2020版高考物理一轮复习第九章磁场第3课时课时作业
高考物理一轮复习成套课时练习 第九章第三单元电磁感应规律的综合应用课时作业 选修32

命 题 设 计难度题号 较易中等稍难单 一 目 标 电磁感应中的力学问题64、5电磁感应中的电路问题 1、2 电磁感应中的能量问题3、7、8综合 目标综合应用 9、10 11、12高考物理一轮复习成套课时练习 第九章第三单元电磁感应规律的综合应用课时作业 选修32一、选择题(本题共9小题,每小题7分,共63分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.(2010·六安模拟)如图1所示,有两根和水平方向成α角的光滑平行的金属轨道,上端接有可变电阻R ,下端足够长,空间有垂直于轨道平面的匀强磁场,磁感应强度为B .一根质量为m 的金属杆从轨道上由静止滑下,经过足够长的时间后,金属杆的速度会趋近于一个最大速度v m ,则 ( ) A .如果B 增大,v m 将变大 B .如果α变大,v m 将变大 C .如果R 变大,v m 将变小 D .如果m 变小,v m 将变大解析:以金属杆为研究对象,受力如图所示. 根据牛顿第二定律得mg sin α-F 安=ma ,其中F 安=B 2L 2vR.当a →0时,v →v m , 解得v m =mgR sin αB 2L 2, 结合此式分析即得B 选项正确. 答案:B目标2.如图2所示,两光滑平行金属导轨间距为L ,直导线MN 垂直跨在导轨上,且与导轨接触良好,整个装置处于垂直纸面向里的匀强磁场中,磁感应强度为B .电容器的电容为C ,除电阻R 外,导轨和导线的电阻均不计.现给导线MN 一初速度,使导线MN 向右运动,当电路稳定后,MN 以速度v 向右做匀速运动,则 ( ) A .电容器两端的电压为零 B .电阻两端的电压为BLv C .电容器所带电荷量为CBLvD .为保持MN 匀速运动,需对其施加的拉力大小为B 2L 2v R解析:当导线MN 匀速向右运动时,导线MN 产生的感应电动势恒定,稳定后,电容器既不充电也不放电,无电流产生,故电阻两端无电压,电容器两极板间电压U =E =BLv ,所带电荷量Q =CU =CBLv ,故A 、B 错,C 对;MN 匀速运动时,因无电流而不受安培力,故拉力为零,D 错. 答案:C3.如图3所示的电路中,两根光滑金属导轨平行放置在倾角为θ的 斜面上,导轨下端接有电阻R ,导轨电阻不计,斜面处在竖直向上 的磁感应强度为B 的匀强磁场中,电阻可略去不计的金属棒ab 质 量为m ,受到沿斜面向上且与金属棒垂直的恒力F 的作用,金属 棒沿导轨匀速下滑,则它在下滑h 高度的过程中,以下说法正确的 是 ( ) A .作用在金属棒上各力的合力做功为零 B .重力做功将机械能转化为电能C .重力与恒力F 做功的代数和等于电阻R 上产生的焦耳热与金属棒的动能之和D .金属棒克服安培力做功等于重力与恒力F 做的总功与电阻R 上产生的焦耳热 之和解析:由于金属棒匀速下滑,故作用在棒上的各个力的合力做功为零,故A 对;克服安培力做功将机械能转化为电能,故B 错误;列出动能定理方程W G -W F -W 安=0,变形可得W G -W F =W 安,可知C 、D 错误. 答案:A4.如图4所示,竖直平面内有一金属环,半径为a ,总电阻为R (指拉直时两端的电阻),磁感应强度为B 的匀强磁场垂直穿过环平面,在环的最高点A 用铰链连接长度为2a 、电阻为R2的导体棒AB ,AB 由水平位置紧贴环面摆下,当摆到竖直位置 时,B 点的线速度为v ,则这时AB 两端的电压大小为( ) A.Bav3B.Bav6C.2Bav3D .Bav 解析:摆到竖直位置时,AB 切割磁感线的瞬时感应电动势E =B ·2a ·(12v )=Bav .由闭合电路欧姆定律,U AB =E R 2+R 4·R 4=13Bav ,故选A.答案:A5.如图5所示,光滑的“∏”形金属导体框竖直放置,质量为m 的金属棒MN 与框架接触良好.磁感应强度分别为B 1、B 2的有界匀强磁场方向相反,但均垂直于框架平面,分别处在abcd 和cdef 区域.现从图示位置由静止释放金属棒MN ,当金属棒进入磁场B 1区域后,恰好做匀速运动.以下说法中正确的有 ( ) A .若B 2=B 1,金属棒进入B 2区域后将加速下滑 B .若B 2=B 1,金属棒进入B 2区域后仍将保持匀速下滑 C .若B 2<B 1,金属棒进入B 2区域后可能先加速后减速下滑 D .若B 2>B 1,金属棒进入B 2区域后可能先减速后加速下滑解析:若B 2=B 1,金属棒进入B 2区域后,磁场反向,回路电流反向,由左手定则知:安培力并没有反向,大小也没有变,故金属棒进入B 2区域后,mg -B 12L 2vR=0,仍将保持匀速下滑,B 对;若B 2<B 1,金属棒进入B 2区域后,安培力没有反向但大小变小,由F =BIL =B BLv R L =B 2L 2v R 知,mg -B 22L 2vR >0,金属棒进入B 2区域后可能先加速后匀速下滑,故C 错;同理,若B 2>B 1,金属棒进入B 2区域后mg -B 22L 2vR<0,可能先减速后匀速下滑,故D 错. 答案:B6.如图6所示,用粗细相同的铜丝做成边长分别为L 和2L 的两只闭合线框a 和b ,以相同的速度从磁感应强度为B 的匀强磁场区域中匀速地拉到磁场外,不考虑线框的动能,若外力对环做的功分别为W a 、W b ,则W a ∶W b 为 ( ) A .1∶4 B .1∶2 C .1∶1 D .不能确定解析:根据能量守恒可知,外力做的功等于产生的电能,而产生的电能又全部转化为焦耳热W a =Q a =(BLv )2R a ·L v W b =Q b =(B ·2Lv )2R b ·2L v由电阻定律知R b =2R a ,故W a ∶W b =1∶4.A 项正确. 答案:A7.如图7所示,有一用铝板制成的U 型框, 将一质量为m 的带电小球用绝缘细线悬 挂在框中,使整体在匀强磁场中沿垂直 于磁场方向向左以速度v 匀速运动,悬挂拉 力为F T ,则 ( ) A .悬线竖直,F T =mg B .悬线竖直,F T >mg C .悬线竖直,F T <mg D .无法确定F T 的大小和方向解析:设两板间的距离为L ,由于向左运动的过程中竖直板切割磁感线,产生动生电动势,由右手定则判断下板电势高于上板,动生电动势大小E =BLv ,即带电小球处于电势差为BLv 的电场中,所受电场力F 电=qE 电=q EL =q BLvL=qvB . 设小球带正电,则所受电场力方向向上.同时小球所受洛伦兹力F 洛=qvB ,方向由左手定则判断竖直向下,即F 电=F 洛,所以F T =mg .同理分析可知当小球带负电时,F T =mg .故无论小球带什么电,F T =mg .选项A正确. 答案:A8.(2010·芜湖模拟)如图8甲所示,光滑导轨水平放置在与水平方向夹角为60°的斜向下的匀强磁场中,匀强磁场的磁感应强度B 随时间t 的变化规律如图8乙所示(规定斜向下为正方向),导体棒ab 垂直导轨放置,除电阻R 的阻值外,其余电阻不计,导体棒ab 在水平外力F 作用下始终处于静止状态.规定a →b 的方向为电流的正方向,水平向右的方向为外力F 的正方向,则在0~t 1时间内,图9中能正确反映流过导体棒ab的电流i和导体棒ab所受水平外力F随时间t变化的图象是( )解析:由楞次定律可判定回路中的电流方向始终为b→a,由法拉第电磁感应定律可判定回路中电流大小恒定,故A、B错;由F安=BIL可得F安随B的变化而变化,在0~t0时间内,F安方向向右,故外力F与F安等值反向,方向向左为负值;在t0~t1时间内,F安方向改变,故外力F方向也改变为正值,故C错误,D正确.答案:D9.(2010·黄山模拟)如图10所示,固定放置在同一水平面内的两根平行长直金属导轨的间距为d,其右端接有阻值为R的电阻,整个装置处在竖直向上的磁感应强度大小为B的匀强磁场中.一质量为m(质量分布均匀)的导体杆ab垂直于导轨放置,且与两导轨保持良好接触,杆与导轨之间的动摩擦因数为μ.当杆在水平向左、垂直于杆的恒力F作用下从静止开始沿导轨运动距离l时,速度恰好达到最大(运动过程中杆始终与导轨保持垂直).设杆接入电路的电阻为r,导轨电阻不计,重力加速度大小为g.则此过程 ( )A .杆的速度最大值为(F -μmg )RB 2d2B .流过电阻R 的电荷量为Bdl2(R +r )C .恒力F 做的功与摩擦力做的功之和等于杆动能的变化量D .恒力F 做的功与安培力做的功之和大于杆动能的变化量解析:当杆的速度达到最大时,安培力F 安=B 2d 2vR +r ,杆受力平衡,故F -μmg -F 安=0,所以v =(F -μmg )(R +r )B 2d 2,A 错;流过电阻R 的电荷量为q =ΔΦR +r =B ΔSR +r=BdlR +r,B 错;根据动能定理,恒力F 、安培力、摩擦力做功的代数和等于杆动能的变化量,由于摩擦力做负功,所以恒力F 、安培力做功的代数和大于杆动能的变化量,C 错,D 对. 答案:D二、计算题(本题共3小题,共37分,解答时应写出必要的文字说明、方程式和演算 步骤,有数值计算的要注明单位)10.(11分)如图11甲所示,用粗细均匀的导线制成的一只圆形金属圈,现被一根绝缘丝线悬挂在竖直平面内处于静止状态,已知金属圈的质量为m ,半径为r ,导线的电阻率为ρ,截面积为S .金属圈的上半部分处在一方向垂直圈面向里的有界匀强磁场中,磁感应强度B 随时间t 的变化满足B =kt (k 为常量),如图11乙所示.金属圈下半部分在磁场外.