹣4=0,解得:x=2,把x=2代入方程x2+mx+2=0得:4+2m+2=0,解得:m=﹣3.故答案为:﹣3.13.如图,在△ABC中,已知∠ACB=130°,∠BAC=20°,BC=2,以点C为圆心,CB为半径的圆交AB于点D,则BD的长为2.【分析】如图,作CE⊥AB于E,在Rt△BCE中利用30度性质即可求出BE,再根据垂径定理可以求出BD.【解答】解:如图,作CE⊥AB于E.∵∠B=180°﹣∠A﹣∠ACB=180°﹣20°﹣130°=30°,在Rt△BCE中,∵∠CEB=90°,∠B=30°,BC=2,∴CE=BC=1,BE=CE=,∵CE⊥BD,∴DE=EB,∴BD=2EB=2.故答案为2.14.二次函数y=ax2+bx+c的图象如图,则点(,)在第三象限.【分析】根据抛物线的开口向上可得:a>0,根据抛物线的对称轴在y轴左边可得:a,b同号,所以b>0.根据抛物线与y轴的交点在负半轴可得:c<0.所以bc<0,所以点(,)在第三象限.【解答】解:∵抛物线的开口向上,∴a>0,∵对称轴在y轴左边,∴a,b同号,即b>0,∵抛物线与y轴的交点在负半轴,∴c<0,∴<0,<0,∴点(,)在第三象限.故答案是:三.三.解答题15.(1)计算:﹣4sin45°+(2019﹣π)0﹣32(2)解方程:(x+5)(x+1)=21【分析】(1)根据实数的混合运算顺序和运算法则计算可得;(2)先整理成一般式,再利用因式分解法求解可得.【解答】解:(1)原式=2﹣4×+1﹣9=2﹣2﹣8=﹣8;(2)方程整理,得:x2+6x﹣16=0,∵(x﹣2)(x+8)=0,∴x﹣2=0或x+8=0,解得x=2或x=﹣8.16.如图,点P是菱形ABCD的对角线BD上一点,连接CP并延长,交AD于E,交BA的延长线于点F.(1)求证:∠DCP=∠DAP;(2)如果PE=3,EF=5,求线段PC的长.【分析】(1)由菱形的性质可得AD=CD,∠ADB=∠CDB,CD∥AB,由“SAS”可证△ADP ≌△CDP,可得结论;(2)通过证明△APE∽△FPA,可得,可求AP的长,即可求解.【解答】证明:(1)∵四边形ABCD是菱形,∴AD=CD,∠ADB=∠CDB,CD∥AB,∵AD=CD,∠ADB=∠CDB,且DP=DP,∴△ADP≌△CDP(SAS)∴AP=PC,∠DCP=∠DAP;(2)∵CD∥AB,∴∠DCP=∠F,且∠DCP=∠DAP,∴∠F=∠DAP,且∠APE=∠APF,∴△APE∽△FPA,∴,∴,∴AP=2,∴PC=2.17.为了解市民对全市创卫工作的满意程度,某中学数学兴趣小组在全市甲、乙两个区内进行了调查统计,将调查结果分为不满意,一般,满意,非常满意四类,回收、整理好全部问卷后,得到下列不完整的统计图.请结合图中信息,解决下列问题:(1)求此次调查中接受调查的人数.(2)求此次调查中结果为非常满意的人数.(3)兴趣小组准备从调查结果为不满意的4位市民中随机选择2位进行回访,已知4位市民中有2位来自甲区,另2位来自乙区,请用列表或用画树状图的方法求出选择的市民均来自甲区的概率.【分析】(1)由满意的有20人,占40%,即可求得此次调查中接受调查的人数.(2)由(1),即可求得此次调查中结果为非常满意的人数.(3)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与选择的市民均来自甲区的情况,再利用概率公式即可求得答案.【解答】解:(1)∵满意的有20人,占40%,∴此次调查中接受调查的人数:20÷40%=50(人);(2)此次调查中结果为非常满意的人数为:50﹣4﹣8﹣20=18(人);(3)画树状图得:∵共有12种等可能的结果,选择的市民均来自甲区的有2种情况,∴选择的市民均来自甲区的概率为:=.18.如图,一航船在A处测到北偏东60°的方向有一灯塔B,航船向东以每小时20海里的速度航行2小时到达C处,又测到灯塔B在北偏东15°的方向上.求此时航船与灯塔相距多少海里?(结果保留根号)【分析】过C作CD⊥AB,垂足为D,在直角△ACD中,根据三角函数求得CD的长,再在直角△BCD中运用三角函数即可求解.【解答】解:作CD⊥AB,垂足为点D.根据题意可得∠BAC=30°,∠ACB=105°,∴∠B=45°,∵AC=20×2=40(海里),∴DC=AC•sin30°=40×=20(海里),∴BC=DC÷sin45°=20÷=20(海里).答:此时航船与灯塔相距20海里.19.如图,已知一次函数y1=kx+b的图象与x轴相交于点A,与反比例函数y2=相交于B (﹣1,5),C(,d)两点.(1)利用图中条件,求反比例和一次函数的解析式;(2)连接OB,OC,求△BOC的面积.【分析】(1)将点B的坐标代入反比例函数解析式求出c,从而得解,再将点C的坐标代入反比例函数解析式求出d,从而得到点C的坐标,然后利用待定系数法求一次函数解析式求解;(2)根据一次函数解析式求出点A的坐标,再根据S△BOC=S△AOB+S△AOC列式计算即可得解.【解答】解:(1)将B(﹣1,5)代入y2=得,=5,解得c=﹣5,所以,反比例函数解析式为y=﹣,将点C(,d)代入y=﹣得d=﹣=﹣2,所以,点C的坐标为(,﹣2),将点B(﹣1,5),C(,﹣2)代入一次函数y1=kx+b得,,解得,所以,一次函数y1=﹣2x+3;(2)令y=0,则﹣2x+3=0,解得x=,所以,点A的坐标为(,0),所以,OA=,S△BOC=S△AOB+S△AOC,=××5+××2,=.20.如图,在Rt△ABC中,AB⊥BC,以AB为直径的圆交AC于点D,E是BC的中点,连接DE.(1)求证:DE是⊙O的切线;(2)设⊙O的半径为r,证明r2=AD•OE;(3)若DE=4,sin C=,求AD之长.【分析】(1)连接OD、BD,根据圆周角定理求出∠BDA=∠BDC=90°,根据直角三角形的性质和等腰三角形的性质求出∠ECD=∠EDC,∠EBD=∠EDB即可.(2)连接OE,构造相似三角形△ADB∽△ODE,由该相似三角形的对应边成比例证得结论;(3)根据圆周角定理得到∠ADB=∠BDC=90°,根据直角三角形的性质得到BC=8;然后由sin C=求出AC的长,再根据切割线定理求出AD的长即可.【解答】(1)证明:连接OD、BD,∵AB为圆O的直径,∴∠BDA=90°,∴∠BDC=180°﹣90°=90°,∵E为BC的中点,∴DE=BC=BE,∴∠EBD=∠EDB,∵OD=OB,∴∠OBD=∠ODB,∵∠EBD+∠DBO=90°,∴∠EDB+∠ODB=90°,∴∠ODE=90°,∴DE是圆O的切线.(2)证明:如图,连接BD.由(1)知,∠ODE=∠ADB=90°,BD⊥AC.∵E是BC的中点,O是AB的中点,∴OE是△ABC的中位线,∴OE∥AC,∴OE⊥BD.∴OE∥AC,∴∠1=∠2.又∵∠1=∠A,∴∠A=∠2.即在△ADB与△ODE中,∠ADB=∠ODE,∠A=∠2,∴△ADB∽△ODE.∴=,即=.∴r2=AD•OE;(3)∵AB为⊙O的直径,∴∠ADB=∠BDC=90°,∵点E为BC的中点,∴BC=2DE=8,∵sin C=,∴设AB=3x,AC=5x,根据勾股定理得:(3x)2+82=(5x)2,解得x=2.则AC=10.由切割线定理可知:82=(10﹣AD)×10,解得,AD=3.6.B卷21.点P(a,b)是直线y=x﹣2上一点,则代数式a2﹣2ab+b2﹣1的值为 3 .【分析】先把点(a,b)代入一次函数y=x﹣2求出a﹣b的值,再代入代数式进行计算即可.【解答】解:∵点(a,b)在一次函数y=x﹣2上,∴b=a﹣2,即a﹣b=2,∴原式=(a﹣b)2﹣1=22﹣1=4﹣1=3.故答案为:3.22.有五张正面分别标有数﹣7,0,1,2,5的不透明卡片,它们除数字不同外其余全部相同.现将它们背面朝上,洗匀后从中任取一张,将卡片上的数记为a,则使关于x的方程﹣2=有正整数解的概率为.【分析】易得分式方程的解,看所给5个数中,能使分式方程有整数解的情况数占总情况数的多少即可.【解答】解:﹣2=,解得:x=,∵分式方程的解为正整数,∴a+1>0,又∵x≠1,∴a≠5,∴a=0或a=1或a=2,∴使关于x的分式方程有正整数解的概率为.故答案为:.23.如图,直线AB交双曲线y=于A、B两点,交x轴于点C,且B恰为线段AC的中点,连结OA.若S△OAC=,则k的值为.【分析】设A点坐标为(a,),C点坐标为(b,0),根据线段中点坐标公式得到B点坐标为(,),利用反比例函数图象上点的坐标特征得到•=k,得到b=3a,然后根据三角形面积公式得到•3a•=,于是可计算出k=.【解答】解:设A点坐标为(a,),C点坐标为(b,0),∵B恰为线段AC的中点,∴B点坐标为(,),∵B点在反比例函数图象上,∴•=k,∴b=3a,∵S△OAC=,∴b•=,∴•3a•=,∴k=.故答案为.24.在平面直角坐标系中,A(1,0),B(0,),过点B作直线BC∥x轴,点P是直线BC上的一个动点,以AP为边在AP右侧作Rt△APQ,使∠APQ=90°,且AP:PQ=1:,连结AB、BQ,则△ABQ周长的最小值为2+2 .【分析】设P(m,).作AM⊥BC于M,QN⊥BC于N.利用新三角形的性质求出点Q的坐标推出,点Q的运动轨迹是直线y=﹣x+5,作点A关于直线y=﹣x+5的对称点A′,连接BA′交直线于Q′,连接AQ′,此时△ABQ′的周长最小.【解答】解:设P(m,).作AM⊥BC于M,QN⊥BC于N.∵∠AMP=∠APQ=∠QNP=90°,∴∠APM+∠NPQ=90°,∠NPQ+∠PQN=90°,∴∠APM=∠PQN,∴△AMP∽△PNQ,∴===,∴==,∴PN=3,NQ=(m﹣1),∴Q(m+3,2﹣m),∴点Q的运动轨迹是y=﹣x+5,作点A关于直线y=﹣x+5的对称点A′,连接BA′交直线于Q′,连接AQ′,此时△ABQ′的周长最小.∵A′(7,2),B(0,),A(1,0),∴A′B==2,AB==2,∴△ABQ的周长的最小值=AQ′+BQ′+AB=A′Q′+BQ′+AB=A′B+AB=2+2,故答案为2+2.25.如图,在矩形ABCD中,AB=4,BC=6,点E为对角线BD的中点,点F在CB的延长线上,且BF=1,连接EF,过点E作EG⊥EF交BA的延长线于点G,连接GF并延长交DB 的延长线于点H,则=.【分析】过点E作EM⊥BC于点M,过点E作EN⊥AB于点N,则EM=2,EN=BM=3,求出EF的长和GN的长,则GB的长可求出,证明△FEH∽△BGH,可得得出结论.【解答】解:过点E作EM⊥BC于点M,过点E作EN⊥AB于点N,∴四边形ENBM是矩形,∵E是BD的中点,∴EM==2,EN=BM==3,∴MF=BF+BM=1+3=4,∴==2,∵EG⊥EF,∴∠GEF=90°,∴∠EGB=∠BFE,∴tan∠EGB=tan∠BFE,∴,∴GN=6,∴GB=GN+BN=6+2=8∵∠GEF=∠GBF=90°∴G,E,B,F四点共圆,∴∠BGF=∠BEF,∵∠EHF=∠GHB,∴△FEH∽△BGH,∴,∴.故答案为:.26.某厂按用户需求生产一种产品,成本每件20万元,规定每件售价不低于成本,且不高于40万元.