高中数学学考复习知识点教学提纲
高中数学知识点提纲(5篇)

高中数学知识点提纲(5篇)第一篇:高中数学知识点提纲学数学要对整个数学知识点的脉络有清晰的掌握,就是心中要有一个发展的数学框架。
把每单元前的单元介绍看看,注意后几行,一般都是重点。
以下是小编给大家整理的高中数学知识点提纲,希望对大家有所帮助,欢迎阅读!高中数学知识点提纲1一、集合、简易逻辑(14课时,8个)1.集合;2.子集;3.补集;4.交集;5.并集;6.逻辑连结词;7.四种命题;8.充要条件.二、函数(30课时,12个)1.映射;2.函数;3.函数的单调性;4.反函数;5.互为反函数的函数图象间的关系;6.指数概念的扩充;7.有理指数幂的运算;8.指数函数;9.对数;10.对数的运算性质;11.对数函数.12.函数的应用举例.三、数列(12课时,5个)1.数列;2.等差数列及其通项公式;3.等差数列前n项和公式;4.等比数列及其通顶公式;5.等比数列前n项和公式.四、三角函数(46课时17个)1.角的概念的推广;2.弧度制;3.任意角的三角函数;4,单位圆中的三角函数线;5.同角三角函数的基本关系式;6.正弦、余弦的诱导公式’7.两角和与差的正弦、余弦、正切;8.二倍角的正弦、余弦、正切;9.正弦函数、余弦函数的图象和性质;10.周期函数;11.函数的奇偶性;12.函数的图象;13.正切函数的图象和性质;14.已知三角函数值求角;15.正弦定理;16余弦定理;17斜三角形解法举例.五、平面向量(12课时,8个)1.向量2.向量的加法与减法3.实数与向量的积;4.平面向量的坐标表示;5.线段的定比分点;6.平面向量的数量积;7.平面两点间的距离;8.平移.六、不等式(22课时,5个)1.不等式;2.不等式的基本性质;3.不等式的证明;4.不等式的解法;5.含绝对值的不等式.七、直线和圆的方程(22课时,12个)1.直线的倾斜角和斜率;2.直线方程的点斜式和两点式;3.直线方程的一般式;4.两条直线平行与垂直的条件;5.两条直线的交角;6.点到直线的距离;7.用二元一次不等式表示平面区域;8.简单线性规划问题.9.曲线与方程的概念;10.由已知条件列出曲线方程;11.圆的标准方程和一般方程;12.圆的参数方程.八、圆锥曲线(18课时,7个)1椭圆及其标准方程;2.椭圆的简单几何性质;3.椭圆的参数方程;4.双曲线及其标准方程;5.双曲线的简单几何性质;6.抛物线及其标准方程;7.抛物线的简单几何性质.九、(B)直线、平面、简单何体(36课时,28个)1.平面及基本性质;2.平面图形直观图的画法;3.平面直线;4.直线和平面平行的判定与性质;5,直线和平面垂直的判与性质;6.三垂线定理及其逆定理;7.两个平面的位置关系;8.空间向量及其加法、减法与数乘;9.空间向量的坐标表示;10.空间向量的数量积;11.直线的方向向量;12.异面直线所成的角;13.异面直线的公垂线;14异面直线的距离;15.直线和平面垂直的性质;16.平面的法向量;17.点到平面的距离;18.直线和平面所成的角;19.向量在平面内的射影;20.平面与平面平行的性质;21.平行平面间的距离;22.二面角及其平面角;23.两个平面垂直的判定和性质;24.多面体;25.棱柱;26.棱锥;27.正多面体;28.球.十、排列、组合、二项式定理(18课时,8个)1.分类计数原理与分步计数原理.2.排列;3.排列数公式’4.组合;5.组合数公式;6.组合数的两个性质;7.二项式定理;8.二项展开式的性质.十一、概率(12课时,5个)1.随机事件的概率;2.等可能事件的概率;3.互斥事件有一个发生的概率;4.相互独立事件同时发生的概率;5.独立重复试验.选修Ⅱ(24个)十二、概率与统计(14课时,6个)1.离散型随机变量的分布列;2.离散型随机变量的期望值和方差;3.抽样方法;4.总体分布的估计;5.正态分布;6.线性回归.十三、极限(12课时,6个)1.数学归纳法;2.数学归纳法应用举例;3.数列的极限;4.函数的极限;5.极限的四则运算;6.函数的连续性.十四、导数(18课时,8个)1.导数的概念;2.导数的几何意义;3.几种常见函数的导数;4.两个函数的和、差、积、商的导数;5.