若丝线所能承受的最大拉力F Tm =2mg ,求:从t =0时刻起,经过多长时间丝线会被拉断?解析:设金属圈受重力mg 、拉力F T 和安培力F 的作用处于静止状态,则F T =mg +F ,又F =2BIr ,金属圈中的感应电流I =ER, 由法拉第电磁感应定律得E =ΔΦΔt ,ΔΦΔt =ΔB Δt ·πr 22,金属圈的电阻R =ρ2πr S,又B =kt ,F Tm =2mg 由以上各式求得t =2mgρk 2Sr2.答案:2mgρk 2Sr211.(12分)(2010·淮南模拟)如图12所示,两平行长直金属导轨置于竖直平面内,间距为L ,导轨上端有阻值为R 的电阻,质 量为m 的导体棒垂直跨放在导轨上,并搁在支架上,导轨和 导体棒电阻不计,接触良好,且无摩擦.在导轨平面内有一 矩形区域的匀强磁场,方向垂直于纸面向里,磁感应强度为B .开始时导体棒静止,当磁场以速度v 匀速向上运动时,导体棒也随之开始运动,并很快达到恒定的速度,此时导体棒 仍处在磁场区域内,试求: (1)导体棒的恒定速度;(2)导体棒以恒定速度运动时,电路中消耗的电功率. 解析:(1)设棒速为v ′,有E =BL (v -v ′) ①F 安=BIL =BLE R =B 2L 2(v -v ′)R②棒受力平衡有:mg =F 安 ③ 联立得:v ′=v -mgRB 2L 2④ 方向向上(2)P =E 2R ⑤联立①④⑤得:P =m 2g 2RB 2L 2.答案:(1)v -mgR B 2L 2 向上 (2)m 2g 2RB 2L212.(14分)(2010·亳州模拟)在拆装某种大型电磁设备的过程中,需将设备内部的处于强磁场中的线圈先闭合,然后再提升直至离开磁场,操作时通过手摇轮轴A 和定滑轮O 来提升线圈.假设该线圈可简化为水平长为L 、上下宽度为d 的矩形线圈,其匝数为n ,总质量为M ,总电阻为R .磁场的磁感应强度为B ,如图13所示.开始时线圈的上边缘与有界磁场的上边缘平齐,若转动手摇轮轴A ,在时间t 内把线圈从图示位置匀速向上拉出磁场.求此过程中: (1)流过线圈中每匝导线横截面的电荷量是多少 ? (2)在转动轮轴时,人至少需做多少功?(不考虑摩擦影响)解析:(1)在匀速提升的过程中线圈运动速度v =d t① 线圈中感应电动势E =nBLv ② 产生的感应电流I =E R③ 流过导线横截面的电荷量q =It ④ 联立①②③④得q =nBLdR. (2)匀速提升的过程中,要克服重力和安培力做功,即W =W G +W 安 ⑤又W G =Mgd ⑥W 安=nBILd ⑦联立①②③④⑤⑥⑦得W =Mgd +n 2B 2L 2d 2Rt.答案:(1)nBLd R (2)Mgd +n 2B 2L 2d 2Rt。
2020版高三物理最新一轮复习资料_人教版第九章磁 场 第4课时

返回导航
第4课时 带电粒子在叠加场和组合场中的运动
基础回顾
考点定位
课时作业
2.带电粒子在叠加场中有约束情况下的运动 带电粒子在叠加场中受轻杆、轻绳、圆环、轨道等约束的情况 下,常见的运动形式有直线运动和圆周运动,此时解题要通过受力 分析明确变力、恒力做功情况,并注意洛伦兹力不做功的特点,运 用动能定理、能量守恒定律结合牛顿运动定律求解.
方向的分运动没有影响,以 P 点为坐标原点,竖直向上为正方向, 小球在竖直方向上做匀减速运动,其初速度为
vy=vsin θ ⑤
若使小球再次穿过 P 点所在的电场线,仅需小球的竖直方向上
分位移为零,则有 vyt-12gt2=0 ⑥
联立⑤⑥式,代入数据解得 t=2 3 s. 答案:(1)20 m/s 方向与电场方向成 60°角斜向上
(1)小球做匀速直线运动的速度 v 的大小和方向; (2)从撤掉磁场到小球再次穿过 P 点所在的这条电场线经历的时间
返回导航
第4课时 带电粒子在叠加场和组合场中的运动
基础回顾
考点定位
课时作业
解析:(1)小球做匀速直线运动时受力如图甲,其所受的三个力 在同一平面内,合力为零,有 qvB= q2E2+m2g2 ①
A.适当减小电场强度 E B.适当减小磁感应强度 B C.适当增大加速电场极板之间的距离 D.适当减小加速电压 U
返回导航
第4课时 带电粒子在叠加场和组合场中的运动
基础回顾
考点定位
课时作业
A 解析:要使电子在复合场中做匀速直线运动,有 Eq=qvB. 根据左手定则可知电子所受的洛伦兹力的方向竖直向下,故电子向
返回导航
第4课时 带电粒子在叠加场和组合场中的运动
基础回顾
2020版高考物理一轮通用课时作业:第九章 第1讲磁场及其对电流的作用 Word版含解析

一、选择题(本题共10小题,1~6题为单选题,7~10题为多选题)1.中国宋代科学家沈括在《梦溪笔谈》中最早记载了地磁偏角:“以磁石磨针锋,则能指南,然常微偏东,不全南也.”进一步研究表明,地球周围地磁场的磁感线分布示意如图.结合上述材料,下列说法不正确的是()A.地理南、北极与地磁场的南、北极不重合B.地球内部也存在磁场,地磁南极在地理北极附近C.地球表面任意位置的地磁场方向都与地面平行D.地磁场对射向地球赤道的带电宇宙射线粒子有力的作用解析:C由题意可知,地理南、北极与地磁场的南、北极不重合,存在磁偏角,A正确.磁感线是闭合的,再由图可推知地球内部存在磁场,地磁南极在地理北极附近,故B 正确.只有赤道上方附近的磁感线与地面平行,故C错误.射向地球赤道的带电宇宙射线粒子的运动方向与地磁场方向不平行,故地磁场对其有力的作用,这是磁场的基本性质,故D 正确.选C.2.下面的几个图显示了磁场对通电直导线的作用力,其中正确的是()解析:C磁场向上,电流向里,根据左手定则可得,安培力的方向水平向右,所以A 错误;磁场向左,电流向外,根据左手定则可得,安培力的方向向下,所以B错误;磁场向里,电流向左,根据左手定则可得,安培力的方向向下,所以C正确;磁场向外,电流向外,它们的方向相同,不受安培力的作用,所以D错误.3.三根平行的长直导线,分别垂直地通过一个等腰直角三角形的三个顶点,三导线中电流方向相同,A、B两导线中的电流大小相同,如图所示,已知导线A在斜边中点O处所产生的磁场的磁感应强度大小为B,导线C在斜边中点O处所产生的磁场的磁感应强度大小为2B,则O处的磁感应强度的大小和方向为()A.大小为B,方向沿OA方向B.大小为22B,方向竖直向下C.大小为2B,方向沿OB方向D.大小为2B,方向沿OA方向解析:D由安培定则知导线A、B在O处所产生的磁感应强度大小相等,方向相反,相互抵消,所以O处的磁感应强度即为导线C所产生的磁感应强度,即大小为2B,由安培定则可判定其方向沿OA方向,A、B、C错,D对.4.一直导线平行于通电螺线管的轴线放置在螺线管的上方,如图所示,如果直导线可以自由地运动且通以由a到b的电流,则关于导线ab受磁场力后的运动情况,下列说法正确的是()A.从上向下看顺时针转动并靠近螺线管B.从上向下看顺时针转动并远离螺线管C.从上向下看逆时针转动并远离螺线管D.从上向下看逆时针转动并靠近螺线管解析:D由安培定则可判定通电螺线管产生的磁场方向,导线等效为Oa、Ob两电流元,由左手定则可判定两电流元所受安培力的方向,如图所示,所以从上向下看导线逆时针转动,当转过90°时再用左手定则可判定导线所受磁场力向下,即导线在逆时针转动的同时还要靠近螺线管,D对.5.(2018·南昌十所省重点中学联考)如图所示,用三条细线悬挂的水平圆形线圈共有n匝,线圈由粗细均匀、单位长度的质量为ρ=2.5 g的导线绕制而成,三条细线对称分布,稳定时线圈平面水平,在线圈正下方放有一个圆柱形条形磁铁,磁铁的中轴线OO′垂直于线圈平面且通过其圆心O ,测得线圈的导线所在处磁感应强度大小为0.5 T ,方向与竖直线成30°角,要使三条细线上的张力为零,线圈中通过的电流至少为(重力加速度为g =10 m/s 2)( )A .0.1 AB .0.2 AC .0.05 AD .0.01 A解析:A 设线圈的半径为r ,则线圈的质量m =2n πr ×2.5×10-3 kg ,磁场的水平分量为B sin 30°,线圈受到的安培力为:F =B sin 30°×I ×2n πr ,由于线圈所受向上的安培力等于线圈的重力,则2n πr ×2.5×10-3×10=B sin 30°×I ×2n πr , 解得:I =0.1 A ,选项A 正确.6.(2018·淮北模拟)利用如图所示的实验装置可以测量磁感应强度B .用绝缘轻质丝线把底部长为L 、电阻为R 、质量为m 的“U”型线框固定在力敏传感器的挂钩上,并用轻质导线连接线框与电源,电源内阻不计,电压可调,导线的电阻忽略不计.当外界拉力F 作用于力敏传感器的挂钩上时,力敏传感器会显示拉力的大小F .当线框接入恒定电压为E 1的电源时,力敏传感器显示拉力的大小为F 1;当线框接入恒定电压为E 2的电源时,力敏传感器显示拉力的大小为F 2.已知F 1>F 2,则磁感应强度B 的大小为( )A .B =R (F 1-F 2)L (E 1-E 2)B .B =R (F 1-F 2)L (E 1+E 2)C .B =R (F 1+F 2)L (E 1-E 2)D .B =R (F 1+F 2)L (E 1+E 2)解析:B 当线框接入恒定电压为E 1时,拉力显示器的示数为F 1,则F 1=mg +B E 1RL ;接入恒定电压为E 2时(电流方向与电压为E 1时相反),拉力显示器的示数为F 2,则F 2=mg-B E 2R L ;联立解得B =R (F 1-F 2)L (E 1+E 2),选项B 正确. 7.