经市场调查,每年的销售量y(件)与每件售价x(万元)满足一次函数关系,部分数据如下表:售价x(万元/件)25 30 35销售量y(件)50 40 30 (1)求y与x之间的函数表达式;(2)设商品每年的总利润为W(万元),求W与x之间的函数表达式(利润=收入﹣成本);(3)试说明(2)中总利润W随售价x的变化而变化的情况,并指出售价为多少万元时获得最大利涧,最大利润是多少?【分析】(1)根据题意可以设出y与x之间的函数表达式,然后根据表格中的数据即可求得y与x之间的函数表达式;(2)根据题意可以写出W与x之间的函数表达式;(3)根据(2)中的函数解析式,将其化为顶点式,然后根据成本每千克20元,规定每千克售价不低于成本,且不高于40元,即可得到利润W随售价x的变化而变化的情况,以及售价为多少元时获得最大利润,最大利润是多少.【解答】解:(1)设y与x之间的函数解析式为y=kx+b(k≠0),,解得,即y与x之间的函数表达式是y=﹣2x+100;(2)由题意可得,W=(x﹣20)(﹣2x+100)=﹣2x2+140x﹣2000,即W与x之间的函数表达式是W=﹣2x2+140x﹣2000;(3)∵W=﹣2x2+140x﹣2000=﹣2(x﹣35)2+450,20≤x≤40,∴当20≤x≤35时,W随x的增大而增大,当35≤x≤40时,W随x的增大而减小,当x=35时,W取得最大值,此时W=450,答:当20≤x≤35时,W随x的增大而增大,当35≤x≤40时,W随x的增大而减小,售价为35元时获得最大利润,最大利润是450元.27.(1)如图1,△ABC为等边三角形,点D、E分别为边AB、AC上的一点,将图形沿线段DE所在的直线翻折,使点A落在BC边上的点F处.求证:BF•CF=BD•CE.(2)如图2,按图1的翻折方式,若等边△ABC的边长为4,当DF:EF=3:2时,求sin ∠DFB的值;(3)如图3,在Rt△ABC中,∠A=90°,∠ABC=30°,AC=2,点D是AB边上的中点,在BC的下方作射线BE,使得∠CBE=30°,点P是射线BE上一个动点,当∠DPC =60°时,求BP的长;【分析】(1)先利用等式的性质判断出∠BDF=∠CFE,进而得出△BDF∽△CFE,即可得出结论;(2)先表示出BH=x,DH=x,再由(1)△BDF∽△CFE,进而表示出CF=2x,BF=BC﹣CF=4﹣2x,HF=BF﹣BH=4﹣2x﹣x=4﹣x,再利用勾股定理建立方程求出x的值,即可得出结论.【解答】(1)证明:∵△ABC是等边三角形,∠A=∠B=∠C=60°,∴∠BDF+∠BFD=180°﹣∠B=120°,由折叠知,∠DFE=∠A=60°,∴∠CFE+∠BFD=120°,∴∠BDF=∠CFE,∵∠B=∠C=60°,∴△BDF∽△CFE,∴,∴BF•CF=BD•CE;(2)解:如图2,设BD=3x(x>0),则AD=AB﹣BD=4﹣3x,由折叠知,DF=AD=4﹣3x,过点D作DH⊥BC于H,∴∠DHB=∠DHF=90°,∵∠B=60°,∴BH=x,DH=x,由(1)知,△BDF∽△CFE,∴=,∵DF:EF=3:2,∴=,CF=2x,∴BF=BC﹣CF=4﹣2x,∴HF=BF﹣BH=4﹣2x﹣x=4﹣x,在Rt△DHF中,DH2+HF2=DF2,∴(x)2+(4﹣x)2=(4﹣3x)2,∴x=0(舍)或x=,∴DH=,DF=4﹣3×=,∴sin∠DFB===;(3)如图3,在Rt△ABC中,AC=2,∠ABC=30°,∴BC=2AC=4,AB=AC=6,∵点D是AB的中点,∴BD=AB=3,过点C作BC的垂线交BP的延长线于Q,∴∠BCQ=90°,在Rt△BCQ中,∠CBE=30°,∴CQ==4,∴BQ=2CQ=8,∴∠BCQ=90°,∵∠CBE=30°,∴∠Q=90°﹣∠CBE=60°,∴∠DBP=∠ABC+∠CBE=60°=∠Q,∴∠CPQ+∠PCQ=120°,∵∠DPC=60°,∴∠BPD+∠CPQ=120°,∴∠BPD=∠PCQ,∴△BDP∽△QPC,∴=,∴,∴BP=2或BP=6.28.如图,一次函数y=x+2的图象与坐标轴交于A、B两点,点C的坐标为(﹣1,0),二次函数y=ax2+bx+c的图象经过A、B、C三点.(1)求二次函数的解析式;(2)如图1,已知点D(1,n)在抛物线上,作射线BD,点Q为线段AB上一点,过点Q 作QM⊥y轴于点M,作QN⊥BD于点M,过Q作QP∥y轴交抛物线于点P,当QM与QN的积最大时,求点P的坐标;(3)在(2)的条件下,连接AP,若点E为抛物线上一点,且满足∠APE=∠ABO,求点E的坐标.【分析】(1)一次函数y=x+2的图象与坐标轴交于A、B两点,则点A、B的坐标分别为:(0,2)、(4,0),即可求解;(2)即直线BD的倾斜角为45°,则∠QGN=45°,QN=QG,QM•QN=m×(﹣m+4+m﹣2)=(﹣m2+2m),即可求解;(3)分PE在AP下方、PE在AP上方两种情况,利用解直角三角形的方法,分别求解即可.【解答】解:(1)一次函数y=x+2的图象与坐标轴交于A、B两点,则点A、B的坐标分别为:(0,2)、(4,0),则抛物线的表达式为:y=a(x﹣4)(x+1)=a(x2﹣3x﹣4),即﹣4a=2,解得:a=﹣,则抛物线的表达式为:y=﹣x2+x+2…①;(2)点D(1,3),点B(4,0),则BD所在的函数表达式为:y=﹣x+4;即直线BD的倾斜角为45°,则∠QGN=45°,QN=QG,设点Q(m,﹣m+2),则点G(m,﹣m+4),QM•QN=m×(﹣m+4+m﹣2)=(﹣m2+2m),当m=2时,QM与QN的积最大,则点P(2,3);(3)设:∠APE=∠ABO=∠α,则tan;①当PE在AP下方时,如图,由点A(0,2)、P(2,3)知,AP=,设AP与y轴的夹角为β,则tanβ=2,过点H作MH⊥PA交PA的延长线于点M,设:MA=x,则MH=2x,tan∠APH===tanα=,解得:x=,则AH=x=,则点H(0,),由点H、P的坐标得,直线PH的表达式为:y=x+…②,联立①②并解得:x=2(舍去)或﹣,故点E(﹣,﹣);②当PE在AP上方时,同理可得:点E(1,3);综上,点E的坐标为:(﹣,﹣)或E(1,3).。
初2020届成都市青羊区某名校中考数学九年级二诊数学试卷(含答案)

初2020届成都市青羊区某校中考数学九年级二诊数学试卷(考试时间:120分钟满分:150分)A卷(共100分)一.选择题(本大题共小10题,每小题3分,共30分)1.下列各数中,比﹣2小的数是()A.3 B.1 C.﹣1 D.﹣32.如图所示的几何体是由4个大小相同的小立方体组成,其俯视图是()A.B.C.D.3.据生物学可知,卵细胞是人体细胞中最大的细胞,其直径约为0.0002米.将数0.0002用科学记数法表示为()A.0.2×10﹣3B.0.2×10﹣4C.2×10﹣3D.2×10﹣44.将A(﹣4,1)向右平移5个单位,再向下平移2个单位,平移后点的坐标是()A.(﹣9,3)B.(1,﹣1)C.(﹣9,1)D.(1,3)5.将一副直角三角板按如图所示的位置放置,使含30°角的三角板的一条直角边和含45°角的三角板的一条直角边放在同一条直线上,则∠α的度数是()A.45°B.60°C.75°D.85°6.下列计算正确的是()A.(x+y)2=x2+y2B.(﹣xy2)3=﹣x3y6C.x6÷x3=x2D.=27.方程的解是()A.x=B.x=C.x=D.x=8.成都市某小区5月1日至5日每天用水量(单位:吨)分别是:30,32,36,28,34,则这组数据的中位数是()A.32吨B.36吨C.34吨D.30吨9.如图,正方形ABCD四个顶点都在⊙O上,点P是在弧AB上的一点,则∠CPD的度数是()A.35°B.40°C.45°D.60°10.对于二次函数y=2(x+1)(x﹣3),下列说法正确的是()A.图象开口向下B.当x>1时,y随x的增大而减小C.图象的对称轴是直线x=﹣1D.当x<1时,y随x的增大而减小二.填空题(本大题共4小题,每小题4分,共16分)11.已知|a+2|+(b﹣1)2=0,则a+b=.12.若一次函数y=(1﹣m)x+2,函数值y随x的增大而减小,则m的取值范围是.13.如图,在等边△ABC中,D是BC边上的一点,延长AD至E,使AE=AC,∠BAE的平分线交△ABC的高BF于点O,则∠E=.14.如图,在菱形ABCD中,按以下步骤作图:、①分别以点C和点D为圆心,大于CD为半径作弧,两弧交于点M,N;②作直线MN,且MN恰好经过点A,与CD交于点E,连接BE,若AB=4,则BE=.三.解答题(本大题共6小题,共54分)15.(12分)计算:(1)计算:(π﹣3.14)0+()﹣2﹣|﹣|+4cos30°(2)解不等式组:16.(6分)先化简,再求值:(﹣)÷,其中x=,y=2﹣.17.(8分)“树德之声”结束后,王老师和李老师整理了所有参赛选手的比赛成绩(单位:分),绘制成如图频数直方图和扇形统计图:(1)求本次比赛参赛选手总人数,并补全频数直方图;(2)求扇形统计图中扇形D的圆心角度数;(3)成绩在D区域的选手中,男生比女生多一人,从中随机抽取两人,求恰好选中一名男生和一名女生的概率.18.(8分)如图是小花在一次放风筝活动中某时段的示意图,她在A处时的风筝线(整个过程中风筝线近似地看作直线)与水平线构成30°角,线段AA1表示小花身高1.5米,当她从点A跑动9米到达点B处时,风筝线与水平线构成45°角,此时风筝到达点E处,风筝的水平移动距离CF=10米,这一过程中风筝线的长度保持不变,求风筝原来的高度C1D.19.(10分)如图,在平面直角坐标系中,直线y1=2x﹣2与双曲线y2=交于A、C两点,AB⊥OA交x轴于点B,且AB=OA.(1)求双曲线的解析式;(2)连接OC,求△AOC的面积.20.(10分)如图,以△ABC的边AB为直径的⊙O与边AC相交于点D,BC是⊙O的切线,E为BC的中点,连接BD、DE.(1)求DE是⊙O的切线;(2)设△CDE的面积为S1,四边形ABED的面积为S2,若S2=5S1,求tan∠BAC的值;(3)在(2)的条件下,连接AE,若⊙O的半径为2,求AE的长.B卷(50分)一.填空题(每小题4分,共20分)21.已知m是方程x2﹣3x+1=0的一个根,则(m﹣3)2+(m+2)(m﹣2)的值是.22.我们知道:四边形具有不稳定性.如图,在平面直角坐标系xOy中,矩形ABCD的边AB在x轴上,A(﹣3,0),B(4,0),边AD长为5.现固定边AB,“推”矩形使点D落在y轴的正半轴上(落点记为D′),相应地,点C的对应点C′的坐标为.23.如图,△ABC是边长为4cm的等边三角形,点D在AB边上(不与点A、B)重合,将△ACD绕点C逆时针方向旋转60°得到△BCE,连结DE,则△BDE周长的最小值是cm.24.如图,△ABC内接于⊙O,AB=AC,CO的延长线交AB于点D,若BC=6,sin∠BAC=,则AC=,CD=.25.如图,在Rt△ABC中,∠C=90°,BC=2,AC=2,点D是BC的中点,点E是边AB上一动点,沿DE所在直线把△BDE翻折到△B′DE的位置,B′D交AB于点F.若△AB′F为直角三角形,则AE的长为.二.解答题(本大题共3小题,共30分。
初2020届成都市高新区中考数学九年级一诊数学试卷(含答案)