复合函数的导数;6.基本导数公式;7.利用导数研究函数的单调性和极值;8函数的值和最小值.十五、复数(4课时,4个)1.复数的概念;2.复数的加法和减法;3.复数的乘法和除法答案补充高中数学有130个知识点,从前一份试卷要考查90个知识点,覆盖率达70%左右,而且把这一项作为衡量试卷成功与否的标准之一.这一传统近年被打破,取而代之的是关注思维,突出能力,重视思想方法和思维能力的考查.现在的我们学数学比前人幸福啊!相信对你的学习会有帮助的,祝你成功!答案补充一试全国高中数x的一试竞赛大纲,完全按照全日制中学《数学教学大纲》中所规定的教学要求和内容,即高考所规定的知识范围和方法,在方法的要求上略有提高,其中概率和微积分初步不考。
普通高中学业水平测试(数学复习提纲)

普通高中学业水平测试(数学复习提纲)普通高中学业水平测试(数学复习提纲)为了帮助同学们更好地复习普通高中学业水平测试的数学内容,我们特制定了一份详细的复习提纲,涵盖高中数学的主要知识点。
以下是本次复习的主要内容:一、代数部分1.1 实数- 实数的分类及性质- 实数的运算规则1.2 函数- 函数的定义及性质- 常见函数的图像与性质(如一次函数、二次函数、指数函数、对数函数等)1.3 方程与不等式- 线性方程组的解法- 一元二次方程的解法- 不等式的性质与解法1.4 幂函数与二次函数- 幂函数的定义与性质- 二次函数的定义与性质1.5 指数函数与对数函数- 指数函数的定义与性质- 对数函数的定义与性质1.6 三角函数- 三角函数的定义与性质(正弦、余弦、正切等)二、几何部分2.1 平面几何- 点、线、面的基本性质- 直线方程与曲线方程- 几何图形的面积与体积计算2.2 立体几何- 空间几何体的性质与结构- 空间向量及其运算- 立体几何中的面积与体积计算2.3 解析几何- 坐标系与坐标变换- 直线、圆的方程及其应用- 解析几何中的图形分析与计算三、概率与统计3.1 随机事件- 随机事件的定义与性质- 事件的运算(并、交、补等)3.2 概率分布- 离散型随机变量的概率分布- 连续型随机变量的概率分布3.3 统计量与推断- 描述性统计量(如均值、方差、标准差等)- 概率推断(如假设检验、置信区间等)四、数学应用4.1 数学建模- 数学建模的基本方法与技巧- 数学模型在实际问题中的应用4.2 数学竞赛- 数学竞赛题型及解题策略- 数学竞赛中的常用技巧与方法五、数学思想与方法5.1 函数与方程思想- 利用函数与方程解决实际问题- 函数与方程在高中数学中的应用5.2 数形结合思想- 数形结合在高中数学中的应用- 利用数形结合解决实际问题5.3 分类与整合思想- 分类与整合在高中数学中的应用- 利用分类与整合解决实际问题5.4 归纳与猜想- 数学归纳法的基本原理与应用- 利用归纳与猜想解决实际问题附录- 常见数学符号与公式- 解题策略与技巧- 模拟试题与解答希望这份复习提纲能帮助同学们系统地复习高中数学知识,为普通高中学业水平测试做好充分准备。
高中数学知识点提纲

高中数学知识点提纲高中数学知识点提纲高中数学作为学生整个中学阶段的最后一年,对于将要走向社会的学生来说,其重要性自然不言而喻。
在高中数学的学习过程中,不仅要求具备较高的数学基础,还要求学生在数学研究方法、思维方式、解题技能、分析问题等方面具备更高层次的能力。
以下为高中数学知识点提纲:一、函数与极限1.函数函数的概念及表示方式函数的分类常见函数的图像及性质函数性质的研究方法2.极限极限的概念极限的性质与判断方法常用极限和极限性质的证明极限运算法则二、导数与微分1.导数导数的概念与求法导数的性质与应用常用函数导数的求导法则2.微分微分的概念及性质微分形式化的使用应用微分解决实际问题三、不等式1.基本不等式一元二次不等式的解法三角函数不等式的解法2.常用不等式Cauchy-Schwarz不等式伯努利不等式AM-GM不等式Jensen不等式四、解析几何1.平面解析几何平面直角坐标系直线和圆的方程两条直线和两个圆的位置关系点,直线与圆的距离2.空间解析几何空间直角坐标系空间曲线,曲面的方程两个曲面和两条直线的位置关系点,直线与曲面的位置关系五、概率统计1.基本概念随机事件,随机变量,概率,样本空间和事件离散型随机变量和连续型随机变量2.常用分布二项分布,泊松分布,正态分布一元随机变量和二元随机变量参数估计和假设检验以上为高中数学知识点提纲,内容包含了函数与极限,导数与微分,不等式,解析几何,概率统计。