(2018·湖南长沙长郡中学模拟)如图所示,同一平面内有两根平行的无限长直导线1和2,通有大小相等、方向相反的电流,a 、b 两点与两导线共面,a 点在两导线的中间且与两导线的距离均为r ,b 点在导线2右侧,与导线2的距离也为r .现测得a 点的磁感应强度大小为B 0,已知距一无限长直导线d 处的磁感应强度大小B =kI d,其中k 为常量,I 为无限长直导线的电流大小,下列说法正确的是( )A .b 点的磁感应强度大小为B 04B .若去掉导线2,b 点的磁感应强度大小为B 06C .若将导线1中电流大小变为原来的2倍,b 点的磁感应强度为0D .若去掉导线2,再将导线1中电流大小变为原来的2倍,a 点的磁感应强度大小仍为B 0解析:BD 根据B =kI d ,可知a 点磁感应强度B 0=kI r +kI r =2kI r ,则:kI r =12B 0,根据右手螺旋定则,此时b 点磁感应强度为:B b =kI r -kI 3r =2kI 3r =13B 0,方向向外,故选项A 错误;若去掉导线2,b 点的磁感应强度大小为:B b ′=kI 3r =16B 0,故选项B 正确;若将导线1中电流大小变为原来的2倍,b 点的磁感应强度为B b ″=kI r -k ·2I 3r =kI 3r =16B 0,方向向外,故选项C 错误;若去掉导线2,再将导线1中电流大小变为原来的2倍,a 点的磁感应强度大小为B b ″=k ·2I r=B 0,故选项D 正确. 8.如图所示,台秤上放一光滑平板,其左边固定一挡板,一轻质弹簧将挡板和一条形磁铁连接起来,此时台秤读数为F 1,现在磁铁上方中心偏左位置固定一导体棒,当导体棒中通以方向如图所示的电流后,台秤读数为F 2,则以下说法正确的是( )A .弹簧长度将变长B .弹簧长度将变短C .F 1>F 2D .F 1<F 2解析:BC 如图甲所示,导体棒处的磁场方向指向右上方,根据左手定则可知,导体棒受到的安培力方向垂直于磁场方向指向右下方,根据牛顿第三定律,对条形磁铁受力分析,如图乙所示,所以台秤对条形磁铁的支持力减小,即台秤示数F1>F2,在水平方向上,由于F′有水平向左的分力,条形磁铁压缩弹簧,所以弹簧长度变短.9.(2018·肇庆模拟)如图甲所示,电流恒定的通电直导线MN,垂直平放在两条相互平行的水平光滑长导轨上,电流方向由M指向N,在两轨间存在着竖直磁场,取垂直纸面向里的方向为磁感应强度的正方向,当t=0时导线恰好静止,若B按如图乙所示的余弦规律变化,下列说法正确的是()A.在最初的一个周期内,导线在导轨上往复运动B.在最初的一个周期内,导线一直向左运动C.在最初的半个周期内,导线的加速度先增大后减小D.在最初的半个周期内,导线的速度先增大后减小解析:AD当t=0时,由左手定则可知,MN受到向右的作用力,根据F安=BLI,由于B最大,故此时的安培力最大,则MN的加速度最大,随着时间的延长,磁感应强度B 减小,故加速度减小,而MN的速度在增大,当B=0时,加速度为0,速度最大,当B反向时,安培力也会反向,则加速度也反向,MN做减速运动,到半个周期时,MN减速到0,此时的加速度反向最大,然后MN再反向运动,到一个周期时MN又回到原出发的位置,故在最初的一个周期内,导线在导轨上往复运动,选项A正确,B错误;在最初的半个周期内,导线的加速度先减小后增大,而其速度则是先增大后减小,故选项C错误,D正确.10.(2018·河北定州中学模拟)如图所示,在两磁极之间放一培养皿,磁感线垂直培养皿,皿内侧壁有环状电极A,中心有电极K,皿内装有电解液,若不考虑电解液和培养皿之间的阻力,当通以如图所示电流时,则()A.电解液将顺时针旋转流动B.电解液静止不动C.若将滑动变阻器的滑片向左移动,则电解液旋转流动将变慢D .若将磁场的方向和电流的方向均变为和原来相反,则电解液转动方向不变解析:AD 电解液中当通以如题图所示电流时,将电解液看成无数个幅条状导体组成,每根导体中电流从环边缘流向K ,由左手定则判断可知,电解液所受的安培力方向沿顺时针,因此电解液将顺时针旋转流动,故A 正确,B 错误;若将滑动变阻器的滑片向左移动,其有效电阻减小,电路中电流增大,由F =BIL 知,电解液所受的安培力增大,则电解液旋转流动将变快,故C 错误;若将磁场的方向和电流的方向均变为和原来相反,由左手定则可知安培力方向不变,则电解液转动方向不变,故D 正确.二、计算题(需写出规范的解题步骤)11.如图所示,MN 是一根长为l =10 cm ,质量m =50 g 的金属棒,用两根长度也为l 的细软导线将导体棒MN 水平吊起,使导体棒处在B =13T 的竖直向上的匀强磁场中,未通电流时,细导线在竖直方向,通入恒定电流后,金属棒向外偏转的最大偏角θ=37°,求金属棒中恒定电流的大小.(sin 37°=0.6,cos 37°=0.8)解析:金属棒向外偏转的过程中,受重力mg 、导线拉力F T 、安培力F 共三个力的作用,其中导线的拉力不做功,由动能定理得:W F +W G =0其中W F =Fl sin θ=BIl 2sin θ,W G =-mgl (1-cos θ)金属棒中的电流为I =mg (1-cos 37°)Bl sin 37°解得:I =5 A答案:5 A12.(2018·渭南质检)如图所示,电源电动势为3 V ,内阻不计,两个不计电阻的金属圆环表面光滑,竖直悬挂在等长的细线上,金属环面平行,相距1 m ,两环分别与电源正负极相连.现将一质量为0.06 kg 、电阻为1.5 Ω的导体棒轻放在环上,导体棒与环有良好电接触.两环之间有方向竖直向上、磁感应强度为0.4 T 的匀强磁场.当开关闭合后,导体棒上滑到某位置静止不动,试求在此位置上棒对每一个环的压力为多少?若已知环半径为0.5 m ,此位置与环底的高度差是多少?解析:棒受的安培力F =BIL棒中电流为I =E R,代入数据解得 F =BEL R=0.8 N 对棒受力分析如图所示(从右向左看),两环支持力的总和为2F N =F 2+(mg )2代入数据解得F N =0.5 N由牛顿第三定律知,棒对每一个环的压力为0.5 N由图中几何关系有tan θ=F mg =0.80.6=43,得θ=53° 棒距环底的高度为h =r (1-cos θ)=0.2 m答案:0.5 N 0.2 m。
高考物理(新课标)一轮复习习题:第九章 电磁感应 课时作业45 含答案

电磁感应中的电路和图象问题[基础训练]1.(20xx·福建省高考适应)如图所示,一闭合直角三角形线框以速度v匀速穿过匀强磁场区域.从BC边进入磁场区域开始计时,到A 点离开磁场区域的过程中,线框内感应电流的情况是如图所示中的( )答案:A 解析:感应电流I==,线框进入磁场时,导体棒切割磁感线的有效长度L减小,感应电流I逐渐减小;当线框完全进入磁场时,穿过线框的磁通量不变,不产生感应电流,I=0;线框离开磁场时,导体棒切割磁感线的有效长度L减小,感应电流I逐渐减小.故A正确,B、C、D错误.2.(20xx·山西四校联考)如图所示,一直角三角形金属框,向左匀速地穿过一个方向垂直于纸面向里的匀强磁场,磁场仅限于虚线边界所围的区域内,该区域的形状与金属框完全相同,且金属框的下边与磁场区域的下边在一条直线上.若取顺时针方向为电流的正方向,则金属框穿过磁场过程的感应电流i随时间t变化的图象是下图所示的( )答案:C 解析:根据楞次定律,在金属框进入磁场的过程中,感应电流的方向为逆时针方向,在出磁场的过程中,感应电流的方向为顺时针方向,选项A、B错误;由E=BLv可知,金属框离开磁场过程中切割磁感线的有效长度均匀减小,故感应电动势均匀减小,由闭合电路欧姆定律可知,金属框中的感应电流均匀减小,选项D错误,C正确.3.(20xx·湖北黄冈质检)如图所示,虚线P、Q、R间存在着磁感应强度大小相等、方向相反的匀强磁场,磁场方向均垂直于纸面,磁场宽度均为L,一等腰直角三角形导线框abc,ab边与bc边长度均为L,bc边与虚线边界垂直.现让线框沿bc方向匀速穿过磁场区域,从c点经过虚线P开始计时,以逆时针方向为导线框中感应电流i的正方向,则下列四个图象中能正确表示it图象的是( )答案:A 解析:由右手定则可知导线框从左侧进入磁场时,电流方向为逆时针方向,即沿正方向,且逐渐增大,导线框刚好完全进入P、Q之间的瞬间,电流由正向最大值变为零,然后电流方向变为顺时针且逐渐增加,当导线框刚好完全进入P、Q之间的瞬间,电流由负向最大值变为零.故A正确.4.(20xx·广东四校第一次联考)如图所示,在一磁感应强度B=0.5 T的匀强磁场中,垂直于磁场方向水平放置着两根相距为L=0.1 m的平行金属导轨MN和PQ,导轨电阻忽略不计,在两根导轨的端点N、Q之间连接一阻值R=0.3 Ω的电阻.导轨上正交放置着金属棒ab,其电阻r=0.2 Ω.当金属棒在水平拉力作用下以速度v=4.0 m/s 向左做匀速运动时( )A.ab棒所受安培力大小为0.02 NB.N、Q间电压为0.2 VC.a端电势比b端电势低D.回路中感应电流大小为1 A答案:A 解析:ab棒产生的电动势E=BLv=0.5×0.1×4.0 V=0.2 V,电流I==0.4 A,ab棒受的安培力F=BIL=0.5×0.4×0.1 N =0.02 N,A正确,D错误;N、Q之间的电压U=E=0.12 V,B错误;由右手定则得a端电势较高,C错误.5.(20xx·海南七校联盟联考)(多选)如图所示,在一竖直平面内的三条平行导线上串有两个电阻R1和R2,导体棒PQ与三条导线均接触良好,匀强磁场的方向垂直纸面向里,导体棒的电阻可忽略.若导体棒向左加速运动,则( )A.流经R1的电流方向向上B.流经R2的电流方向向下C.流经R1的电流方向向下D.