初2020届成都市高新区中考数学九年级一诊数学试卷(考试时间:120分钟满分:150分)A卷(共100分)一、选择题(本大题共10个小题,每小题3分,共30分,每小题均有四个选项,其中只有一项符合题目要求,答案涂在答题卡上)1.下列图形既是轴对称图形又是中心对称图形的是()A.等腰三角形B.等边三角形C.平行四边形D.圆2.一个口袋中有红球、白球共10个,这些球除颜色外都相同.将口袋中的球搅拌均匀,从中随机摸出一个球,记下颜色后再放回口袋中.不断重复这一过程,共摸了100次球,发现有70次摸到红球.请你估计这个口袋中红球的数量是()A.4 B.5 C.6 D.73.如图所示的四棱柱的主视图为()A.B.C.D.4.已知a,b,c,d是成比例线段,其中a=3cm,b=2cm,c=6cm,则d的长度为()A.4cm B.5cm C.6cm D.9cm5.某学习小组利用三角形相似测量学校旗杆的高度.测得身高为1.6米小明同学在阳光下的影长为1米,此时测得旗杆的影长为9米.则学校旗杆的高度是()A.9米B.14.4米C.16米D.13.4米6.已知反比例函数的图象经过点(2,3),那么下列各点在该函数图象上的是()A.(﹣,3)B.(2,﹣)C.(9,)D.(4,2)7.如图,点A、B、C在⊙O上,△OAB为等边三角形,则∠ACB的度数是()A.60°B.50°C.40°D.30°8.顺次连接任意四边形四边中点所得的四边形一定是()A.平行四边形B.矩形C.菱形D.正方形9.二次函数y=x2﹣2的图象是一条抛物线,下列关于该抛物线的说法正确的是()A.抛物线开口向下B.当x=0时,函数的最大值是﹣2C.抛物线的对称轴是直线x=2D.抛物线与x轴有两个交点10.函数y=与y=kx﹣k(k≠0)在同一平面直角坐标系中的图象可能是()A.B.C.D.二、填空题(本大题共4个小题,每小题4分,共16分,答案写在答题卡上)11.若2a=3b,则a:b=.12.二次函数y=2(x﹣2)2﹣1的顶点坐标是.13.在△ABC中与△DEF中,已知===,则三角形△ABC与△DEF的周长之比为.14.如图:分别以A、C为圆心,以大于AC的长为半径作弧,两条弧分别相交于点B、D,依次连接A,B,C,D和BD.若AB=5,AC=8,则BD=.三、解答题(本大题共6个小题,共54分,解答过程写在答题卡上)15.(12分)(1)计算:(π﹣2019)0+2sin60°﹣+|1﹣|(2)解方程:x2﹣2x﹣3=016.(6分)已知:如图,在▱ABCD中,BA=BD,M,N分别是AD和BC的中点.求证:四边形BNDM是矩形.17.(8分)2018年,国家卫生健康委员会和国家教育部在全国开展了儿童青少年近视调查工作,调查数据显示,全国儿童青少年近视过半.某校初三学习小组为了解本校学生对自己视力保护的重视程度,随机在校内调查了部分学生,调查结果分为“非常重视”“重视”“比较重视”“不重视”四类,并将结果绘制成下面的两幅不完整的统计图:根据图中信息,解答下列问题:(1)求本次调查的学生总人数,并补全条形统计图;(2)该校共有学生1000人,请你估计该校对视力保护“非常重视”的学生人数;(3)对视力“非常重视”的4人有A1,A2两名男生,B1,B2两名女生,若从中随机抽取两人向全校作视力保护交流,请利用树状图或列表的方法,求恰好抽到一男一女的概率.18.(8分)如图,渔船跟踪鱼群由西向东航行,到达A处时,测得小岛C位于它的北偏东53°方向,再航行3km达到B处(AB=3km),测得小岛C位于它的北偏东45°方向.小岛C的周围8km内有暗礁,如果渔船不改变航向继续向东航行,请你通过计算说明渔船有无触礁的危险?(参考数据:sin53°≈,cos53°≈,tan53°≈)19.(10分)如图,在平面直角坐标系xOy中,一次函数y=x﹣1与x轴交于点C,与反比例函数y=(k >0)交于点A(2,m)和点B.(1)求反比例函数表达式及点B的坐标;(2)点P是x轴上的一点,若△PAB的面积是6,求点P的坐标.20.(10分)如图,在Rt△ABC中,∠ACB=90°,以AC为直径作⊙O,点D在⊙O上,BD=BC,DE⊥AC,垂足为点E,DE与⊙O和AB分别交于点M、F.连接BO、DO、AM.(1)证明:BD是⊙O的切线;(2)若tan∠AMD=,AD=2,求⊙O的半径长;(3)在(2)的条件下,求DF的长.B卷(50分)一、填空题(本大题共5个小题,每小题4分,共20分,答案写在答题卡上)21.在同一直角坐标系中,正比例函数y=k1x的图象与反比例函数的图象有公共点,则k1k20(填“>”、“=”或“<”).22.一元二次方程x2﹣3x﹣2=0的两根分别是m、n,则m3﹣3m2+2n=.23.如图,在菱形ABCD四个顶点的字母中,任取两个字母相互交换它们的位置,交换后能使字母A、B在同一条对角线上的概率是.24.如图,在平面直角坐标系xOy中,矩形OABC的边OA、OC分别在x轴和y轴上,OA=6,OC=4,点Q 是AB边上一个动点,过点Q的反比例函数y=(x>0)与BC边交于点P.若将△PBQ沿PQ折叠,点B的对应点E恰好落在对角线AC上,则此时反比例函数的解析式是.25.已知矩形ABCD的长和宽分别是n和1,其中n是正整数,若存在另一个矩形A′B′C′D′,它的周长和面积分别是矩形ABCD周长和面积的一半,则满足条件的n的最小值是.二、解答题(本大题共3个小题,共30分,解答过程写在答题卡上)26.(8分)某商店购进一批单价为8元的商品,经调研发现,这种商品每天的销售量y(件)是关于销售单价x(元)的一次函数,其关系如表:x(元)10 11 12 13 14y(件)100 90 80 70 60(1)求y与x之间的关系式;(2)设商店每天销售利润为w(元),求出w与x之间的关系式,并求出每天销售单价定为多少时利润最大?27.(10分)如图,在△ABC与△EBD中,∠ABC=∠EBD=90°,AB=6,BC=3,EB=2,BD=,射线AE与直线CD交于点P.(1)求证:△ABE∽△CBD;(2)若AB∥ED,求tan∠PAC的值;(3)若△EBD绕点B逆时针旋转一周,直接写出线段AP的最大值与最小值.28.(12分)在平面直角坐标系xOy中,抛物线y=a(x﹣3)(x+1)与x轴交于A、B两点,与轴交于点C (0,﹣),连接AC、BC.(1)求抛物线的函数表达式;(2)抛物线的对称轴与x轴交于点D,连接CD,点E为第二象限抛物线上的一动点,EF∥BC,直线EF与抛物线交于点F,设直线EF的表达式为.①如图①,直线y=kx+b与抛物线对称轴交于点G,若△DGF∽△BDC,求k、b的值;②如图②,直线y=kx+b与y轴交于点M,与直线y=x交于点H,若﹣=,求b的值.参考答案与试题解析一、选择题1.【解答】解:A、等腰三角形是轴对称图形,不是中心对称图形;B、等边三角形是轴对称图形,不是中心对称图形;C、平行四边形不是轴对称图形,是中心对称图形;D、圆是轴对称图形,是中心对称图形.故选:D.2.【解答】解:由题意可得,红球的概率为=70%,则这个口袋中红球的个数:10×70%=7(个),故选:D.3.【解答】解:由图可得,几何体的主视图是:故选:B.4.【解答】解:因为a,b,c,d是成比例线段,可得:d=cm,故选:A.5.【解答】解:∵同一时刻物高与影长成正比例.∴1.6:1=旗杆的高度:9,∴旗杆的高度为:14.4米.故选:B.6.【解答】解:∵反比例函数的图象经过点(2,3),∴k=2×3=6.A、∵﹣×3=﹣6≠6,∴此点不在函数图象上;B、∵2×(﹣)=﹣6≠6,∴此点不在函数图象上;C、∵9×=6,∴此点在函数图象上;D、∵4×2=8≠6,∴此点不在函数图象上;故选:C.7.【解答】解:∵△OAB为等边三角形,∴∠AOB=60°,∴∠ACB=∠AOB=30°.故选:D.8.【解答】解:连接BD,已知任意四边形ABCD,E、F、G、H分别是各边中点.∵在△ABD中,E、H是AB、AD中点,∴EH∥BD,EH=BD.∵在△BCD中,G、F是DC、BC中点,∴GF∥BD,GF=BD,∴EH=GF,EH∥GF,∴四边形EFGH为平行四边形.故选:A.9.【解答】解:A、a=1>0,则抛物线y=x2﹣2的开口向上,故本选项错误,不符合题意;B、当x=0时,函数的最小值是﹣2,故本选项错误,不符合题意;C、抛物线的对称轴为直线x=0,故本选项错误,不符合题意;D、当y=0时,x2﹣2=0,此方程有两个不相等的实数解,即抛物线与x轴有两个交点,故本选项符合题意;故选:D.10.【解答】解:A、∵由反比例函数的图象在二、四象限可知,k<0,∴﹣k>0,∴一次函数y=kx﹣k的图象经过一、二、四象限,故本选项正确;B、∵由反比例函数的图象在二、四象限可知,k<0,∴﹣k>0,∴一次函数y=kx﹣k的图象经过一、二、四象限,故本选项错误;C、∵由反比例函数的图象在一、三象限可知,k>0,∴﹣k<0,∴一次函数y=kx﹣k的图象经过一、三、四象限,故本选项错误;D、∵由反比例函数的图象在一、三象限可知,k>0,∴﹣k<0,∴一次函数y=kx﹣k的图象经过一、三、四象限,故本选项错误;故选:A.二、填空题(本大题共4个小题,每小题4分,共16分,答案写在答题卡上)11.【解答】解:∵2a=3b,∴a:b=3:2.故答案为:3:2.12.【解答】解:二次函数y=2(x﹣2)2﹣1的顶点坐标是(2,﹣1),故答案为:(2,﹣1).13.【解答】解:∵===∴△ABC∽△DEF∴△ABC与△DEF的相似比为∵△ABC与△DEF的周长之比等于△ABC与△DEF的相似比∴△ABC与△DEF的周长之比为故答案为:.14.【解答】解:由作法得AB=AD=CB=CD=5,所以四边形ABCD为菱形;∵四边形ABCD为菱形,∴OA=OC=4,OB=OD,AC⊥BD,在Rt△AOB中,OB==3,∴BD=2OB=6.故答案为:6.三、解答题(本大题共6个小题,共54分,解答过程写在答题卡上)15.【解答】解:(1)原式=1+2×﹣2+﹣1=1+﹣2+﹣1=0;(2)∵x2﹣2x﹣3=0,∴(x﹣3)(x+1)=0,则x﹣3=0或x+1=0,解得x=3或x=﹣1.16.【解答】证明:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,BA=DC,∵BA=BD,∴BA=BD=DC,∵M、N分别是AD和BC的中点,∴BM⊥AD,DM=AD,BN=BC,∴DM=BN,又∵DM∥BN,∴四边形BMDN是平行四边形,∵BM⊥AD,∴∠BMD=90°,∴四边形BMDN是矩形.17.【解答】解:(1)本次调查的学生总人数有:16÷20%=80(人);重视的人数有:80﹣4﹣36﹣16=24(人),补图如下:(2)根据题意得:1000×=50(人),答:该校对视力保护“非常重视”的学生人有50人;(3)画树状图如下:共有12种可能的结果,恰好抽到一男一女的结果有8个,则P(恰好抽到一男一女的)==.18.【解答】解:过点C作CD⊥AB,垂足为点D,由题意可得:∠ACD=53°,∠BCD=∠CBD=45°,故BD=CD,设BD=CD=x,则AD=3+x,在Rt△ACD中,tan∠ACD=,则tan53°=,故≈,解得:x≈9≥8,∴如果渔船不改变航向继续向东航行,渔船无触礁的危险.19.