在实际学习中,这些知识点不可以孤立地存在,它们之间存在着联系和相互作用,因此进行综合组织和综合应用是正确的选择。
普通高中学业水平测试(数学复习提纲)

普通高中学业水平测试(数学复习提纲)
一、数系与代数
1. 实数集
- 自然数、整数、有理数、无理数的概念和性质
- 实数集的运算法则和性质
2. 代数式与方程
- 代数式的概念、基本性质和常见运算
- 一元一次方程及其解法
- 一元二次方程及其解法
3. 函数与方程
- 函数的概念、性质和图象
- 一元一次函数及其图象与应用
- 一元二次函数及其图象与应用
二、几何与三角学
1. 几何论证
- 直线、射线、线段、角的概念和性质
- 几何定理的证明方法和技巧
2. 图形的性质和变换
- 二维图形的基本性质和分类
- 平移、旋转、翻折、对称等变换的概念和性质
3. 三角比与三角函数
- 正弦、余弦、正切等三角比的定义和性质
- 三角函数的概念、性质和应用
三、数据与统计
1. 数据的收集和整理
- 数据的调查方法和整理过程
- 数据的频数分布表、频数分布图和统计图表的绘制
2. 描述统计与概率统计
- 数据的中心倾向和离散程度的度量和分析
- 事件、随机事件和概率的概念和计算方法
3. 统计推断与数据分析
- 样本调查和统计推断的原理和方法
- 假设检验和置信区间的应用
以上是普通高中学业水平测试中数学部分的复习提纲。
在备考过程中,同学们应理解和掌握数系与代数、几何与三角学、数据与统计的基本概念、性质和应用,同时掌握相关的计算方法和解题技巧,以便顺利应对数学考试。
高中数学学业水平合格性考试(小高考)复习知识点

高中数学学业水平复习知识点第一章 集合与简易逻辑1、集合(1)、定义:某些指定的对象集在一起叫集合;集合中的每个对象叫集合的元素。
集合中的元素具有确定性、互异性和无序性;表示一个集合要用{ }。
(2)、集合的表示法:列举法()、描述法()、图示法();(3)、集合的分类:有限集、无限集和空集(记作 φ, φ是任何集合的子集,是任何非空集合的真子集);(4)、元素 a 和集合 A 之间的关系:a ∈A ,或 a ∉A ;(5)、常用数集:自然数集:N ;正整数集:N ;整数集:Z ;整数:Z ;有理数集:Q ;实数集:R 。
2、子集(1)、定义:A 中的任何元素都属于 B ,则 A 叫 B 的子集 ;记作:A ⊆B ,注意:A ⊆B 时,A 有两种情况:A =φ与 A ≠φ(2)、性质:①、 A ⊆A , ⊆ φA ;②、若 A ⊆B , B ⊆C ,则 A ⊆C ;③、若 A ⊆B , B ⊆A 则 A =B ;3、真子集(1)、定义:A 是 B 的子集 ,且 B 中至少有一个元素不属于 A ;记作: A ⊂B ;(2)、性质:①、 A ⊆ φ, φ ≠A ;②、若 A ⊆B , B ⊆C ,则 A ⊆C ;4、补集①、定义:记作:},|{A x U x x A C U ∉∈=且;②、性质:A A C C U A C A A C A U U U U ===)(,, φ;5、交集与并集(1)、交集:}|{B x A x x B A ∈∈=且 性质:①、φφ== A A A A ,②、若B B A = ,则AB ⊆(2)、并集:}|{B x A x x B A ∈∈=或 性质:①、AA A A A ==φ ,②、若B B A = ,则BA ⊆AAC U A BBA6、一元二次不等式的解法:(二次函数、二次方程、二次不等式三者之间的关系)不等式解集的边界值是相应方程的解含参数的不等式ax 2+b x +c>0恒成立问题⇔含参不等式ax 2+b x +c>0的解集是R ;其解答分a =0(验证bx +c>0是否恒成立)、a ≠0(a<0且△<0)两种情况。
数学学科高中三年精要复习提纲

数学学科高中三年精要复习提纲高中数学是一门重要的学科,对于学生的综合素质和未来发展都有着重要的影响。