流经R2的电流方向向上答案:AD 解析:导体棒PQ向左切割磁感线运动时,由右手定则可判断出导体棒与R1组成的回路中产生的感应电流是顺时针方向,即流经R1的电流方向向上,选项A正确;导体棒与电阻R2组成的回路中产生的感应电流是逆时针方向,即流经R2的电流方向向上,选项D 正确.6.(20xx·江苏南京二模)(多选)如图所示,光滑平行金属导轨MN、PQ所在平面与水平面成θ角,M、P两端接一阻值为R的定值电阻,阻值为r的金属棒ab垂直导轨放置,其他部分电阻不计.整个装置处在磁感应强度为B的匀强磁场中,磁场方向垂直导轨平面向下.t =0时对金属棒施加一平行于导轨的外力F,金属棒由静止开始沿导轨向上做匀加速直线运动.下列关于穿过回路abPMa的磁通量变化量ΔΦ、磁通量的瞬时变化率、通过金属棒的电荷量q随时间t变化以及a、b两端的电势差U随时间t变化的图象中,正确的是( )答案:BD 解析:设加速度为a,运动的位移x=at2,磁通量变化量ΔΦ=BLx=BLat2,ΔΦ∝t2,选项A错误;感应电动势E==BLat,故∝t,选项B正确;U==t,U∝t,选项D正确;电荷量q =,因为ΔΦ∝t2,所以q∝t2,选项C错误.7.(20xx·广东广州六校第一次联考)(多选)在如图甲所示的电路中,螺线管匝数n=1 500匝,横截面积S=20 cm2.螺线管导线电阻r =1 Ω,R1=4 Ω,R2=5 Ω,C=30 μF.在一段时间内,穿过螺线管的磁场的磁感应强度B按如图乙所示的规律变化.则下列说法中正确的是( )A.螺线管中产生的感应电动势为1.2 VB.闭合S,电路中的电流稳定后电容器上极板带正电C.电路中的电流稳定后,电阻R1的电功率为5×10-2 WD.S断开后,通过R2的电荷量为1.8×10-5 C答案:AD 解析:由法拉第电磁感应定律可得,螺线管内产生的电动势为:E=nS=1 500××20×10-4 V=1.2 V,故A正确;根据楞次定律,当穿过螺线管的磁通量增加时,螺线管下部可以看成电源的正极,则电容器下极板带正电,故B错误;电流稳定后,电流为:I== A=0.12 A,电阻R1上消耗的功率为:P=I2R1=0.122×4 W=5.76×10-2 W,故C错误;开关断开后通过电阻R2的电荷量为:Q=CU=CIR2=30×10-6×0.12×5 C=1.8×10-5 C,故D正确.[能力提升]8.(20xx·山东德州期末)(多选)如图所示为三个有界匀强磁场,磁感应强度大小均为B,方向分别垂直纸面向外、向里和向外,磁场宽度均为L.在磁场区域的左侧边界处有一边长为L的正方形导体线框,总电阻为R,且线框平面与磁场方向垂直.现用外力F使线框以速度v 匀速穿过磁场区域,以初始位置为计时起点,规定电流沿逆时针方向时的电动势E为正,磁感线垂直纸面向里时的磁通量Φ为正值,外力F向右为正.则以下能反映线框中的磁通量Φ、感应电动势E、外力F 和电功率P随时间变化规律的图象是( )答案:ABD 解析:在0~时间内,磁通量Φ=BLvt,为负值,逐渐增大;在t=时磁通量为零;当t=时,磁通量Φ=BL2为最大正值;在~时间内,磁通量为正,逐渐减小;t=时,磁通量为零;~时间内,磁通量为负,逐渐增大;t=时,磁通量为负的最大值;~时间内,磁通量为负,逐渐减小,由此可知选项A正确.在0~时间内,E =BLv,为负值;在~时间内,两个边切割磁感线,感应电动势E=2BLv,为正值;在~时间内,两个边切割磁感线,感应电动势E=2BLv,为负值;在~时间内,一个边切割磁感线,E=BLv,为正值,B 正确.0~时间内,安培力向左,外力向右,F0=F安=BI0L,电功率P0=IR=;~时间内,外力向右,F1=2B·2I0L=4F0,电功率P1=IR ==4P0;~时间内,外力向右,F2=2B·2I0L=4F0,电功率P2=IR ==4P0;在~时间内,外力向右,F3=BI0L=F0,电功率P3=IR==P0,选项C错误,D正确.9.如图所示,间距L=1 m的两根足够长的固定水平平行导轨间存在着匀强磁场,其磁感应强度大小B=1 T、方向垂直于纸面向里,导轨上有一金属棒MN与导轨垂直且在水平拉力F作用下以v=2 m/s 的速度水平向左匀速运动.R1=8 Ω,R2=12 Ω,C=6 μF,导轨和棒的电阻及一切摩擦均不计.开关S1、S2闭合,电路稳定后,求:(1)通过R2的电流I的大小和方向;(2)拉力F的大小;(3)开关S1切断后通过R2的电荷量Q.答案:(1)0.1 A,方向是b→a(2)0.1 N (3)7.2×10-6 C解析:(1)开关S1、S2闭合后,根据右手定则知棒中的感应电流方向是由M→N,所以通过R2的电流方向是由b→aMN中产生的感应电动势的大小E=BLv流过R2的电流I=ER1+R2代入数据解得I=0.1 A.(2)棒受力平衡有F=F安F安=BIL代入数据解得F=0.1 N.(3)开关S1、S2闭合,电路稳定后,电容器所带电荷量Q1=CIR2S1切断后,流过R2的电荷量Q等于电容器所带电荷量的减少量,即Q=Q1-0代入数据解得Q=7.2×10-6 C.10.如图甲所示,两根足够长的光滑金属导轨ef、cd与水平面成θ=30°角固定,导轨间距离为l=1 m,导轨电阻不计,一个阻值为R0的定值电阻与电阻箱并联接在两金属导轨的上端.整个系统置于匀强磁场中,磁感应强度方向与导轨所在平面垂直,磁感应强度大小为B =1 T.现将一质量为m、电阻可以忽略的金属棒MN从图示位置由静止释放,金属棒下滑过程中与导轨接触良好.改变电阻箱的阻值R,测定金属棒的最大速度vm,得到的关系如图乙所示.取g=10 m/s2.(1)求金属棒的质量m和定值电阻R0的阻值;(2)当电阻箱的阻值R取2 Ω,且金属棒的加速度为g时,求金属棒的速度大小.答案:(1)0.2 kg 2 Ω(2)0.5 m/s解析:(1)金属棒以速度vm下滑时,根据法拉第电磁感应定律有E =Blvm,由闭合电路欧姆定律有E=I,根据平衡条件有BIl=mgsin θ,整理得=,由图象可知=1 m-1·s·Ω,·=0.5 m-1·s.解得m=0.2 kg,R0=2 Ω.(2)设此时金属棒下滑的速度大小为v,根据法拉第电磁感应定律有E′=Blv,由闭合电路欧姆定律有E′=I′,根据牛顿第二定律有mgsin θ-BI′l=m,联立解得v=0.5 m/s.。
2020高考物理一轮复习第九章磁场课时规范练28磁场的描述磁吃电流的作用新人教版-精装版

教学资料范本2020高考物理一轮复习第九章磁场课时规范练28磁场的描述磁吃电流的作用新人教版-精装版编辑:__________________时间:__________________【精选】20xx最新高考物理一轮复习第九章磁场课时规范练28磁场的描述磁吃电流的作用新人教版基础巩固组1.(安培定则的应用)(20xx·黑龙江牡丹江一中期末)为了解释地球的磁性,19世纪安培假设:地球的磁场是由绕过地心的轴的环形电流I引起的.在下列四个图中,正确表示安培假设中环形电流方向的是( )答案B解析地磁场从地理的南极附近出来,进入地理的北极附近,除两极外,地表上空的磁场都具有向北的磁场分量.根据安培定则,环形电流外部磁场方向向北可知,B正确.A图在地表上空产生的磁场方向向南,故A错误.C、D两图在地表上空产生的磁场方向沿东西方向,故C、D错误.2.(安培定则的应用和磁场的叠加)(20xx·四川成都一诊)右图为水平放置的两根等高固定长直导线的截面图,O点是两导线连线的中点,a、b是过O点的竖直线上与O点距离相等的两点,两导线中通有大小相等、方向相反的恒定电流.下列说法正确的是( )A.两导线之间存在相互吸引的安培力B.O点的磁感应强度为零C.O点的磁感应强度方向竖直向下D.a、b两点的磁感应强度大小相等、方向相反答案C解析同向电流相互吸引,异向电流相互排斥,A错误;两个电流在O点的磁感应强度方向都是竖直向下,不为0,B错误,C正确;a、b两点磁感强度大小相等、方向相同,D错误.3.(安培定则的应用和磁场的叠加)(20xx·海南文昌中学期中)在磁感应强度为B0、方向竖直向上的匀强磁场中,水平放置一根长通电直导线,电流的方向垂直于纸面向里.如图所示,A、B、C、D是以直导线为圆心的同一圆周上的四点,在这四点中( )A.B、D两点的磁感应强度大小相等B.A、B两点的磁感应强度大小相等C.C点的磁感应强度的值最大D.B点的磁感应强度的值最大答案A解析根据安培定则可得通电直导线在A、B、C、D四点产生的磁感应强度大小相等,设为B1,而通电直导线在B点产生的磁感应强度方向为水平向左,在D点产生的磁感应强度方向为水平向右,则B、D两点的磁感应强度大小为B=,大小相等,选项A正确;通电直导线在A点产生的磁感应强度方向为竖直向上,则A点的磁感应强度为BA=B1+B0,选项B错误;通电直导线在C点产生的磁感应强度方向为竖直向下,则C点的磁感应强度大小为BC=|B1-B0|,C点的磁感应强度的值最小,选项C错误;由以上分析可知A 点的磁感应强度的值最大,选项D错误.4.(安培力作用下导体的平衡)(20xx·上海××区模拟)如图所示,质量m=0.5 kg的通电导体棒在安培力作用下静止在倾角为37°、宽度l=1 m 的光滑绝缘框架上,磁场方向垂直于框架平面向下(磁场仅存在于绝缘框架内).右侧回路中,电源的电动势E=8 V、内阻r=1 Ω,额定功率为8 W、额定电压为4 V的电动机M正常工作.取sin 37°=0.6,cos 37°=0.8,重力加速度大小g取10 m/s2,则磁场的磁感应强度大小为( )A.2 TB.1.73 TC.1.5 TD.1 T答案C解析电动机M正常工作时的电流I1==2 A,电源内阻上的电压U'=E-U=8 V-4 V=4 V,根据欧姆定律得干路中的电流I==4 A,通过导体棒的电流I2=I-I1=2 A,导体棒受力平衡,有BI2l=mgsin 37°,得B=1.5 T,选项C正确.5.