【解答】解:(1)把A(2,m)代入一次函数y=x﹣1,得m=2﹣1=1,∴A(2,1),把A(2,1)代入反比例函数y=(k>0),得k=2,∴反比例函数解析式为y=,解方程组得,,∴B(﹣1,﹣2);(2)设点P的坐标为(m,0),在y=x﹣1中,令y=0,得x=1,∴点C的坐标为(1,0),∵S△PAB=S△PAC+S△PBC=,∴|m﹣1|=4,∴m=5或﹣3,∴点P的坐标为(5,0)或(﹣3,0).20.【解答】解:(1)在△BDO和△BCO中,BD=BC,OD=OC,BO=BO,故△BDO≌△BCO(SSS),∴∠BDO=∠ABC=90°,BD是⊙O的切线;(2)连接CD,则∠AMD=∠ACD,AB是直径,故∠ADC=90°,在Rt△ADC中,tan∠ACD=tan∠AMD==,∵AD=2,∴CD=4,故圆的半径为5;(3)在Rt△ADC中,DE⊥AC,则DE==4,则AE=2,由(1)知△BDO≌△BCO,∴∠BOC=∠BOD=∠DOC,∵∠DAE=∠DOC,∴∠DAE=∠BOC,∵ED⊥AC,∴∠AED=∠OCB=90°,∴△DAE∽△BOC,∴,即,解得:BC=10,∴∠BAC=∠ABC=45°,∴∠FAE=∠AFE=45°,∴FE=AE=2,DF=DE﹣EF=2.B卷一、填空题(本大题共5个小题,每小题4分,共20分,答案写在答题卡上)21.【解答】解:∵正比例函数y=k1x的图象与反比例函数的图象有公共点,∴k1、k2同号,∴k1k2>0.22.【解答】解:由题意可知:m+n=3,m2=3m+2,∴m3=3m2+2m,∴原式=3m2+2m﹣3m2+2n=2(m+n)=6,故答案为:6.23.【解答】解:共有AB互换,AC互换,BC互换,AD互换,CD互换,BD互换6种情况,符合条件的是BC互换,AD互换2种情况,所以交换后能使字母A、B在同一条对角线上的概率是=;故答案为:.24.【解答】解:∵四边形OABC是矩形,OA=6,OC=4,∴BC=OA=6,AB=OC=4,∴B(6,4),设P(,4),Q(6,),∴PC=,AQ=,∴PB=6﹣,BQ=4﹣,∴tan∠BQP===,∵tan∠BAC===,∴tan∠BQP=tan∠BAC,∴∠BQP=∠BAC,∴PQ∥AC,连接BE,∵将△PBQ沿PQ折叠,点B的对应点E恰好落在对角线AC上,∴BH=EH,∴AQ=BQ=2,∴=2,∴k=12,∴反比例函数的解析式是y=,故答案为:y=.25.【解答】解:设矩形A′B′C′D′的长和宽分别为x、y,则,由①得:y=﹣x③,把③代入②得:x2﹣+=0,b2﹣4ac=﹣4×≥0,∴(n﹣3)2≥8,∵n是正整数,∴n的最小值是6,故答案为:6.二、解答题(本大题共3个小题,共30分,解答过程写在答题卡上)26.【解答】解:(1)设y与x的一次函数是y=kx+b,由表得:,解得:k=﹣10,b=200,∴y与x的一次函数是y=﹣10x+200;(2)根据题意得:w=(x﹣8)(﹣10x+200)=﹣10(x﹣14)2+360,∴w是关于x的二次函数,且二次项系数为﹣10<0,∴当x=14时,w去掉最大值360,∴当每天销售单价定为14元时利润最大.27.【解答】(1)证明:∵,∠ABC=∠EBD=90°,∴∠ABE=∠CBD,∵AB=6,BC=3,EB=2,BD=,∴==2,∴△ABE∽△CBD.(2)解:如图,设DE交BC于M.∵AB∥DE,∠ABC=90°,∴∠DMB=∠ABC=∠DMC=90°,在Rt△DEB中,∵∠EBD=90°,BE=2,BD=,∴DE===5,BM===2,∴DM===1,∴CM=DM=1,CD=,∴∠CDM=∠DCM=45°,∵△ABE∽△CBD,∴==2,∠CDB=∠AEB,∴AE=2,∵∠AEB+∠PEB=180°,∴∠CDB+∠PEB=180°,∵∠EBD=90°,∴∠APC=90°,∴PE=PD=DE=,∴PC=PD﹣CD=MPA=PE+AE=,∴tan∠PAC==.(3)由(2)可知当点P与C重合时,PA的值最大,最大值PA=AC===3,如图,当AE在AB的下方且与⊙B相切时,∠CAP的值最大,此时PA=AC•cos∠CAP的值最小,∵∠BEP=∠DPE=∠DBE=90°,∴四边形BEPD是矩形,∴BD=PE=,∵AE===4,∴PA的最小值为4﹣,28.【解答】解:(1)将C(0,﹣)代入y=a(x﹣3)(x+1),得﹣3a=﹣,∴a=,∴抛物线的函数表达式为y=(x﹣3)(x+1)=x2﹣x﹣;(2)①如图1,过点F作FN⊥DG,垂足为点N,在y=(x﹣3)(x+1)中,令y=0,得x1=3,x2=﹣1,∴B(3,0),设直线BC的解析式为y=mx﹣,将点B(3,0)代入y=mx﹣,得0=3m﹣,∴m=,∴直线BC的表达式为y=x﹣,∵抛物线y=(x﹣3)(x+1)的对称轴为x=1,∴D(1,0),∴CD==2,∴CD=BD=2,在Rt△COD 中,tan∠ODC=,∴∠ODC=60°,∠CDB=120°,∵△DGF∽△BDC,∴DG=FG,∠DGF=120°,设DG=FG=2m,在Rt△NGF中,∠NGF=60°,FG=2m,∴NG=m,NF=m,∴F(1+m,3m),将点F(1+m,3m)代入y=(x﹣3)(x+1)中,得m1=﹣(不合题意,舍去),m2=,∴点F(5,4),∵EF∥BC,∴EF的表达式为y=x+b,将点F(5,4),代入y=x+b,得4=×5+b,∴b=,∴k=,b=;②如图2,分别过点F、H、E作y轴的垂线,垂足分别为P、Q、S,联立,得点H(,),联立,得x2﹣3x﹣3﹣b=0,设点E、F的横坐标分别为x1,x2,则,由ES∥HQ∥FP,可得△MHQ∽△MES,△MHQ∽△MFP,∴==,==,∵﹣=,∴﹣=1,∴﹣=1,∴=﹣1,∴b=2.。
2020年四川省成都市六区县中考数学一诊试卷 (解析版)

2020年中考数学一诊试卷一、选择题1.如图所示,数轴的单位长度为1,且点B表示的数是2,那么点A表示的数是()A.1B.0C.﹣1D.﹣22.如图所示的几何体是由六个相同的小正方体搭成,则该几何体的俯视图为()A.B.C.D.3.2月14日下午,国务院联防联控机制就加大防控财税金融支持力度召开新闻发布会.会上,财政部应对疫情工作领导小组办公室主任、社会保障司司长符金陵透露,财政部建立了全国财政系统疫情防控经费的日报制度,实时跟踪各地方经费保障情况,截至2月13日各级财政共计支出了805.5亿元保障资金,其中805.5亿元用科学记数法表示正确的是()A.0.8055×1011元B.8.055×1010元C.8.055×102元D.80.55×109元4.下列运算正确的是()A.2m+n=2mn B.3a2b﹣2b=a2C.(﹣2m2n)3=﹣8m6n3D.(n﹣2)2=n2+45.如图,直线a∥b,将一块含30°角的直角三角尺按图中方式放置,其中点A和点B两点分别落在直线a和b上.若∠2=50°,则∠1的度数为()A.10°B.20°C.30°D.40°6.点(﹣3,1)关于y轴的对称点在反比例函数y=的图象上,则实数k的值为()A.3B.C.﹣3D.﹣7.下列关于分式方程+1=的解的情况,判断正确的是()A.x=1.5B.x=﹣0.5C.x=0.5D.无解8.为全力抗战疫情,响应政府“停课不停学”号召,某市教育局发布关于疫情防控期间开展在线课程教学辅导答疑的通知:从2月10日开始,全市中小学按照教学计划,开展在线课程教学辅导和答疑,提高了同学们在线学习的质效.随机抽查了某中学九年级5名学生一周在线学习的时长分别为:17,18,19,20,21,(单位:时)则这5名学生一周在线学习时间的方差(单位:时2)为()A.2B.19C.10D.9.如图,△ABC内接于⊙O,∠A=60°,OM⊥BC于点M,若OM=2,则的长为()A.4πB.πC.πD.π10.已知抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=﹣2,与x轴的一个交点坐标为(﹣4,0),其部分图象如图所示,下列结论:①当x<0时,y随x增大而增大;②抛物线一定过原点;③方程ax2+bx+c=0(a≠0)的解为x=0或x=﹣4;④当﹣4<x<0时,ax2+bx+c>0;⑤a﹣b+c<0.其中结论错误的个数有()个A.1B.2C.3D.4二、填空题(每小题4分,共16分)11.代数式中,实数m的取值范围是.12.如图,菱形ABCD的周长是12,∠ABC=120°,那么这个菱形的对角线BD的长是.13.已知点A(x1,y1),B(x2,y2)都在反比例函数y=(k<0)的图象上,且y1<0<y2,则x1与x2的大小关系是.14.如图,在△ABC中,AB=BC,以点A为圆心,AC长为半径画弧,交BC于点C和点D,再分别以点C,D为圆心,大于CD长为半径画弧,两弧相交于点E,作射线AE 交BC于点M,若CM=1,BD=3,则sin B=.三、解答题(本大题共小题,共54分,答题应写出文字说明、证明过程或演算步骤)15.(1)计算:(﹣π)0+2﹣2﹣2cos45°+|1﹣|.(2)解不等式组,并写出不等式组的整数解.16.先化简,再求值:÷(+m﹣3),其中m =﹣1.17.某社区为了加强社区居民对病毒防护知识的了解,通过微信群宣传病毒的防护知识,并鼓励社区居民在线参与作答《2020年病毒防治全国统一考试(全国卷)》试卷(满分100分),社区管理员随机从甲、乙两个小区各抽取20名人员的答卷成绩,并对他们的成绩(单位:分)进行统计、分析,过程如下:收集数据甲小区:80 85 90 95 90 95 90 65 75 10090 70 95 90 80 80 90 95 60 100乙小区:60 80 95 80 90 65 80 85 85 10080 95 90 80 90 70 80 90 75 100整理数据成绩x(分)小区60≤x≤70 70<x≤80 80<x≤9090<x≤100甲小区3476乙小区3764分析数据数据名称计量小区平均数中位数众数甲小区85.7590b乙小区83.5a80应用数据(1)填空:a=b=;(2)若乙小区共有1200人参与答卷,请估计乙小区成绩大于90分的人数;(3)社区管理人员看完统计数据,认为甲小区对病毒防护知识掌握更好,请你写出社区管理人员的理由;为了更好地宣传病毒防护知识,社区管理人员决定从甲、乙小区的4个满分试卷中随机抽取两份试卷对小区居民进行网络宣传讲解培训,请用列表格或画树状图的方法求出甲、乙小区各抽到一份满分试卷的概率.18.我国第一艘国产航空母舰山东舰2019年12月17日在海南三亚某军港交付海军,中国海军正式迈入双航母时代.如图,在一次海上巡航任务中,山东舰由西向东航行,到达A处时,测得小岛C位于它的北偏东54°方向,再航行一段距离到达B处,测得小岛C 位于它的北偏东30°方向,且与山东舰相距30海里.求山东舰从A到B航行了多少海里?(精确到0.1)参考数据:sin54°=0.81,cos54°=0.59,tan54°=1.38,≈1.73.19.如图,在平面直角坐标系xOy中,一次函数y=﹣x﹣5和y=2x的图象相交于点A,反比例函数y=的图象经过点A.(1)求反比例函数的解析式;(2)将直线y=﹣x﹣5,沿y轴正方向向上平移m(m>0)个单位长度得到的新直线l与反比例函数y=(x<0)的图象只有一个公共点,求新直线l的函数表达式.20.如图,AB是⊙O的直径,CD是⊙O的一条弦,=,CO的延长线交⊙O于点E,交BD的延长线于点F,连接FA,且恰好FA∥CD,连接BE交CD于点P,延长BE 交FA于点G,连接DE.