为了更好地复习高中数学知识,我将在本文中为大家提供一份高中三年数学复习提纲,希望能够帮助大家系统地复习数学知识,提高数学成绩。
一、函数与方程1. 函数的概念与性质:定义域、值域、单调性、奇偶性等。
2. 一次函数与二次函数:函数图像、性质、解析式及其应用。
3. 指数与对数函数:函数图像、性质、解析式及其应用。
4. 三角函数:正弦函数、余弦函数、正切函数的图像、性质、解析式及其应用。
5. 方程的解法:一元一次方程、一元二次方程、一元三次方程、一元四次方程等。
二、数列与数学归纳法1. 数列的概念与性质:通项公式、递推公式、等差数列、等比数列等。
2. 数列的求和:等差数列求和、等比数列求和、级数求和等。
3. 数学归纳法的基本思想与应用:证明数学命题、推理数学结论等。
三、平面几何1. 直线与圆的性质:直线的方程、直线的位置关系、圆的方程、切线与法线等。
2. 三角形与四边形:三角形的性质、全等三角形、相似三角形、四边形的性质等。
3. 圆的性质与圆心角、弧长、扇形面积、弓形面积等的计算。
4. 向量的概念与性质:向量的表示、向量的加减、向量的数量积、向量的应用等。
四、立体几何1. 空间几何体的性质:点、线、面、体的性质及其相互关系。
2. 空间几何体的计算:体积、表面积等的计算。
3. 空间几何体的投影:平行投影、中心投影等。
五、概率与统计1. 概率的基本概念与性质:样本空间、事件、概率的计算等。
2. 统计的基本概念与性质:频数、频率、平均数、中位数、众数等。
3. 随机变量与概率分布:离散型随机变量、连续型随机变量、概率密度函数、分布函数等。
六、数学思维与解题方法1. 数学思维的培养:逻辑思维、抽象思维、创造思维等。
2. 解题方法的应用:代数方法、几何方法、综合方法等。
以上提纲是高中数学三年的精要复习内容,希望同学们能够根据这个提纲有针对性地进行复习。
高中学业水平考试数学知识点总结(一)

高中学业水平考试数学知识点总结(一)
高中学业水平考试数学知识点总结
前言
高中学业水平考试是对学生全面素质的评价,其中数学是考试科目中的一项重要内容。
本文将对高中学业水平考试数学知识点进行全面总结,帮助学生理清思路,提高备考效率。
正文
1. 数与式
•实数的概念与性质
•等式与方程的性质
•级数与公式的运算
2. 函数与图像
•一次函数与二次函数
•反比例函数与指数函数
•正弦函数与余弦函数
3. 三角函数
•任意角与弧度制
•三角函数的基本关系式
•几种特殊角的正弦、余弦、正切值
4. 解析几何
•直线与圆的方程
•二次曲线的方程
•坐标系变换与平移
5. 空间几何
•空间直线与平面
•空间向量及运算
•空间几何定理与性质
6. 概率统计
•随机事件与概率
•随机变量与分布
•统计指标与抽样调查
结尾
通过对高中学业水平考试数学知识点的总结,我们可以清晰地看到数与式、函数与图像、三角函数、解析几何、空间几何以及概率统计等重要知识点。
熟练掌握这些知识点,将有助于学生在考试中取得
好成绩。
希望学生们认真学习,不断巩固基础,做好备考准备,相信你们能取得优异的成绩!。
高中数学复习提纲

高中数学复习提纲
1. 数与式的运算
- 整数四则运算
- 分数的四则运算
- 有理数运算
- 开方、幂运算
- 代数式与方程的运算
2. 几何相关知识
- 点、线、面的基本概念
- 直线、曲线的性质
- 三角形、四边形的性质
- 圆的性质
- 直角坐标系与平面坐标系
3. 函数与图像
- 函数的概念和性质
- 一次函数、二次函数及其图像
- 指数函数与对数函数及其图像
- 三角函数及其图像
- 极坐标与参数方程
4. 概率与统计
- 事件与概率
- 随机事件与概率
- 排列与组合
- 统计基本概念和方法
5. 数学推理与证明
- 数学归纳法
- 数学问题的解答和证明方法- 数学问题与实际问题的联系
6. 解析几何
- 直线和圆的方程
- 空间直线和平面的方程
- 参数方程与联立方程
7. 微积分
- 函数的极限和连续性
- 导数和微分
- 积分和定积分
- 微分方程基本概念
8. 线性代数
- 矩阵的基本概念
- 线性方程组及其解法
- 行列式的基本概念
- 向量的基本概念和运算