(多选)(安培力作用下导体运动情况)(20xx·湖北××市第一中学月考)如图所示,一条形磁铁放在水平桌面上,在其左上方固定一根与磁铁垂直的长直导线,当导线中通以图示方向的电流时( )A.磁铁对桌面的压力增大B.磁铁对桌面的压力减小C.磁铁受到向右的摩擦力作用D.磁铁受到向左的摩擦力作用答案BC解析根据条形磁体磁感线分布情况得到直线电流所在的位置磁场方向(切线方向),再根据左手定则判断安培力方向,如图甲根据牛顿第三定律,电流对磁体的作用力向左上方,如图乙;根据平衡条件,可知通电后支持力变小,静摩擦力变大,故磁铁对桌面的压力变小,静摩擦力向右.故选B、C.6.(安培力作用下导体的平衡)(20xx·天津××区期末)如图所示,在倾角为α的光滑斜面上,垂直纸面放置一根长为l,质量为m的直导体棒.当导体棒中的电流I垂直纸面向里时,欲使导体棒静止在斜面上,可加平行于纸面的匀强磁场,下列有关磁场的描述中正确的是( )A.若磁场方向竖直向上,则B=B.若磁场方向平行斜面向上,则B=C.若磁场方向垂直斜面向下,则B=D.若磁场方向垂直斜面向上,则B=答案A解析若磁场方向竖直向上,导体棒受力如图,F=mgtan α,所以B=,选项A正确;B、C项中导体棒不能静止,选项B、选项C错误;若磁场垂直斜面向上,则B=,选项D错误.7.(多选)(安培定则的应用)均匀带电的薄圆盘的右侧,用拉力传感器A、B水平悬挂一根通电导线ab,电流方向由a到b,导线平行于圆盘平面.圆盘绕过圆心的水平轴沿如图所示方向匀速转动,与圆盘静止时相比,拉力传感器的示数增大了,悬线仍然竖直,则下列说法正确的是( )A.圆盘带正电荷B.圆盘带负电荷C.若增大圆盘转动角速度,则传感器示数减小D.若改变圆盘转动方向,则传感器示数减小答案AD解析与圆盘静止时相比,拉力传感器的示数增大,悬线竖直,说明导线所受安培力竖直向下,由左手定则可判断,导线所在位置的磁感应强度方向水平向右;由安培定则可以判断,圆盘转动形成的等效电流与其转动方向相同,故圆盘带正电荷,A选项对,B选项错;若增大圆盘转动角速度,则等效电流增大,方向不变,产生的磁感应强度增大,传感器示数增大,C选项错误;若改变圆盘转动方向,则导线所在位置的磁场方向水平向左,导线所受安培力方向向上,传感器示数减小,D选项正确.8.(多选)(安培力)如图甲所示,扬声器中有一线圈处于磁场中,当音频电流信号通过线圈时,线圈带动纸盆振动,发出声音.图乙表示处于辐射状磁场中的线圈(线圈平面即纸面)的俯视图,磁场方向如图中箭头所示,在图乙中( )A.当电流沿顺时针方向时,线圈所受安培力的方向垂直于纸面向里B.当电流沿顺时针方向时,线圈所受安培力的方向垂直于纸面向外C.当电流沿逆时针方向时,线圈所受安培力的方向垂直于纸面向里D.当电流沿逆时针方向时,线圈所受安培力的方向垂直于纸面向外答案BC解析将环形导线分割成无限个小段,每一小段看成直导线,则根据左手定则,当电流顺时针时,导线的安培力垂直纸面向外,故选项A错误,选项B正确;当电流逆时针时,根据左手定则可以知道安培力垂直纸面向里,故选项C正确,选项D错误.〚导学号06400464〛能力提升组9.(多选)(20xx·江西新余二模)如图所示,两平行导轨ab、cd竖直放置在匀强磁场中,匀强磁场方向竖直向上,将一根金属棒PQ放在导轨上使其水平且始终与导轨保持良好接触.现在金属棒PQ中通以变化的电流I,同时释放金属棒PQ使其运动.已知电流I随时间的变化关系为I=kt(k为常数,k>0),金属棒与导轨间存在摩擦.则下面关于棒的速度v、加速度a随时间变化的关系图象中,可能正确的有( )答案AD解析金属棒受竖直向下的重力mg、垂直于导轨向里的安培力BIl、垂直于导轨向外的弹力FN、竖直向上的摩擦力Ff.FN=BIl=Bl·kt①mg-Ff=ma ②Ff=μFN③把①③代入②得mg-μBl·kt=ma,加速度先向下减小,当mg=Ff时,加速度为零,速度最大,然后加速度反向逐渐增大,速度逐渐减小最后速度为零,金属棒静止.所以A、D正确.10.(多选)(20xx·河南洛阳期末统考)如图所示,水平放置的光滑平行金属导轨,左端通过开关S与内阻不计、电动势为E的电源相连,右端与半径为20 cm的光滑圆弧导轨相接,导轨宽度为20 cm,电阻不计.导轨所在空间有竖直方向的匀强磁场,磁感应强度B=0.5 T.一根导体棒ab垂直于导轨放置,质量m=60 g、电阻R=1 Ω,用长也为20 cm的绝缘细线悬挂,导体棒恰好与导轨接触.当闭合开关S后,导体棒沿圆弧摆动,摆动过程中导体棒始终与导轨接触良好且细线处于张紧状态.导体棒ab速度最大时,细线与竖直方向的夹角θ=53°(sin 53°=0.8,g取10 m/s2),则( )A.磁场方向一定竖直向上B.电源的电动势E=8.0 VC.导体棒在摆动过程中所受安培力F=8 ND.导体棒摆动过程中的最大动能为0.08 J答案BD解析导体棒ab所受安培力向右,由左手定则可知磁场方向竖直向下,A错误;细线与竖直方向的夹角为53°时,重力和安培力的合力沿半径方向,此时tan 53°=,解得I==8 A,由欧姆定律得E=IR=8 V,B正确;安培力F=BIl=mgtan 53°=0.8 N,C错误;从初位置到转过53°的过程应用动能定理:Flsin 53°-mgl(1-cos 53°)=Ekm-0,解得最大动能Ekm=0.08 J,D正确.11.(多选)(20xx·江西××市二模)如图所示,在竖直向下的恒定匀强磁场中有一光滑绝缘的圆轨道,一重力为G的金属导体MN垂直于轨道横截面水平放置,在导体中通入电流I,使导体在安培力的作用下以恒定的速率v从A点运动到C点,设导体所在位置的轨道半径与竖直方向的夹角为θ,安培力的瞬时功率为P,则从A到C的过程中,下列有关说法正确的是( ) A.电流方向从M指向N B.I∝cot θC.P∝cos θD.P∝sin θ答案AD解析由于安培力方向始终水平向左,根据左手定则知电流方向从M指向N,A正确;因为导体棒做匀速圆周运动,所以有Gsin θ=F安cosθ=IlBcos θ,故I=tan θ,则I∝tanθ,B错误;又P=F安vcosθ=Gvsin θ,所以P∝sinθ,C错误,D正确.〚导学号06400465〛12.(20xx·江苏泰州模拟)如图所示,在倾角为37°的光滑斜面上有一根长为0.4 m、质量为6×10-2 kg的通电直导线,电流大小I=1 A,方向垂直于纸面向外,导线用平行于斜面的轻绳拴住不动,整个装置放在磁感应强度每秒增加0.4 T、方向竖直向上的磁场中.设t=0时,B=0,则需要多长时间,斜面对导线的支持力为零?(g取10 m/s2)答案5 s解析斜面对导线的支持力为零时导线的受力如图所示.由平衡条件得FTcos 37°=FFTsin 37°=mg两式联立解得F==0.8 N由F=BIl得B==2 T由题意知,B与t的变化关系为B=0.4t(T)代入数据得t=5 s.。
【物理】2020届一轮复习人教版第九章磁场第3课时课时作业

2020届一轮复习人教版第九章磁场第3课时课时作业1.在如图所示的平行板器件中,电场强度E和磁感应强度B相互垂直.一带电粒子(重力不计)从左端以速度v沿虚线射入后做直线运动,则该粒子()A.一定带正电B.速度v=E BC.若速度v>EB,粒子一定不能从板间射出D.若此粒子从右端沿虚线方向进入,仍做直线运动B解析:粒子带正电和负电均可,选项A错误;由洛伦兹力等于电场力,q v B=qE,解得速度v=EB,选项B正确;若速度v>EB,粒子可能从板间射出,选项C错误;若此粒子从右端沿虚线方向进入,所受电场力和洛伦兹力方向相同,不能做直线运动,选项D错误.2.(多选)如图所示,a、b是一对平行金属板,分别接到直流电源的两极上,使a、b两板间产生匀强电场E,右边有一块挡板,正中间开有一小孔d,在较大空间范围内存在着匀强磁场,磁感应强度大小为B,方向垂直纸面向里.从两板左侧中点c处射入一束正离子(不计重力),这些正离子都沿直线运动到右侧,从d孔射出后分成三束,则下列判断正确的是()A.这三束正离子的速度一定不相同B.这三束正离子的比荷一定不相同C.a、b两板间的匀强电场方向一定由a指向bD.若这三束离子改为带负电而其他条件不变,则仍能从d孔射出BCD解析:因为三束正离子在两极板间都是沿直线运动的,电场力等于洛伦兹力,可以判断三束正离子的速度一定相同,且电场方向一定由a指向b,A 错误,C正确;在右侧磁场中三束正离子运动轨迹半径不同,可知这三束正离子的比荷一定不相同,B项正确;若将这三束离子改为带负电,而其他条件不变的情况下分析受力可知,三束离子在两板间仍做匀速直线运动,仍能从d孔射出,D项正确.3.(2018·山东济宁模拟)为监测某化工厂的含有离子的污水排放情况,技术人员在排污管中安装了监测装置,该装置的核心部分是一个用绝缘材料制成的空腔,其宽和高分别为b和c,左、右两端开口与排污管相连,如图所示.在垂直于上、下底面方向加磁感应强度大小为B的匀强磁场,在空腔前、后两个侧面上各有长为a的相互平行且正对的电极M和N,M、N与内阻为R的电流表相连.污水从左向右流经该装置时,电流表将显示出污水排放情况.下列说法中错误的是()A.M板比N板电势低B.污水中离子浓度越高,则电流表的示数越小C.污水流量越大,则电流表的示数越大D.若只增大所加磁场的磁感应强度,则电流表的示数也增大B解析:污水从左向右流动时,正、负离子在洛伦兹力作用下分别向N板和M板偏转,故N板带正电,M板带负电,A正确.