(1)求证:FA是⊙O的切线;(2)求证:点G是FA的中点;(3)当⊙O的半径为6时,求tan∠FBE的值.一、填空题(每小题4分,共20分)21.比较大小:(填“>”“<”或“=”).22.某商场为了吸引顾客,设立了一个可以自由转动的转盘(如图,转盘被等分成20个扇形,并规定:顾客每购买100元的商品,就能获得一次转动转盘的机会.如果转盘停止后,指针正好对准红色、黄色、绿色区域(如果指针正对分格线重转),那么顾客就可以分别获得价值相当于100元,50元,20元的购物券.则顾客每次转转盘的平均收益为元.23.已知关于x的方程x2﹣(3+2a)x+a2=0的两个实数根为x1,x2,且x1x2﹣5=x1+x2,则a的值为.24.如图,在平面直角坐标系xOy中,等边△OAB的面积为,边AB交y轴于点C,且AC=2BC,反比例函数y=(x<0)的图象经过点A.则反比例函数的解析式为.25.在平面直角坐标系xOy中,直线l:y=kx﹣1(k≠0)与直线x=﹣k,y=﹣k分别交于点A,B.直线x=﹣k与y=﹣k交于点C.记线段AB,BC,AC围成的区域(不含边界)为W;横,纵坐标都是整数的点叫做整点.(1)当k=﹣2时,区域W内的整点个数为;(2)若区域W内没有整点,则k的取值范围是.二、解答题(本大题共3小题,共30分.其中26题8分,27题10分,28题12分)26.某网店专售一品牌牙膏,其成本为22元/支,销售中发现,该商品每天的销售量y(支)与销售单价x(元/支)之间存在如图所示的关系.(1)请求出y与x之间的函数关系式;(2)该品牌牙膏销售单价定为多少元时,每天销售利润最大?最大利润是多少元?(3)在武汉爆发“病毒”疫情期间,该网店店主决定从每天获得的利润中抽出100元捐赠给武汉,为了保证捐款后每天剩余的利润不低于350元,在抗“病毒”疫情期间,市场监督管理局加大了对线上、线下商品销售的执法力度,对商品售价超过成本价的20%的商家进行处罚,请你给该网店店主提供一个合理化的销售单价范围.27.如图,在正方形BCD中,E是AD边上一点,连接BE,过A作AF⊥BE于P,交CD 于F.(1)如图1,连接BF,当AE=1,AD=4时,求BF的长;(2)如图2,对角线AC,BD交于点O.连接OP,若DE=2AE=4,求OP的长;(3)如图3,对角线AC,BD交于点O.连接OP,DP,若DP⊥PO,试探索DP与BP 的数量关系,并说明理由.28.如图1所示,在平面直角坐标系xOy中,直线y=x﹣4与x轴交于点A,与y轴交于点B,抛物线y=x2+bx+c经过A,B两点,与x轴的另一交点为点C.(1)求抛物线的函数表达式;(2)点M为直线AB下方抛物线上一动点.①如图2所示,直线CM交线段AB于点N,求的最小值;②如图3所示,连接BM过点M作MD⊥AB于D,是否存在点M,使得△BMD中的某个角恰好等于∠CAB的2倍?若存在,求点M的坐标;若不存在,请说明理由.参考答案一、选择题(每小题3分,共30分.下列各小题给出的四个选项中,只有一个符合题目要求)1.如图所示,数轴的单位长度为1,且点B表示的数是2,那么点A表示的数是()A.1B.0C.﹣1D.﹣2【分析】根据数轴的单位长度为1,点A在点B的左侧距离点B4个单位长度,直接计算即可.解:点A在点B的左侧距离点B4个单位长度,∴点A表示的数为:2﹣4=﹣2,故选:D.2.如图所示的几何体是由六个相同的小正方体搭成,则该几何体的俯视图为()A.B.C.D.【分析】根据从上边看得到的图形是俯视图,可得答案.解:从上边看第一列是两个小正方形,第二列上层是一个小正方形,第三列上层是一个小正方形,故选:C.3.2月14日下午,国务院联防联控机制就加大疫情防控财税金融支持力度召开新闻发布会.会上,财政部应对疫情工作领导小组办公室主任、社会保障司司长符金陵透露,财政部建立了全国财政系统疫情防控经费的日报制度,实时跟踪各地方经费保障情况,截至2月13日各级财政共计支出了805.5亿元保障资金,其中805.5亿元用科学记数法表示正确的是()A.0.8055×1011元B.8.055×1010元C.8.055×102元D.80.55×109元【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正数;当原数的绝对值<1时,n是负数.解:805.5亿元用科学记数法表示正确的是8.055×1010元.故选:B.4.下列运算正确的是()A.2m+n=2mn B.3a2b﹣2b=a2C.(﹣2m2n)3=﹣8m6n3D.(n﹣2)2=n2+4【分析】直接利用合并同类项法则、积的乘方运算法则、完全平方公式计算得出答案.解:A、2m与n不是同类项,不能合并,原计算错误,故此选项不符合题意;B、3a2b与2b不是同类项,不能合并,原计算错误,故此选项不符合题意;C、(﹣2m2n)3=﹣8m6n3,原计算正确,故此选项符合题意;D、(n﹣2)2=n2﹣4n+4,原计算错误,故此选项不符合题意;故选:C.5.如图,直线a∥b,将一块含30°角的直角三角尺按图中方式放置,其中点A和点B两点分别落在直线a和b上.若∠2=50°,则∠1的度数为()A.10°B.20°C.30°D.40°【分析】根据平行线的性质即可得到结论.解:∵直线a∥b,∠2=50°,∴∠1+90°+∠2+30°=180°,即∠1+90°+50°+30°=180°,解得∠1=10°.故选:A.6.点(﹣3,1)关于y轴的对称点在反比例函数y=的图象上,则实数k的值为()A.3B.C.﹣3D.﹣【分析】先根据关于y轴对称的点的坐标特点求出点(﹣3,1)关于y轴的对称点的坐标,代入反比例函数y=即可得出k的值.解:∵点(﹣3,1)关于y轴的对称点为(3,1),∴1=,解得k=3.故选:A.7.下列关于分式方程+1=的解的情况,判断正确的是()A.x=1.5B.x=﹣0.5C.x=0.5D.无解【分析】根据分式方程的解法即可求出答案.解:∵=,∴=,∴(x﹣1)(2﹣4x)=2x﹣1,∴4x2﹣4x+1=0,∴(2x﹣1)2=0,∴x=,经检验,x=不是原方程的解,故选:D.8.为全力抗战疫情,响应政府“停课不停学”号召,某市教育局发布关于疫情防控期间开展在线课程教学辅导答疑的通知:从2月10日开始,全市中小学按照教学计划,开展在线课程教学辅导和答疑,提高了同学们在线学习的质效.随机抽查了某中学九年级5名学生一周在线学习的时长分别为:17,18,19,20,21,(单位:时)则这5名学生一周在线学习时间的方差(单位:时2)为()A.2B.19C.10D.【分析】根据平均数的计算公式先求出这组数据的平均数,再代入方差公式S2=[(x1﹣)2+(x2﹣)2+…+(x n﹣)2],进行计算即可得出答案.解:这组数据的平均数是:(17+18+19+20+21)=19(时),则方差:S2=[(17﹣19)2+(18﹣19)2+(19﹣19)2+(20﹣19)2+(21﹣19)2]=2(时2);故选:A.9.如图,△ABC内接于⊙O,∠A=60°,OM⊥BC于点M,若OM=2,则的长为()A.4πB.πC.πD.π【分析】连接OB、OC,根据圆周角定理求出∠BOC,根据直角三角形的性质求出OB,根据弧长公式计算,得到答案.解:连接OB、OC,由圆周角定理得,∠BOC=2∠A=120°,∵OB=OC,∴∠OBC=(180°﹣120°)=30°,∴OB=2OM=4,∴的长==π,故选:C.10.已知抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=﹣2,与x轴的一个交点坐标为(﹣4,0),其部分图象如图所示,下列结论:①当x<0时,y随x增大而增大;②抛物线一定过原点;③方程ax2+bx+c=0(a≠0)的解为x=0或x=﹣4;④当﹣4<x<0时,ax2+bx+c>0;⑤a﹣b+c<0.其中结论错误的个数有()个A.1B.2C.3D.4【分析】①根据函数图象变化趋势进行解答;②根据对称轴,求出抛物线与x轴的另一个交点,便可判断;③根据抛物线与x轴的交点横坐标进行判断;④根据﹣4<x<0时,抛物线在x轴上方,进行判断;⑤根据当x=﹣1时,y的函数值的位置进行判断.解:①由函数图象可知,当﹣2<x<0时,y随x增大而减小,则此小题结论错误;②∵对称轴为直线x=﹣2,与x轴的一个交点坐标为(﹣4,0),∴另个交点为(0,0),即抛物线一定过原点,则此小题结论正确;③∵抛物线与x轴交于(﹣4,0)和(0,0),∴方程ax2+bx+c=0(a≠0)的解为x=0或x=﹣4,则此小题结论正确;④由函数图象可知,当﹣4<x<0时,抛物线在x轴上方,即ax2+bx+c>0,则此小题结论正确;⑤则函数图象可知,当x=﹣1时,y=a﹣b+c>0,则此小题结论错误;故选:B.二、填空题(每小题4分,共16分)11.代数式中,实数m的取值范围是m≥﹣.【分析】二次根式的被开方数是非负数,即2m+1≥0.解:由题意,得2m+1≥0.解得m≥﹣.故答案是:m≥﹣.12.如图,菱形ABCD的周长是12,∠ABC=120°,那么这个菱形的对角线BD的长是3.【分析】根据∠ABC=120°,而AB=AD,易证△BAD是等边三角形,从而可求BD 的长.解:∵四边形ABCD是菱形,BD是对角线,∴AB=BC=CD=AD,AD∥BC,∵∠ABC=120°,∴∠A=60°,∴△BAD是等边三角形,∴AB=BD=AD,∵菱形ABCD的周长是12,∴AB=3,∴BD=3,故答案为:3.13.已知点A(x1,y1),B(x2,y2)都在反比例函数y=(k<0)的图象上,且y1<0<y2,则x1与x2的大小关系是x1>x2.【分析】先判断出点A、B在第三象限,再根据反比例函数的增减性判断.解:∵k<0,y1<0<y2,∴点A在第四象限,点B在第二象限,∴x1>x2.故答案为x1>x2.14.如图,在△ABC中,AB=BC,以点A为圆心,AC长为半径画弧,交BC于点C和点D,再分别以点C,D为圆心,大于CD长为半径画弧,两弧相交于点E,作射线AE 交BC于点M,若CM=1,BD=3,则sin B=.【分析】连接AD,利用等腰三角形的性质得出DM=MC,进而利用直角三角形的解法解答即可.解:连接AD,由作图可知,AD=AC,AM是∠DAC的角平分线,∴AM⊥DC,DM=MC=1,∵BD=3,∴BM=3+1=4,AB=3+2=5=BC,∴AM=,∴sin B=,故答案为:.三、解答题(本大题共小题,共54分,答题应写出文字说明、证明过程或演算步骤)15.(1)计算:(﹣π)0+2﹣2﹣2cos45°+|1﹣|.(2)解不等式组,并写出不等式组的整数解.【分析】(1)原式利用零指数幂法则,负指数幂的法则,特殊角的三角函数、绝对值的意义计算即可得到结果;(2)先求得两个不等式的解集,再在数轴上得出不等式组的整数解.解:(1)原式=1+﹣2×+2﹣1=1+﹣+2﹣1=+;(2)解不等式①得x>﹣1;解不等式②得x≤1;∴不等式组的解集为﹣1<x≤1,∴不等式组的整数解为0,1.16.先化简,再求值:÷(+m﹣3),其中m=﹣1.【分析】根据分式的加法和除法可以化简题目中的式子,然后将m的值代入化简后的式子即可解答本题.解:÷(+m﹣3)====,当m=﹣1时,原式==.17.