稳定时带电离子在两板间受力平衡,q v B=q Ub ,此时U=Bb v=BbQbc=BQc,式中Q是流量,可见当污水流量越大、磁感应强度越强时,M、N间的电压越大,电流表的示数越大,而与污水中离子浓度无关,B错误,C、D正确.4.(多选)如图是质谱仪的工作原理示意图.带电粒子被加速电场加速后,进入速度选择器.速度选择器内相互正交的匀强磁场和匀强电场的强度分别为B和E.平板S 上有可让粒子通过的狭缝P和记录粒子位置的胶片A1A2.平板S下方有强度为B0的匀强磁场.下列表述正确的是()A.质谱仪是分析同位素的重要工具B.速度选择器中的磁场方向垂直于纸面向外C.能通过狭缝P的带电粒子的速率等于E BD.粒子打在胶片上的位置越靠近狭缝P,粒子的比荷越小ABC解析:质谱仪是分析同位素的重要工具,A正确.在速度选择器中,带电粒子所受电场力和洛伦兹力在粒子沿直线运动时应等大反向,结合左手定则可知B正确.由qE=q v B可得v=EB,C正确.粒子在平板S下方的匀强磁场中做匀速圆周运动,由q v B=m v2R 得R=m vqB0,所以qm=vB0R,D错误.5.医生做某些特殊手术时,利用电磁血流计来监测通过动脉的血流速度.电磁血流计由一对电极a和b以及磁极N和S构成,磁极间的磁场是均匀的.使用时,两电极a、b均与血管壁接触,两触点的连线、磁场方向和血流速度方向两两垂直,如图所示.由于血液中的正负离子随血液一起在磁场中运动,电极a、b之间会有微小电势差.在达到平衡时,血管内部的电场可看做是匀强电场,血液中的离子所受的电场力和磁场力的合力为零.在某次监测中,两触点间的距离为3.0 mm,血管壁的厚度可忽略,两触点间的电势差为160 μV,磁感应强度的大小为0.040 T.则血流速度的近似值和电极a、b的正负为()A.1.3 m/s,a正、b负B.2.7 m/s,a正、b负C.1.3 m/s,a负、b正D.2.7 m/s,a负、b正答案:A6.利用霍尔效应制作的元件,广泛应用于测量和自动控制等领域.如图是霍尔元件的工作原理示意图,磁感应强度B垂直于霍尔元件的工作面向下,通入图示方向的电流I,C、D两侧就会形成电势差U CD,下列说法中正确的是()A.电势差U CD仅与材料有关B.仅增大磁感应强度时,C、D两面的电势差变大C.若霍尔元件中定向移动的是自由电子,则电势差U CD>0D.在测定地球赤道上方的地磁场强弱时,元件的工作面应保持水平方向B解析:设霍尔元件的厚度为d,长为a,宽为b,稳定时有Bq v=q U CD b,又因为I=nqS v,其中n为单位体积内自由电荷的个数,q为自由电荷所带的电荷量,S=bd,联立解得:U CD=1nq ·BId,可知选项A错误;若仅增大磁感应强度B,则C、D两面的电势差增大,选项B正确;若霍尔元件中定向移动的是自由电子,由左手定则可知,电子将向C侧偏转,则电势差U CD<0,选项C错误;地球赤道上方的地磁场方向为水平方向,元件的工作面要与磁场方向垂直,故元件的工作面应保持竖直方向,选项D错误.7.(多选)(2018·四川成都调研)如图,为探讨霍尔效应,取一块长度为a、宽度为b、厚度为d的金属导体,给金属导体加与前后侧面垂直的匀强磁场B,且通以图示方向的电流I时,用电压表测得导体上、下表面M、N间电压为U.已知自由电子的电荷量为e.下列说法中正确的是()A.M板比N板电势高B.导体单位体积内自由电子数越多,电压表的示数越大C.导体中自由电子定向移动的速度为v=U BdD.导体单位体积内的自由电子数为BIeUbCD解析:电流方向向右,电子定向移动方向向左,根据左手定则判断可知,电子所受的洛伦兹力方向向上,则M板积累了电子,M、N之间产生向上的电场,所以M板比N板电势低,选项A错误.电子定向移动相当于长度为d的导体垂直切割磁感线产生感应电动势,电压表的读数U等于感应电动势E,则有U=E=Bd v,可见,电压表的示数与导体单位体积内自由电子数无关,选项B 错误;由U=E=Bd v得,自由电子定向移动的速度为v=UBd,选项C正确;电流的微观表达式是I=ne v S,则导体单位体积内的自由电子数n=Ie v S,S=db,v=U Bd ,代入得n=BIeUb,选项D正确.【素能提升】8.(多选)(2014·新课标全国Ⅱ·20)图8为某磁谱仪部分构件的示意图.图中,永磁铁提供匀强磁场.硅微条径迹探测器可以探测粒子在其中运动的轨迹.宇宙射线中有大量的电子、正电子和质子.当这些粒子从上部垂直磁场方向进入磁场时,下列说法正确的是()A .电子与正电子的偏转方向一定不同B .电子与正电子在磁场中运动轨迹的半径一定相同C .仅依据粒子运动轨迹无法判断该粒子是质子还是正电子D .粒子的动能越大,它在磁场中运动轨迹的半径越小AC 解析:根据左手定则,电子、正电子进入磁场后所受洛伦兹力的方向相反,故两者的偏转方向不同,选项A 正确;根据q v B =m v 2r ,得r =m v qB ,若电子与正电子在磁场中的运动速度不相等,则轨迹半径不相同,选项B 错误;对于质子、正电子,它们在磁场中运动时不能确定m v 的大小,故选项C 正确;粒子的m v 越大,轨道半径越大,而m v =2mE k ,粒子的动能大,其m v 不一定大,选项D 错误.9.如图所示是医用回旋加速器示意图,其核心部分是两个D 形金属盒,两金属盒置于匀强磁场中,并分别与高频电源相连.现分别加速氘核(21H )和氦核(42He ).下列说法中正确的是( )A .它们的最大速度相同B .它们的最大动能相同C .两次所接高频电源的频率不相同D .仅增大高频电源的频率可增大粒子的最大动能A 解析:根据q vB =m v 2R ,得v =qBR m .两粒子的比荷q m相等,所以最大速度相等.故A 正确.最大动能E k =12m v 2=q 2B 2R 22m ,两粒子的比荷q m 相等,但质量不相等,所以最大动能不相等.故B 错.带电粒子在磁场中运动的周期T =2em qB ,两粒子的比荷q m 相等,所以周期相等.做圆周运动的频率相等,因为所接高频电源的频率等于粒子做圆周运动的频率,故两次所接高频电源的频率相同,故C错误.由E k =q 2B 2R 22m 可知,粒子的最大动能与加速电压的频率无关,故仅增大高频电源的频率不能增大粒子的最大动能.故D 错.10.速度相同的一束粒子(不计重力)由左端射入质谱仪后的运动轨迹如图所示,则下列相关说法中正确的是( )A .该束粒子带负电B .速度选择器的P 1极板带负电C .能通过狭缝S 0的粒子的速度等于E B 1D .粒子打在胶片上的位置越靠近狭缝S 0,则粒子的比荷越小C 解析:根据该束粒子进入匀强磁场B 2时向下偏转,由左手定则判断出该束粒子带正电,选项A 错误;粒子在速度选择器中做匀速直线运动,受到电场力和洛伦兹力作用,由左手定则知洛伦兹力方向竖直向上,则电场力方向竖直向下,因粒子带正电,故电场强度方向向下,速度选择器的P 1极板带正电,选项B 错误;粒子能通过狭缝,电场力与洛伦兹力平衡,有q v B 1=qE ,得v =E B 1,选项C 正确;粒子进入匀强磁场B 2中受到洛伦兹力做匀速圆周运动,根据洛伦兹力提供向心力,由牛顿第二定律有q v B 2=m v 2r ,得r =m v B 2q ,可见v 、B 2一定时,半径r 越小,则q m 越大,选项D 错误.11.(多选)如图所示为一种质谱仪的示意图,由加速电场、静电分析器和磁分析器组成.若静电分析器通道中心线的半径为R ,通道内均匀辐射电场,在中心线处的电场强度大小为E ,磁分析器有范围足够大的有界匀强磁场,磁感应强度大小为B 、方向垂直于纸面向外.一质量为m 、电荷量为q 的粒子从静止开始经加速电场加速后沿中心线通过静电分析器,由P 点垂直边界进入磁分析器,最终打到胶片上的Q 点.不计粒子重力.下列说法正确的是( )A .极板M 比极板N 的电势高B .加速电场的电压U =ERC .直径PQ =2B qmERD .若一群粒子从静止开始经过题述过程都落在胶片上的同一点,则该群粒子具有相同的比荷AD 解析:粒子在静电分析器内沿电场线方向偏转,说明粒子带正电荷,极板M 比极板N 的电势高,选项A 正确;由Uq =12m v 2和Eq =m v 2R 可得U =ER 2,选项B 错误;在磁场中,由牛顿第二定律得q v B =m v 2r ,即r =m v qB ,直径PQ =2r=2m v Bq =2ERmB 2q ,可见只有比荷相同的粒子才能打在胶片上的同一点,选项C错误,D 正确.12.(多选)回旋加速器在科学研究中得到了广泛应用,其原理图如图所示.D 1和D 2是两个中空的半圆形金属盒,置于与盒面垂直的匀强磁场中,它们接在电压为U 、周期为T 的交流电源上.位于D 1的圆心处的质子源A 能不断产生质子(初速度可以忽略),它们在两盒之间被电场加速.当质子被加速到最大动能E k 后,再将它们引出.忽略质子在电场中的运动时间,则下列说法中正确的是( )A.若只增大交变电压U,则质子的最大动能E k会变大B.若只增大交变电压U,则质子在回旋加速器中运行的时间会变短C.若只将交变电压的周期变为2T,仍可用此装置加速质子D.质子第n次被加速前、后的轨道半径之比为n-1∶nBD解析:由q v B=m v2r得r=m vqB,质子经加速后的最大速度与回旋加速器的最大半径有关,而与交变电压U无关,故A错误;增大交变电压,质子加速次数减小,所以质子在回旋加速器中的运行时间变短,B正确;为了使质子能在回旋加速器中加速,质子的运动周期应与交变电压的周期相同,C错误;由nqU=1 2m v 2n 以及r n=m v nqB可得质子第n次被加速前、后的轨道半径之比为n-1∶n,D正确.13.一台质谱仪的工作原理图如图所示,电荷量均为+q、质量不同的离子飘入电压为U0的加速电场,其初速度几乎为零.这些离子经加速后通过狭缝O 沿着与磁场垂直的方向进入磁感应强度为B的匀强磁场,最后打在底片上.已知放置底片的区域MN=L,且OM=L.某次测量发现MN中左侧23区域MQ损坏,检测不到离子,但右侧13区域QN仍能正常检测到离子.在适当调节加速电压后,原本打在MQ区域的离子即可在QN区域检测到.(1)求原本打在MN中点P点的离子质量m;(2)为使原本打在P点的离子能打在QN区域,求加速电压U的调节范围.解析:(1)离子在电场中加速qU0=12m v2,在磁场中做匀速圆周运动q v B=m v2r0,解得r0=1B2mU0q,代入r0=34L,解得m=9qB2L232U0.(2)由(1)知,U=16U0r29L2,离子打在Q点r=56L,U=100U081,离子打在N点r=L,U=16U09,则电压的范围为100U081≤U≤16U09答案:(1)9qB2L232U0(2)100U081≤U≤16U09。