某社区为了加强社区居民对病毒防护知识的了解,通过微信群宣传病毒的防护知识,并鼓励社区居民在线参与作答《2020年病毒防治全国统一考试(全国卷)》试卷(满分100分),社区管理员随机从甲、乙两个小区各抽取20名人员的答卷成绩,并对他们的成绩(单位:分)进行统计、分析,过程如下:收集数据甲小区:80 85 90 95 90 95 90 65 75 10090 70 95 90 80 80 90 95 60 100乙小区:60 80 95 80 90 65 80 85 85 10080 95 90 80 90 70 80 90 75 100整理数据成绩x(分)小区60≤x≤70 70<x≤80 80<x≤9090<x≤100甲小区3476乙小区3764分析数据数据名称计量小区平均数中位数众数甲小区85.7590b乙小区83.5a80应用数据(1)填空:a=82.5b=90;(2)若乙小区共有1200人参与答卷,请估计乙小区成绩大于90分的人数;(3)社区管理人员看完统计数据,认为甲小区对病毒防护知识掌握更好,请你写出社区管理人员的理由;为了更好地宣传病毒防护知识,社区管理人员决定从甲、乙小区的4个满分试卷中随机抽取两份试卷对小区居民进行网络宣传讲解培训,请用列表格或画树状图的方法求出甲、乙小区各抽到一份满分试卷的概率.【分析】(1)根据中位数和众数的定义即可求得a、b的值;(2)用乙小区总人数乘以乙小区成绩大于90分的人数所占的百分比即可;(3)从平均数,中位数,众数三方面进行分析,得出甲小区的居民对病毒防护知识掌握更好些;根据题意画出树状图得出所有等情况数和甲、乙小区各抽到一份满分试卷的情况数,然后根据概率公式即可得出答案.解:(1)把乙小区的数据从小到大排列,则中位数a==82.5;∵甲小区中90出现了6次,出现的次数最多,∴甲小区的众数b=90;故答案为:82.5,90;(2)根据题意得:1200×=240(人),答:乙小区成绩大于90分的人数为240人;(3)因为从试卷得分的平均数,中位数,众数来看都是甲小区的试卷分数大于乙小区的试卷分数,所以甲小区的居民对病毒防护知识掌握更好些;根据题意列表如下:甲1甲2乙1乙2甲1(甲2,甲1)(乙1,甲1)(乙2,甲1)甲2(甲1,甲2)(乙1,甲2)(乙2,甲2)乙1(甲1,乙1)(甲2,乙1)(乙2,乙1)乙2(甲1,乙2)(甲2,乙2)(乙1,乙2)由表可知共有12种等可能情况,其中满足条件的有8种,所以P(甲、乙小区各抽到一份满分试卷)==.18.我国第一艘国产航空母舰山东舰2019年12月17日在海南三亚某军港交付海军,中国海军正式迈入双航母时代.如图,在一次海上巡航任务中,山东舰由西向东航行,到达A处时,测得小岛C位于它的北偏东54°方向,再航行一段距离到达B处,测得小岛C 位于它的北偏东30°方向,且与山东舰相距30海里.求山东舰从A到B航行了多少海里?(精确到0.1)参考数据:sin54°=0.81,cos54°=0.59,tan54°=1.38,≈1.73.【分析】作CD⊥AB交其延长线于点D,由∠BCD=30°,∠BDC=90°,BC=30知BD=15,CD=15,再由tan∠ACD=求得AD=CD tan∠ACD=CD•tan45°≈35.81(海里),根据AB=AD﹣BD求解可得答案.解:过C作CD⊥AB交其延长线于点D,由题可知∠BCD=30°,∠ACD=54°,在Rt△BCD中,∵∠BCD=30°,∠BDC=90°,BC=30,∴BD=15,CD=15,在Rt△ACD中,∵∠ACD=54°,∠BDC=90°,CD=15,tan∠ACD=,∴AD=CD tan∠ACD=CD•tan45°≈1.38×15×1.73≈35.81(海里),∴AB=AD﹣BD=35.81﹣15=20.81≈20.8(海里),答:山东舰从A到B航行约20.8海里.19.如图,在平面直角坐标系xOy中,一次函数y=﹣x﹣5和y=2x的图象相交于点A,反比例函数y=的图象经过点A.(1)求反比例函数的解析式;(2)将直线y=﹣x﹣5,沿y轴正方向向上平移m(m>0)个单位长度得到的新直线l与反比例函数y=(x<0)的图象只有一个公共点,求新直线l的函数表达式.【分析】(1)两直线解析式联立组成方程组,解方程组求得A的坐标,然后根据待定系数法即可求得反比例函数的解析式;(2)据题意设直线l函数表达式为:y=﹣﹣5+m,然后解,消去y整理得﹣2+(m﹣5)x﹣8=0,根据题意有△=(m﹣5)2﹣4×(﹣)×(﹣8)=0,解得m=1,即可求得新直线l的函数表达式.【解答】(1)解:将解析式联立得解之得,∴点A(﹣2,﹣4),∵反比例函数y=的图象经过点A.∴﹣4=,k=8,∴反比例函数解析式为y=;(2)据题意设直线l函数表达式为:y=﹣﹣5+m,将解析式联立得,消去y得﹣﹣5+m=,去分母得﹣2+(m﹣5)x﹣8=0,据题意有△=(m﹣5)2﹣4×(﹣)×(﹣8)=0,解之得m=1或9又反比例函数中x<0,∴m=1,∴新直线l函数表达式为:y=﹣﹣4.20.如图,AB是⊙O的直径,CD是⊙O的一条弦,=,CO的延长线交⊙O于点E,交BD的延长线于点F,连接FA,且恰好FA∥CD,连接BE交CD于点P,延长BE 交FA于点G,连接DE.(1)求证:FA是⊙O的切线;(2)求证:点G是FA的中点;(3)当⊙O的半径为6时,求tan∠FBE的值.【分析】(1)根据垂径定理得出AB⊥CD,根据FA∥CD求出FA⊥AB,根据切线的判定得出即可;(2)根据相似三角形的判定求出△GAB∽△GEA,△FEG∽△BFG,得出比例式,即可求出GF=GA;(3)根据FA∥CD得出比例式==,求出DP=HP,求出DE=BH,求出OH=DE=BE,求出OH和OH,解直角三角形求出即可.【解答】(1)证明:∵AB是⊙O的直径,CD是⊙O的一条弦,=,∴AB⊥CD,又∵FA∥CD,∴FA⊥AB,∵OA过O,∴FA是⊙O的切线;(2)证明:连接AE,∵AB是⊙O的直径,∴AE⊥BG,又∵FA⊥AB,∴∠GEA=∠BAG,又∵∠BGA=∠EGA,∴△GAB∽△GEA,∴=,∴GA2=GB×EG,∵FA∥CD,∴∠C=∠EFG,又∵∠C=∠FBE,∴∠EFG=∠FBE,又∵∠FGE=∠BGF,∴△FEG∽△BFG,∴=,∴GF2=GB×GE,∴GF=GA,∴G为AF的中点;(3)解:∵FA∥CD,∴==,又∵GF=GA,∴DP=HP,又∵CE是⊙O的直径,D在圆上,∴CD⊥DE,又∵AB⊥CD于点H,EO=OC,∴点H是CD的中点,AB∥DE,又∵DP=HP,∴DE=BH,又∵点O是CE中点,点H是CD的中点,∴OH=DE=BE,又∵⊙O的半径为6,∴OH=2,CH===4,∴tan∠FBE=tan C===.一、填空题(每小题4分,共20分)21.比较大小:>(填“>”“<”或“=”).【分析】先通分得出,再估算出的范围,最后比较分子大小,即可得出答案.解:∵2<<3,∴8<4<9,∴3<12﹣4<4,∴>.故答案是:>.22.某商场为了吸引顾客,设立了一个可以自由转动的转盘(如图,转盘被等分成20个扇形,并规定:顾客每购买100元的商品,就能获得一次转动转盘的机会.如果转盘停止后,指针正好对准红色、黄色、绿色区域(如果指针正对分格线重转),那么顾客就可以分别获得价值相当于100元,50元,20元的购物券.则顾客每次转转盘的平均收益为14元.【分析】直接利用概率公式求解可得.解:100×+50×+20×=14(元),故答案为:14.23.已知关于x的方程x2﹣(3+2a)x+a2=0的两个实数根为x1,x2,且x1x2﹣5=x1+x2,则a的值为4.【分析】先利用判别式的意义得到a≥﹣,再根据根与系数的关系得到x1+x2=3+2a,x1x2=a2,则利用x1x2﹣5=x1+x2得到a2﹣5=3+2a,然后解关于a的方程确定满足条件的a的值.解:根据题意得△=(3+2a)2﹣4a2≥0,解得a≥﹣,∵x1+x2=3+2a,x1x2=a2,而x1x2﹣5=x1+x2,∴a2﹣5=3+2a,整理得a2﹣2a﹣8=0,解得a1=4,a2=﹣2(舍去),∴a的值为4.故答案为4.24.如图,在平面直角坐标系xOy中,等边△OAB的面积为,边AB交y轴于点C,且AC=2BC,反比例函数y=(x<0)的图象经过点A.则反比例函数的解析式为y =﹣.【分析】作OD⊥AB于D,AE⊥OC于E,根据三角形面积求得等边三角形的边长为,根据题意求得BC=,AC=,CD=,根据勾股定理求得OC,然后证得△ACE∽△OCD,根据相似三角形的性质求得AE=,CE=,进而求得OE=2,即可求得A(﹣,2),代入y=(x<0)求得k的值,得到反比例函数的解析式.解:作OD⊥AB于D,AE⊥OC于E,设等边三角形OAB的边长为a,∵等边△OAB中,∠OAB=60°,∴OD=OA=a,BD=a,∵等边△OAB的面积为,∴AB•OD=,即=,∴a=,∵AC=2BC,∴BC=a=,AC=a=,∴CD=BD﹣BD=﹣=,∴OC===,∵∠ACE=∠OCD,∠AEC=∠ODC=90°,∴△ACE∽△OCD,∴==,==,∴AE=,CE=,∴OE=OC﹣CE=﹣=2,∴A(﹣,2),∵反比例函数y=(x<0)的图象经过点A.∴k=﹣×2=﹣2,∴反比例函数的解析式为y=﹣,故答案为y=﹣25.在平面直角坐标系xOy中,直线l:y=kx﹣1(k≠0)与直线x=﹣k,y=﹣k分别交于点A,B.直线x=﹣k与y=﹣k交于点C.记线段AB,BC,AC围成的区域(不含边界)为W;横,纵坐标都是整数的点叫做整点.(1)当k=﹣2时,区域W内的整点个数为6;(2)若区域W内没有整点,则k的取值范围是0<k≤1或k=2.【分析】(1)将k=﹣2代入解析式,求得A、B、C三点坐标,并作出图形,便可求得W区域内的整数点个数;(2)分三种情况解答:当k<0时,区域内必含有坐标原点,故不符合题意;当0<k≤1时,W内点的横坐标在k到0之间,无整点,进而得0<k≤1时,W内无整点;当1<k≤2时,W内可能存在的整数点横坐标只能为﹣1,此时边界上两点坐标为(﹣1,﹣k)和(﹣1,﹣k﹣1),当k不为整数时,其上必有整点,但k=2时,只有两个边界点为整点,故W内无整点;当k>2时,横坐标为﹣2的边界点为(﹣2,﹣k)和(﹣2,﹣2k﹣1),线段长度为k+1>3,故必有整点.解:(1)直线l:y=kx﹣1=﹣2x﹣1,直线x=﹣k=2,y=﹣k=2,∴A(2,﹣5),B(﹣,2),C(2,2),在W区域内有6个整数点:(0,0),(0,1),(1,0),(1,1),(1,﹣1),(1,﹣2),故答案为6;(2)当k<0时,则x=﹣k>0,y=﹣k>0,∴区域内必含有坐标原点,故不符合题意;当0<k≤1时,W内点的横坐标在﹣1到0之间,不存在整点,故0<k≤1时W内无整点;当1<k≤2时,W内可能存在的整数点横坐标只能为﹣1,此时边界上两点坐标为M(﹣1,﹣k)和N(﹣1,﹣k﹣1),MN=1,此时当k不为整数时,其上必有整点,但k=2时,只有两个边界点为整点,故W内无整点;当k>2时,横坐标为﹣2的边界点为(﹣2,﹣k)和(﹣2,﹣2k﹣1),线段长度为k+1>3,故必有整点.综上所述:0<k≤1或k=2时,W内没有整点.故答案为:0<k≤1或k=2.二、解答题(本大题共3小题,共30分.其中26题8分,27题10分,28题12分)26.某网店专售一品牌牙膏,其成本为22元/支,销售中发现,该商品每天的销售量y(支)与销售单价x(元/支)之间存在如图所示的关系.(1)请求出y与x之间的函数关系式;(2)该品牌牙膏销售单价定为多少元时,每天销售利润最大?最大利润是多少元?(3)在武汉爆发“病毒”疫情期间,该网店店主决定从每天获得的利润中抽出100元捐赠给武汉,为了保证捐款后每天剩余的利润不低于350元,在抗“病毒”疫情期间,市场监督管理局加大了对线上、线下商品销售的执法力度,对商品售价超过成本价的20%的商家进行处罚,请你给该网店店主提供一个合理化的销售单价范围.【分析】(1)利用待定系数法求解可得;(2)设每天的利润为W元,根据“总利润=每支利润×每天销售量”得出函数解析式,配方成顶点式后利用二次函数的性质求解可得;(3)根据题意列出方程﹣10x2+620x﹣8800﹣100=350,解之求出x的值,再根据二次函数的性质得出25≤x≤37,结合x≤22×(1+20%)可得答案.解:(1)根据题意设y=kx+b(k≠0),将(30,100)、(35,50)代入得,解得,∴y与x之间的关系式为y=﹣10x+400;(2)设每天的利润为W元,则W=(x﹣22)y=(x﹣22)(﹣10x+400)=﹣10x2+620x﹣8800=﹣10(x﹣31)2+810,∴销售单价定为31元时,每天最大利润为810元.(3)﹣10x2+620x﹣8800﹣100=350,解得x=25或x=37,结合图象和二次函数的特点得出25≤x≤37,又x≤22×(1+20%),综上可得25≤x≤26.4,∴按要求网店店主的销售单价范围为大于或等于25元且小于或等于26.4元.27.如图,在正方形BCD中,E是AD边上一点,连接BE,过A作AF⊥BE于P,交CD 于F.(1)如图1,连接BF,当AE=1,AD=4时,求BF的长;(2)如图2,对角线AC,BD交于点O.连接OP,若DE=2AE=4,求OP的长;(3)如图3,对角线AC,BD交于点O.连接OP,DP,若DP⊥PO,试探索DP与BP 的数量关系,并说明理由.【分析】(1)证明△ABE≌△DAF(ASA),推出DF=AE=2,求出CF利用勾股定理即可解决问题.(2)证明△OPB∽△EDB,可得=解决问题.(3)证明△DEP∽△BOP,可得=,再证明OB=DE即可解决问题.【解答】(1)解:如图1中,∵正方形ABCD,∴∠DAB=∠D=∠C=90°,AB=BC=DC=AD=4∵AF⊥BE于P,∴∠EBA+∠FAB=90°,又∠DAF+FAB=90°,∴∠EBA=∠DAF,又∠DAB=∠D,AB=DA,∴△ABE≌△DAF(ASA),∴DF=AE=1,∵AD=CD=BC=4,∴CF=DC﹣DF=3,在Rt△BFC中,BF===5.(2)如图2中,∵正方形ABCD对角线AC,BD相交于点O,∴∠CAB=∠ADB=45°,∠AOB=90°,∵AF⊥BE于P,∴∠APB=∠AOB=90°,∴A,P,O,B四点共圆,∴∠OPB=∠OAB=45°(也可由相似证得),∴∠OPB=∠ADB,又∠OBP=∠DBE,∴△OPB∽△EDB,可得=,又DE=2AE=4,可得AD=AB=6,BD=6,OB=3,BE=2,∴=,∴OP=.(3)结论:DP=BP.理由如下:如图3中,连接EF.∵DP⊥OP,由(2)问可知∠APB=∠AOB=90°,∴A,P,O,B四点共圆,∴∠OPB=∠OAB=45°,∴∠DPE=∠OPB=45°,又A,P,O,B四点共圆有∠POA=∠PBA,∴∠DEP=∠DAB+∠PBA=∠AOB+∠POA=∠POB,又∠DPE=∠OPB,∴△DEP∽△BOP,∴=,∵AF⊥BE,∠EDF=90°,∴∠EDF+∠EPF=180°,∴D,E,P,F四点共圆,∴∠DFE=∠DPE=45°,∴∠DEF=∠DFE=45°,∵DE=DF,又AE=DF,于是AE=DE=AD,OB=BD=×AD=DE,∴==,∴DP=BP.28.如图1所示,在平面直角坐标系xOy中,直线y=x﹣4与x轴交于点A,与y轴交于点B,抛物线y=x2+bx+c经过A,B两点,与x轴的另一交点为点C.(1)求抛物线的函数表达式;(2)点M为直线AB下方抛物线上一动点.①如图2所示,直线CM交线段AB于点N,求的最小值;②如图3所示,连接BM过点M作MD⊥AB于D,是否存在点M,使得△BMD中的某个角恰好等于∠CAB的2倍?若存在,求点M的坐标;若不存在,请说明理由.【分析】(1)求出点A、B的坐标,将A、B两点坐标代入y=x2+bx+c,即可求解;。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初2020届成都市青羊区中考数学九年级一诊数学试卷(考试时间:120分钟满分:150分)A卷(共100分)一、选择题(本大题共10个小题,每小题3分,共30分)1.(﹣2)×=()A.﹣2 B.1 C.﹣1 D.2.用配方法解一元二次方程x2+4x﹣3=0时,原方程可变形为()A.(x+2)2=1 B.(x+2)2=7 C.(x+2)2=13 D.(x+2)2=193.下列几何体的主视图是三角形的是()A.B.C.D.4.一个盒子装有除颜色外其它均相同的2个红球和3个白球,现从中任取2个球,则取到的是一个红球、一个白球的概率为()A.B.C.D.5.下列性质中,菱形具有而矩形不一定具有的是()A.对角线相等B.对角线互相平分C.对角线互相垂直D.邻边互相垂直6.如图,在△ABC中,AC=1,BC=2,AB=,则sinB的值是()A.B.C.2 D.7.(如图,A、B、C是半径为3的⊙O上的三点,已知∠C=30°,则弦AB的长为()A.3 B.6 C.3.5 D.1.58.若点A(﹣5,y1),B(﹣3,y2),C(2,y3)在反比例函数y=的图象上,则y1,y2,y3的大小关系是()A.y1<y3<y2B.y1<y2<y3C.y3<y2<y1D.y2<y1<y39.某种品牌运动服经过两次降价,每件零售价由560元降为315元,已知两次降价的百分率相同,求每次降价的百分率.设每次降价的百分率为x,下面所列的方程中正确的是()A.560(1+x)2=315 B.560(1﹣x)2=315C.560(1﹣2x)2=315 D.560(1﹣x2)=31510.如图,已知∠DAB=∠CAE,那么添加下列一个条件后,仍然无法判定△ABC∽△ADE的是()A.=B.=C.∠B=∠D D.∠C=∠AED二、填空题(本大题共4个小题,每小题4分,共16分)11.在△ABC中,若∠C=90°,cos∠A=,则∠A等于.12.方程2x﹣4=0的解也是关于x的方程x2+mx+2=0的一个解,则m的值为.13.如图,在△ABC中,已知∠ACB=130°,∠BAC=20°,BC=2,以点C为圆心,CB为半径的圆交AB于点D,则BD的长为.14.二次函数y=ax2+bx+c的图象如图,则点(,)在第象限.三、解答题(本大题共6个小题,共54分)15.(12分)(1)计算:﹣4sin45°+(2019﹣π)0﹣32(2)解方程:(x+5)(x+1)=2116.(6分)如图,点P是菱形ABCD的对角线BD上一点,连接CP并延长,交AD于E,交BA的延长线于点F.(1)求证:∠DCP=∠DAP;(2)如果PE=3,EF=5,求线段PC的长.17.(8分)为了解市民对全市创卫工作的满意程度,某中学数学兴趣小组在全市甲、乙两个区内进行了调查统计,将调查结果分为不满意,一般,满意,非常满意四类,回收、整理好全部问卷后,得到下列不完整的统计图.请结合图中信息,解决下列问题:(1)求此次调查中接受调查的人数.(2)求此次调查中结果为非常满意的人数.(3)兴趣小组准备从调查结果为不满意的4位市民中随机选择2位进行回访,已知4位市民中有2位来自甲区,另2位来自乙区,请用列表或用画树状图的方法求出选择的市民均来自甲区的概率.18.(8分)如图,一航船在A处测到北偏东60°的方向有一灯塔B,航船向东以每小时20海里的速度航行2小时到达C处,又测到灯塔B在北偏东15°的方向上.求此时航船与灯塔相距多少海里?(结果保留根号)19.(10分)如图,已知一次函数y1=kx+b的图象与x轴相交于点A,与反比例函数y2=相交于B(﹣1,5),C(,d)两点.(1)利用图中条件,求反比例和一次函数的解析式;(2)连接OB,OC,求△BOC的面积.20.(10分)如图,在Rt△ABC中,AB⊥BC,以AB为直径的圆交AC于点D,E是BC的中点,连接DE.(1)求证:DE是⊙O的切线;(2)设⊙O的半径为r,证明r2=AD•OE;(3)若DE=4,sinC=,求AD之长.B卷(50分)一、填空题(本大题5个小题,每小题4分,共20分)21.点P(a,b)是直线y=x﹣2上一点,则代数式a2﹣2ab+b2﹣1的值为.22.有五张正面分别标有数﹣7,0,1,2,5的不透明卡片,它们除数字不同外其余全部相同.现将它们背面朝上,洗匀后从中任取一张,将卡片上的数记为a,则使关于x的方程﹣2=有正整数解的概率为.23.如图,直线AB交双曲线y=于A、B两点,交x轴于点C,且B恰为线段AC的中点,连结OA.若S△OAC=,则k的值为.24.在平面直角坐标系中,A(1,0),B(0,),过点B作直线BC∥x轴,点P是直线BC上的一个动点,以AP为边在AP右侧作Rt△APQ,使∠APQ=90°,且AP:PQ=1:,连结AB、BQ,则△ABQ周长的最小值为.25.如图,在矩形ABCD中,AB=4,BC=6,点E为对角线BD的中点,点F在CB的延长线上,且BF=1,连接EF,过点E作EG⊥EF交BA的延长线于点G,连接GF并延长交DB的延长线于点H,则=.二、解答題(本大題共3个小題,共30分.解答题应写出必要的文字说明,证明过程或演算步骤)26.(8分)某厂按用户需求生产一种产品,成本每件20万元,规定每件售价不低于成本,且不高于40万元.经市场调查,每年的销售量y(件)与每件售价x(万元)满足一次函数关系,部分数据如下表:售价x(万元/件)25 30 35销售量y(件)50 40 30(1)求y与x之间的函数表达式;(2)设商品每年的总利润为W(万元),求W与x之间的函数表达式(利润=收入﹣成本);(3)试说明(2)中总利润W随售价x的变化而变化的情况,并指出售价为多少万元时获得最大利涧,最大利润是多少?27.(10分)(1)如图1,△ABC为等边三角形,点D、E分别为边AB、AC上的一点,将图形沿线段DE所在的直线翻折,使点A落在BC边上的点F处.求证:BF•CF=BD•CE.(2)如图2,按图1的翻折方式,若等边△ABC的边长为4,当DF:EF=3:2时,求sin∠DFB的值;(3)如图3,在Rt△ABC中,∠A=90°,∠ABC=30°,AC=2,点D是AB边上的中点,在BC的下方作射线BE,使得∠CBE=30°,点P是射线BE上一个动点,当∠DPC=60°时,求BP的长;28.(12分)如图,一次函数y=x+2的图象与坐标轴交于A、B两点,点C的坐标为(﹣1,0),二次函数y=ax2+bx+c的图象经过A、B、C三点.(1)求二次函数的解析式;(2)如图1,已知点D(1,n)在抛物线上,作射线BD,点Q为线段AB上一点,过点Q作QM⊥y轴于点M,作QN⊥BD于点M,过Q作QP∥y轴交抛物线于点P,当QM与QN的积最大时,求点P的坐标;(3)在(2)的条件下,连接AP,若点E为抛物线上一点,且满足∠APE=∠ABO,求点E的坐标.