高考物理一轮复习 第9章 磁场 第3节 带电粒子在复合场中的运动教案-人教版高三全册物理教案

第3节 带电粒子在复合场中的运动带电粒子在组合场中的运动 [讲典例示法]带电粒子在电场和磁场的组合场中运动,实际上是将粒子在电场中的加速与偏转,跟在磁场中偏转两种运动有效组合在一起,有效区别电偏转和磁偏转,寻找两种运动的联系和几何关系是解题的关键。
当带电粒子连续通过几个不同的场区时,粒子的受力情况和运动情况也发生相应的变化,其运动过程则由几种不同的运动阶段组成。
[典例示法] (2018·全国卷Ⅱ)一足够长的条状区域内存在匀强电场和匀强磁场,其在xOy 平面内的截面如图所示:中间是磁场区域,其边界与y 轴垂直,宽度为l ,磁感应强度的大小为B ,方向垂直于xOy 平面;磁场的上、下两侧为电场区域,宽度均为l ′,电场强度的大小均为E ,方向均沿x 轴正方向;M 、N 为条状区域边界上的两点,它们的连线与y 轴平行。
一带正电的粒子以某一速度从M 点沿y 轴正方向射入电场,经过一段时间后恰好以从M 点入射的速度从N 点沿y 轴正方向射出。
不计重力。
(1)定性画出该粒子在电、磁场中运动的轨迹; (2)求该粒子从M 点入射时速度的大小;(3)若该粒子进入磁场时的速度方向恰好与x 轴正方向的夹角为π6,求该粒子的比荷及其从M 点运动到N 点的时间。
[解析] (1)粒子在电场中的轨迹为抛物线,在磁场中为圆弧,上下对称,如图(a)所示。
图(a)(2)设粒子从M 点射入时速度的大小为v 0,进入磁场的速度大小为v ,方向与电场方向的夹角为θ,如图(b ),速度v 沿电场方向的分量为v 1。
图(b)根据牛顿第二定律有qE =ma ① 由运动学公式有l ′=v 0t ② v 1=at ③ v 1=v cos θ④设粒子在磁场中做匀速圆周运动的轨迹半径为R ,由洛伦兹力公式和牛顿第二定律得qvB =mv 2R⑤ 由几何关系得l =2R cos θ ⑥ 联立①②③④⑤⑥式得v 0=2El ′Bl。
⑦(3)由运动学公式和题给数据得 v 1=v 0cot π6⑧联立①②③⑦⑧式得q m =43El ′B 2l2⑨设粒子由M 点运动到N 点所用的时间为t ′,则t ′=2t +2⎝ ⎛⎭⎪⎫π2-π62πT ⑩式中T 是粒子在磁场中做匀速圆周运动的周期, T =2πmqB⑪由③⑦⑨⑩⑪式得t ′=Bl E ⎝ ⎛⎭⎪⎪⎫1+3πl 18l ′。
高考物理一轮复习 第9章 第三节课件1

变式训练 1 (2016·株洲模拟)(多选)如图所示,两根足够
长的光滑金属导轨水平平行放置,间距为 l=1m,cd 间、de
பைடு நூலகம்
间、cf 间分别接阻值为 R=10Ω 的电阻.一阻值为 R=10Ω
的导体棒 ab 以速度 v=4m/s 匀速向左运动,导体棒与导轨
接触良好,导轨所在平面存在磁感应强度大小为 B=0.5T、
(1)cd 下滑的过程中,ab 中的电流方向; (2)ab 刚要向上滑动时,cd 的速度 v 多大; (3)从 cd 开始下滑到 ab 刚要向上滑动的过程中,cd 滑动的 距离 x=3.8m,此过程中 ab 上产生的热量 Q 是多少.
变式训练 3 (2016·师大附中模拟)如图所示,间距 l= 0.3m 的平行金属导轨 a1b1c1 和 a2b2c2 分别固定在两个竖直面 内.在水平面 a1b1b2a2 区域内和倾角 θ=37°的斜面 c1b1b2c2 区域内分别有磁感应强度 B1=0.4T、方向竖直向上和 B2= 1T、方向垂直于斜面向上的匀强磁场.电阻 R=0.3Ω、质量 m1=0.1kg、长为 l 的相同导体杆 K、S、Q 分别放置在导轨 上,S 杆的两端固定在 b1、b2 点,K、Q 杆可沿导轨无摩擦 滑动且始终接触良好.一端系于 K 杆中点的轻绳平行于导轨 绕过轻质定滑轮自然下垂,绳上穿有质量 m2=0.05kg 的小 环.已知小环以 a=6m/s2 的加速度沿绳下滑,K 杆保持静止, Q 杆在垂直于杆且沿斜面向下的拉力 F 作用下匀速运动.不 计导轨电阻和滑轮摩擦,绳不可伸长.取 g=10m/s2,sin37° =0.6,cos37°=0.8.求:
A.汽车甲的平均速度比乙的大
B.汽车乙的平均速度等于 C.甲乙两汽车的位移相同 D.汽车甲的加速度大小逐渐减小,汽车乙的加速度大 小逐渐增大
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课时作业【基础练习】1.在如图所示的平行板器件中,电场强度E 和磁感应强度B 相互垂直.一带电粒子(重力不计)从左端以速度v 沿虚线射入后做直线运动,则该粒子( )A .一定带正电B .速度v =E BC .若速度v >E B ,粒子一定不能从板间射出D .若此粒子从右端沿虚线方向进入,仍做直线运动B 解析:粒子带正电和负电均可,选项A 错误;由洛伦兹力等于电场力,qvB =qE ,解得速度v =E B ,选项B 正确;若速度v >E B ,粒子可能从板间射出,选项C 错误;若此粒子从右端沿虚线方向进入,所受电场力和洛伦兹力方向相同,不能做直线运动,选项D 错误.2.(多选)如图所示,a 、b 是一对平行金属板,分别接到直流电源的两极上,使a 、b 两板间产生匀强电场E ,右边有一块挡板,正中间开有一小孔d ,在较大空间范围内存在着匀强磁场,磁感应强度大小为B ,方向垂直纸面向里.从两板左侧中点c 处射入一束正离子(不计重力),这些正离子都沿直线运动到右侧,从d 孔射出后分成三束,则下列判断正确的是( )A .这三束正离子的速度一定不相同B .这三束正离子的比荷一定不相同C .a 、b 两板间的匀强电场方向一定由a 指向bD .若这三束离子改为带负电而其他条件不变,则仍能从d 孔射出BCD 解析:因为三束正离子在两极板间都是沿直线运动的,电场力等于洛伦兹力,可以判断三束正离子的速度一定相同,且电场方向一定由a 指向b ,A 错误,C 正确;在右侧磁场中三束正离子运动轨迹半径不同,可知这三束正离子的比荷一定不相同,B 项正确;若将这三束离子改为带负电,而其他条件不变的情况下分析受力可知,三束离子在两板间仍做匀速直线运动,仍能从d 孔射出,D 项正确.3.(2018·山东济宁模拟)为监测某化工厂的含有离子的污水排放情况,技术人员在排污管中安装了监测装置,该装置的核心部分是一个用绝缘材料制成的空腔,其宽和高分别为b 和c ,左、右两端开口与排污管相连,如图所示.在垂直于上、下底面方向加磁感应强度大小为B 的匀强磁场,在空腔前、后两个侧面上各有长为a 的相互平行且正对的电极M 和N ,M 、N 与内阻为R 的电流表相连.污水从左向右流经该装置时,电流表将显示出污水排放情况.下列说法中错误的是( )A .M 板比N 板电势低B .污水中离子浓度越高,则电流表的示数越小C .污水流量越大,则电流表的示数越大D .若只增大所加磁场的磁感应强度,则电流表的示数也增大B 解析:污水从左向右流动时,正、负离子在洛伦兹力作用下分别向N 板和M 板偏转,故N 板带正电,M 板带负电,A 正确.稳定时带电离子在两板间受力平衡,qvB =q U b ,此时U =Bbv =BbQ bc =BQ c,式中Q 是流量,可见当污水流量越大、磁感应强度越强时,M 、N 间的电压越大,电流表的示数越大,而与污水中离子浓度无关,B 错误,C 、D 正确.4.(多选)如图是质谱仪的工作原理示意图.带电粒子被加速电场加速后,进入速度选择器.速度选择器内相互正交的匀强磁场和匀强电场的强度分别为B 和E .平板S 上有可让粒子通过的狭缝P 和记录粒子位置的胶片A 1A 2.平板S 下方有强度为B 0的匀强磁场.下列表述正确的是( )A .质谱仪是分析同位素的重要工具B .速度选择器中的磁场方向垂直于纸面向外C .能通过狭缝P 的带电粒子的速率等于E BD .粒子打在胶片上的位置越靠近狭缝P ,粒子的比荷越小ABC 解析:质谱仪是分析同位素的重要工具,A 正确.在速度选择器中,带电粒子所受电场力和洛伦兹力在粒子沿直线运动时应等大反向,结合左手定则可知B 正确.由qE =qvB 可得v =E B ,C 正确.粒子在平板S 下方的匀强磁场中做匀速圆周运动,由qvB =mv 2R 得R =mv qB 0,所以q m =v B 0R,D 错误. 5.医生做某些特殊手术时,利用电磁血流计来监测通过动脉的血流速度.电磁血流计由一对电极a 和b 以及磁极N 和S 构成,磁极间的磁场是均匀的.使用时,两电极a 、b 均与血管壁接触,两触点的连线、磁场方向和血流速度方向两两垂直,如图所示.由于血液中的正负离子随血液一起在磁场中运动,电极a 、b 之间会有微小电势差.在达到平衡时,血管内部的电场可看做是匀强电场,血液中的离子所受的电场力和磁场力的合力为零.在某次监测中,两触点间的距离为3.0 mm ,血管壁的厚度可忽略,两触点间的电势差为160 μV ,磁感应强度的大小为0.040 T .则血流速度的近似值和电极a 、b 的正负为( )A .1.3 m/s ,a 正、 b 负B .2.7 m/s ,a 正、b 负C .1.3 m/s ,a 负、b 正D .2.7 m/s ,a 负、b 正答案:A6.利用霍尔效应制作的元件,广泛应用于测量和自动控制等领域.如图是霍尔元件的工作原理示意图,磁感应强度B 垂直于霍尔元件的工作面向下,通入图示方向的电流I ,C 、D 两侧就会形成电势差U CD ,下列说法中正确的是( )A .电势差U CD 仅与材料有关B .仅增大磁感应强度时,C 、D 两面的电势差变大C .若霍尔元件中定向移动的是自由电子,则电势差U CD >0D .在测定地球赤道上方的地磁场强弱时,元件的工作面应保持水平方向B 解析:设霍尔元件的厚度为d ,长为a ,宽为b ,稳定时有Bqv =q U CD b,又因为I =nqSv ,其中n 为单位体积内自由电荷的个数,q 为自由电荷所带的电荷量,S =bd ,联立解得:U CD =1nq ·BI d,可知选项A 错误;若仅增大磁感应强度B ,则C 、D 两面的电势差增大,选项B 正确;若霍尔元件中定向移动的是自由电子,由左手定则可知,电子将向C 侧偏转,则电势差U CD <0,选项C 错误;地球赤道上方的地磁场方向为水平方向,元件的工作面要与磁场方向垂直,故元件的工作面应保持竖直方向,选项D 错误.7.(多选)(2018·四川成都调研)如图,为探讨霍尔效应,取一块长度为a 、宽度为b 、厚度为d 的金属导体,给金属导体加与前后侧面垂直的匀强磁场B ,且通以图示方向的电流I 时,用电压表测得导体上、下表面M 、N 间电压为U .已知自由电子的电荷量为e .下列说法中正确的是( )A .M 板比N 板电势高B .导体单位体积内自由电子数越多,电压表的示数越大C .导体中自由电子定向移动的速度为v =U BdD .导体单位体积内的自由电子数为BI eUbCD 解析:电流方向向右,电子定向移动方向向左,根据左手定则判断可知,电子所受的洛伦兹力方向向上,则M 板积累了电子,M 、N 之间产生向上的电场,所以M 板比N 板电势低,选项A 错误.电子定向移动相当于长度为d 的导体垂直切割磁感线产生感应电动势,电压表的读数U 等于感应电动势E ,则有U =E =Bdv ,可见,电压表的示数与导体单位体积内自由电子数无关,选项B 错误;由U =E =Bdv 得,自由电子定向移动的速度为v =U Bd ,选项C 正确;电流的微观表达式是I =nevS ,则导体单位体积内的自由电子数n =I evS,S =db ,v =U Bd ,代入得n =BI eUb,选项D 正确. 【素能提升】8.(多选)(2014·新课标全国Ⅱ·20)图8为某磁谱仪部分构件的示意图.图中,永磁铁提供匀强磁场.硅微条径迹探测器可以探测粒子在其中运动的轨迹.宇宙射线中有大量的电子、正电子和质子.当这些粒子从上部垂直磁场方向进入磁场时,下列说法正确的是( )A .电子与正电子的偏转方向一定不同B .电子与正电子在磁场中运动轨迹的半径一定相同C .仅依据粒子运动轨迹无法判断该粒子是质子还是正电子D .粒子的动能越大,它在磁场中运动轨迹的半径越小AC 解析:根据左手定则,电子、正电子进入磁场后所受洛伦兹力的方向相反,故两者的偏转方向不同,选项A 正确;根据qvB =mv 2r ,得r =mv qB,若电子与正电子在磁场中的运动速度不相等,则轨迹半径不相同,选项B 错误;对于质子、正电子,它们在磁场中运动时不能确定mv 的大小,故选项C 正确;粒子的mv 越大,轨道半径越大,而mv =2mE k ,粒子的动能大,其mv 不一定大,选项D 错误.9.如图所示是医用回旋加速器示意图,其核心部分是两个D 形金属盒,两金属盒置于匀强磁场中,并分别与高频电源相连.现分别加速氘核(21H )和氦核(42He ).下列说法中正确的是( )A .它们的最大速度相同B .它们的最大动能相同C .两次所接高频电源的频率不相同D .仅增大高频电源的频率可增大粒子的最大动能 A 解析:根据qvB =m v 2R ,得v =qBR m .两粒子的比荷q m相等,所以最大速度相等.故A 正确.最大动能E k =12mv 2=q 2B 2R 22m ,两粒子的比荷q m 相等,但质量不相等,所以最大动能不相等.故B 错.带电粒子在磁场中运动的周期T =2em qB ,两粒子的比荷q m相等,所以周期相等.做圆周运动的频率相等,因为所接高频电源的频率等于粒子做圆周运动的频率,故两次所接高频电源的频率相同,故C 错误.由E k =q 2B 2R 22m可知,粒子的最大动能与加速电压的频率无关,故仅增大高频电源的频率不能增大粒子的最大动能.故D 错.10.速度相同的一束粒子(不计重力)由左端射入质谱仪后的运动轨迹如图所示,则下列相关说法中正确的是( )A .该束粒子带负电B .速度选择器的P 1极板带负电C .能通过狭缝S 0的粒子的速度等于E B 1D .粒子打在胶片上的位置越靠近狭缝S 0,则粒子的比荷越小C 解析:根据该束粒子进入匀强磁场B 2时向下偏转,由左手定则判断出该束粒子带正电,选项A 错误;粒子在速度选择器中做匀速直线运动,受到电场力和洛伦兹力作用,由左手定则知洛伦兹力方向竖直向上,则电场力方向竖直向下,因粒子带正电,故电场强度方向向下,速度选择器的P 1极板带正电,选项B 错误;粒子能通过狭缝,电场力与洛伦兹力平衡,有qvB 1=qE ,得v =EB 1,选项C 正确;粒子进入匀强磁场B 2中受到洛伦兹力做匀速圆周运动,根据洛伦兹力提供向心力,由牛顿第二定律有qvB 2=m v 2r ,得r =mv B 2q,可见v 、B 2一定时,半径r 越小,则q m越大,选项D 错误.11.(多选)如图所示为一种质谱仪的示意图,由加速电场、静电分析器和磁分析器组成.若静电分析器通道中心线的半径为R ,通道内均匀辐射电场,在中心线处的电场强度大小为E ,磁分析器有范围足够大的有界匀强磁场,磁感应强度大小为B 、方向垂直于纸面向外.一质量为m 、电荷量为q 的粒子从静止开始经加速电场加速后沿中心线通过静电分析器,由P 点垂直边界进入磁分析器,最终打到胶片上的Q 点.不计粒子重力.下列说法正确的是( )A .极板M 比极板N 的电势高B .加速电场的电压U =ERC .直径PQ =2B qmERD .若一群粒子从静止开始经过题述过程都落在胶片上的同一点,则该群粒子具有相同的比荷AD 解析:粒子在静电分析器内沿电场线方向偏转,说明粒子带正电荷,极板M 比极板N 的电势高,选项A 正确;由Uq =12mv 2和Eq =mv 2R 可得U =ER 2,选项B 错误;在磁场中,由牛顿第二定律得qvB =m v 2r ,即r =mv qB ,直径PQ =2r =2mv Bq=2ERm B 2q,可见只有比荷相同的粒子才能打在胶片上的同一点,选项C 错误,D 正确. 12.(多选)回旋加速器在科学研究中得到了广泛应用,其原理图如图所示.D 1和D 2是两个中空的半圆形金属盒,置于与盒面垂直的匀强磁场中,它们接在电压为U 、周期为T 的交流电源上.位于D 1的圆心处的质子源A 能不断产生质子(初速度可以忽略),它们在两盒之间被电场加速.当质子被加速到最大动能E k 后,再将它们引出.忽略质子在电场中的运动时间,则下列说法中正确的是( )A .若只增大交变电压U ,则质子的最大动能E k 会变大B .若只增大交变电压U ,则质子在回旋加速器中运行的时间会变短C .若只将交变电压的周期变为2T ,仍可用此装置加速质子D .质子第n 次被加速前、后的轨道半径之比为n -1∶nBD 解析:由qvB =m v 2r 得r =mv qB,质子经加速后的最大速度与回旋加速器的最大半径有关,而与交变电压U 无关,故A 错误;增大交变电压,质子加速次数减小,所以质子在回旋加速器中的运行时间变短,B 正确;为了使质子能在回旋加速器中加速,质子的运动周期应与交变电压的周期相同,C 错误;由nqU =12mv 2n 以及r n =mv n qB 可得质子第n 次被加速前、后的轨道半径之比为n -1∶n ,D 正确.13.一台质谱仪的工作原理图如图所示,电荷量均为+q 、质量不同的离子飘入电压为U 0的加速电场,其初速度几乎为零.这些离子经加速后通过狭缝O 沿着与磁场垂直的方向进入磁感应强度为B 的匀强磁场,最后打在底片上.已知放置底片的区域MN =L ,且OM =L .某次测量发现MN 中左侧23区域MQ 损坏,检测不到离子,但右侧13区域QN 仍能正常检测到离子.在适当调节加速电压后,原本打在MQ 区域的离子即可在QN 区域检测到.(1)求原本打在MN 中点P 点的离子质量m ;(2)为使原本打在P 点的离子能打在QN 区域,求加速电压U 的调节范围.解析:(1)离子在电场中加速qU 0=12mv 2,在磁场中做匀速圆周运动qvB =m v 2r 0,解得r 0=1B 2mU 0q ,代入r 0=34L ,解得m =9qB 2L 232U 0. (2)由(1)知,U =16U 0r 29L 2,离子打在Q 点r =56L ,U =100U 081,离子打在N 点r =L ,U =16U 09,则电压的范围为100U 081≤U ≤16U 09 答案:(1)9qB 2L232U 0(2)100U 081≤U ≤16U 09。