参考答案与试题解析一、选择题(本大题共10个小题,每小题3分,共30分)1.【解答】解:(﹣2)×=﹣1,故选:C.2.【解答】解:x2+4x=3,x2+4x+4=7,(x+2)2=7.故选:B.3.【解答】解:A、圆柱的主视图是矩形,故此选项错误;B、圆锥的主视图是三角形,故此选项正确;C、球的主视图是圆,故此选项错误;D、正方体的主视图是正方形,故此选项错误;故选:B.4.【解答】解:画树状图得:∵共有20种等可能的结果,取到的是一个红球、一个白球的有12种情况,∴取到的是一个红球、一个白球的概率为:=.故选:C.5.【解答】解:(A)对角线相等是矩形具有的性质,菱形不一定具有;(B)对角线互相平分是菱形和矩形共有的性质;(C)对角线互相垂直是菱形具有的性质,矩形不一定具有;(D)邻边互相垂直是矩形具有的性质,菱形不一定具有.故选:C.6.【解答】解:∵在△ABC中,∠ACB=90°,AC=1,BC=2,AB=,∴sinB=.故选:B.7.【解答】解:∵∠C=30°,∴根据圆周角定理得:∠AOB=2∠C=60°,∵OA=OB=3,∴△AOB是等边三角形,∴AB=OA=3,故选:A.8.【解答】解:∵点A(﹣5,y1),B(﹣3,y2),C(2,y3)在反比例函数y=的图象上,∴A,B点在第三象限,C点在第一象限,每个图象上y随x的增大减小,∴y3一定最大,y1>y2,∴y2<y1<y3.故选:D.9.【解答】解:设每次降价的百分率为x,由题意得:560(1﹣x)2=315,故选:B.10.【解答】解:∵∠DAB=∠CAE,∴∠DAE=∠BAC,A、若,且∠DAE=∠BAC,无法判定△ABC∽△ADE,故选项A符合题意;B、若,且∠DAE=∠BAC,可判定△ABC∽△ADE,故选项B不符合题意;C、若∠B=∠D,且∠DAE=∠BAC,可判定△ABC∽△ADE,故选项C不符合题意;D、若∠C=∠AED,且∠DAE=∠BAC,可判定△ABC∽△ADE,故选项D不符合题意;故选:A.二、填空题(本大题共4个小题,每小题4分,共16分)11.【解答】解:∵在△ABC中,∠C=90°,cos∠A=,∴∠A=60°,故答案为:60°.12.【解答】解:2x﹣4=0,解得:x=2,把x=2代入方程x2+mx+2=0得:4+2m+2=0,解得:m=﹣3.故答案为:﹣3.13.【解答】解:如图,作CE⊥AB于E.∵∠B=180°﹣∠A﹣∠ACB=180°﹣20°﹣130°=30°,在Rt△BCE中,∵∠CEB=90°,∠B=30°,BC=2,∴CE=BC=1,BE=CE=,∵CE⊥BD,∴DE=EB,∴BD=2EB=2.故答案为2.14.【解答】解:∵抛物线的开口向上,∴a>0,∵对称轴在y轴左边,∴a,b同号,即b>0,∵抛物线与y轴的交点在负半轴,∴c<0,∴<0,<0,∴点(,)在第三象限.故答案是:三.三、解答题(本大题共6个小题,共54分)15.【解答】解:(1)原式=2﹣4×+1﹣9=2﹣2﹣8=﹣8;(2)方程整理,得:x2+6x﹣16=0,∵(x﹣2)(x+8)=0,∴x﹣2=0或x+8=0,解得x=2或x=﹣8.16.【解答】证明:(1)∵四边形ABCD是菱形,∴AD=CD,∠ADB=∠CDB,CD∥AB,∵AD=CD,∠ADB=∠CDB,且DP=DP,∴△ADP≌△CDP(SAS)∴AP=PC,∠DCP=∠DAP;(2)∵CD∥AB,∴∠DCP=∠F,且∠DCP=∠DAP,∴∠F=∠DAP,且∠APE=∠APF,∴△APE∽△FPA,∴,∴,∴AP=2,∴PC=2.17.【解答】解:(1)∵满意的有20人,占40%,∴此次调查中接受调查的人数:20÷40%=50(人);(2)此次调查中结果为非常满意的人数为:50﹣4﹣8﹣20=18(人);(3)画树状图得:∵共有12种等可能的结果,选择的市民均来自甲区的有2种情况,∴选择的市民均来自甲区的概率为:=.18.【解答】解:作CD⊥AB,垂足为点D.根据题意可得∠BAC=30°,∠ACB=105°,∴∠B=45°,∵AC=20×2=40(海里),∴DC=AC•sin30°=40×=20(海里),∴BC=DC÷sin45°=20÷=20(海里).答:此时航船与灯塔相距20海里.19.【解答】解:(1)将B(﹣1,5)代入y2=得,=5,解得c=﹣5,所以,反比例函数解析式为y=﹣,将点C(,d)代入y=﹣得d=﹣=﹣2,所以,点C的坐标为(,﹣2),将点B(﹣1,5),C(,﹣2)代入一次函数y1=kx+b得,,解得,所以,一次函数y1=﹣2x+3;(2)令y=0,则﹣2x+3=0,解得x=,所以,点A的坐标为(,0),所以,OA=,S△BOC=S△AOB+S△AOC,=××5+××2,=.20.【解答】(1)证明:连接OD、BD,∵AB为圆O的直径,∴∠BDA=90°,∴∠BDC=180°﹣90°=90°,∵E为BC的中点,∴DE=BC=BE,∴∠EBD=∠EDB,∵OD=OB,∴∠OBD=∠ODB,∵∠EBD+∠DBO=90°,∴∠EDB+∠ODB=90°,∴∠ODE=90°,∴DE是圆O的切线.(2)证明:如图,连接BD.由(1)知,∠ODE=∠ADB=90°,BD⊥AC.∵E是BC的中点,O是AB的中点,∴OE是△ABC的中位线,∴OE∥AC,∴OE⊥BD.∴OE∥AC,∴∠1=∠2.又∵∠1=∠A,∴∠A=∠2.即在△ADB与△ODE中,∠ADB=∠ODE,∠A=∠2,∴△ADB∽△ODE.∴=,即=.∴r2=AD•OE;(3)∵AB为⊙O的直径,∴∠ADB=∠BDC=90°,∵点E为BC的中点,∴BC=2DE=8,∵sinC=,∴设AB=3x,AC=5x,根据勾股定理得:(3x)2+82=(5x)2,解得x=2.则AC=10.由切割线定理可知:82=(10﹣AD)×10,解得,AD=3.6.一、填空题(本大题5个小题,每小题4分,共20分)21.【解答】解:∵点(a,b)在一次函数y=x﹣2上,∴b=a﹣2,即a﹣b=2,∴原式=(a﹣b)2﹣1=22﹣1=4﹣1=3.故答案为:3.22.【解答】解:﹣2=,解得:x=,∵分式方程的解为正整数,∴a+1>0,又∵x≠1,∴a≠5,∴a=0或a=1或a=2,∴使关于x的分式方程有正整数解的概率为.故答案为:.23.【解答】解:设A点坐标为(a,),C点坐标为(b,0),∵B恰为线段AC的中点,∴B点坐标为(,),∵B点在反比例函数图象上,∴•=k,∴b=3a,∵S△OAC=,∴b•=,∴•3a•=,∴k=.故答案为.24.【解答】解:设P(m,).作AM⊥BC于M,QN⊥BC于N.∵∠AMP=∠APQ=∠QNP=90°,∴∠APM+∠NPQ=90°,∠NPQ+∠PQN=90°,∴∠APM=∠PQN,∴△AMP∽△PNQ,∴===,∴==,∴PN=3,NQ=(m﹣1),∴Q(m+3,2﹣m),∴点Q的运动轨迹是y=﹣x+5,作点A关于直线y=﹣x+5的对称点A′,连接BA′交直线于Q′,连接AQ′,此时△ABQ′的周长最小.∵A′(7,2),B(0,),A(1,0),∴A′B==2,AB==2,∴△ABQ的周长的最小值=AQ′+BQ′+AB=A′Q′+BQ′+AB=A′B+AB=2+2,故答案为2+2.25.【解答】解:过点E作EM⊥BC于点M,过点E作EN⊥AB于点N,∴四边形ENBM是矩形,∵E是BD的中点,∴EM==2,EN=BM==3,∴MF=BF+BM=1+3=4,∴==2,∵EG⊥EF,∴∠GEF=90°,∴∠EGB=∠BFE,∴tan∠EGB=tan∠BFE,∴,∴GN=6,∴GB=GN+BN=6+2=8∵∠GEF=∠GBF=90°∴G,E,B,F四点共圆,∴∠BGF=∠BEF,∵∠EHF=∠GHB,∴△FEH∽△BGH,∴,∴.故答案为:.26.【解答】解:(1)设y与x之间的函数解析式为y=kx+b(k≠0),,解得,即y与x之间的函数表达式是y=﹣2x+100;(2)由题意可得,W=(x﹣20)(﹣2x+100)=﹣2x2+140x﹣2000,即W与x之间的函数表达式是W=﹣2x2+140x﹣2000;(3)∵W=﹣2x2+140x﹣2000=﹣2(x﹣35)2+450,20≤x≤40,∴当20≤x≤35时,W随x的增大而增大,当35≤x≤40时,W随x的增大而减小,当x=35时,W取得最大值,此时W=450,答:当20≤x≤35时,W随x的增大而增大,当35≤x≤40时,W随x的增大而减小,售价为35万元时获得最大利润,最大利润是450万元.27.【解答】(1)证明:∵△ABC是等边三角形,∠A=∠B=∠C=60°,∴∠BDF+∠BFD=180°﹣∠B=120°,由折叠知,∠DFE=∠A=60°,∴∠CFE+∠BFD=120°,∴∠BDF=∠CFE,∵∠B=∠C=60°,∴△BDF∽△CFE,∴,∴BF•CF=BD•CE;(2)解:如图2,设BD=3x(x>0),则AD=AB﹣BD=4﹣3x,由折叠知,DF=AD=4﹣3x,过点D作DH⊥BC于H,∴∠DHB=∠DHF=90°,∵∠B=60°,∴BH=x,DH=x,由(1)知,△BDF∽△CFE,∴=,∵DF:EF=3:2,∴=,∴CF=2x,∴BF=BC﹣CF=4﹣2x,∴HF=BF﹣BH=4﹣2x﹣x=4﹣x,在Rt△DHF中,DH2+HF2=DF2,∴(x)2+(4﹣x)2=(4﹣3x)2,∴x=0(舍)或x=,∴DH=,DF=4﹣3×=,∴sin∠DFB===;(3)如图3,在Rt△ABC中,AC=2,∠ABC=30°,∴BC=2AC=4,AB=AC=6,∵点D是AB的中点,∴BD=AB=3,过点C作BC的垂线交BP的延长线于Q,∴∠BCQ=90°,在Rt△BCQ中,∠CBE=30°,∴CQ==4,∴BQ=2CQ=8,∴∠BCQ=90°,∵∠CBE=30°,∴∠Q=90°﹣∠CBE=60°,∴∠DBP=∠ABC+∠CBE=60°=∠Q,∴∠CPQ+∠PCQ=120°,∵∠DPC=60°,∴∠BPD+∠CPQ=120°,∴∠BPD=∠PCQ,∴△BDP∽△QPC,∴=,∴,∴BP=2或BP=6.28.【解答】解:(1)一次函数y=x+2的图象与坐标轴交于A、B两点,则点A、B的坐标分别为:(0,2)、(4,0),则抛物线的表达式为:y=a(x﹣4)(x+1)=a(x2﹣3x﹣4),即﹣4a=2,解得:a=﹣,则抛物线的表达式为:y=﹣x2+x+2…①;(2)点D(1,3),点B(4,0),则BD所在的函数表达式为:y=﹣x+4;即直线BD的倾斜角为45°,则∠QGN=45°,QN=QG,设点Q(m,﹣m+2),则点G(m,﹣m+4),QM•QN=m×(﹣m+4+m﹣2)=(﹣m2+2m),当m=2时,QM与QN的积最大,则点P(2,3);(3)设:∠APE=∠ABO=∠α,则tan;①当PE在AP下方时,如图,由点A(0,2)、P(2,3)知,AP=,设AP与y轴的夹角为β,则tanβ=2,过点H作MH⊥PA交PA的延长线于点M,设:MA=x,则MH=2x,tan∠APH===tanα=,解得:x=,则AH=x=,则点H(0,),由点H、P的坐标得,直线PH的表达式为:y=x+…②,联立①②并解得:x=2(舍去)或﹣,故点E(﹣,﹣);②当PE在AP上方时,同理可得:点E(1,3);综上,点E的坐标为:(﹣,﹣)或E(1,3)。