以上是高中数学复习的主要内容提纲,可以根据这个提纲规划复习进度,着重掌握各个知识点,加强练习,提高数学水平。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数学学业水平考试常用公式及结论一、集合与函数:集合1、集合中元素的特征:确定性,互异性,无序性2、 集合相等:若:,A B B A ⊆⊆,则A B =3. 元素与集合的关系:属于∈ 不属于:∉ 空集:φ4.集合12{,,,}n a a a L 的子集个数共有2n 个;真子集有2n –1个;非空子集有2n–1个;5.常用数集:自然数集:N 正整数集:*N 整数集:Z 有理数集:Q 实数集:R 函数的奇偶性1、定义: 奇函数 <=> f (– x ) = – f ( x ) ,偶函数 <=> f (–x ) = f ( x )(注意定义域)2、性质:(1)奇函数的图象关于原点成中心对称图形; (2)偶函数的图象关于y 轴成轴对称图形;(3)如果一个函数的图象关于原点对称,那么这个函数是奇函数; (4)如果一个函数的图象关于y 轴对称,那么这个函数是偶函数. 函数的单调性1、定义:对于定义域为D 的函数f ( x ),若任意的x 1, x 2∈D ,且x 1 < x 2① f ( x 1 ) < f ( x 2 ) <=> f ( x 1 ) – f ( x 2 ) < 0 <=> f ( x )是增函数 ② f ( x 1 ) > f ( x 2 ) <=> f ( x 1 ) – f ( x 2 ) > 0 <=> f ( x )是减函数 二次函数y = ax 2 +bx + c (0a ≠)的性质1、顶点坐标公式:⎪⎪⎭⎫ ⎝⎛--a b ac a b 44,22, 对称轴:a b x 2-=,最大(小)值:a b ac 442-2.二次函数的解析式的三种形式(1)一般式2()(0)f x ax bx c a =++≠; (2)顶点式2()()(0)f x a x h k a =-+≠; (3)两根式12()()()(0)f x a x x x x a =--≠. 指数与指数函数 1、幂的运算法则:(1)a m • a n = a m + n ,(2)nm n m aa a -=÷,(3)( a m ) n = a m n (4)( ab ) n = a n • b n(5) n n nb a b a =⎪⎭⎫ ⎝⎛(6)a 0 = 1 ( a ≠0)(7)n na a 1=- (8)m n m na a =(9)m n m naa 1=-2、指数函数y = a x (a > 0且a ≠1)的性质:(1)定义域:R ; 值域:( 0 , +∞) (2)图象过定点(0,1)3.指数式与对数式的互化: log b a N b a N =⇔=(0,1,0)a a N >≠>. 对数与对数函数 1.对数的运算法则:(1)a b = N <=> b = log a N (2)log a 1 = 0(3)log a a = 1(4)log a a b = b (5)a log a N= N(6)log a (MN) = log a M + log a N (7)log a (NM) = log a M -- log a N (8)log a N b = b log a N (9)换底公式:log a N =aNb b log log(10)推论 log log m na a nb b m=(0a >,且1a >,,0m n >,且1m ≠,1n ≠, 0N >). (11)log a N =aN log 1(12)常用对数:lg N = log 10 N (13)自然对数:ln A = log e A(其中 e = 2.71828…) 2、对数函数y = log a x (a > 0且a ≠1)的性质: (1)定义域:( 0 , +∞) ; 值域:R (2)图象过定点(1,0)2.图象平移:若将函数)(x f y =的图象右移a 、上移b 个单位,得到函数b a x f y +-=)(的图象; 规律:左加右减,上加下减平均增长率的问题如果原来产值的基础数为N ,平均增长率为p ,则对于时间x 的总产值y ,有(1)xy N p =+. 函数的零点:1.定义:对于()y f x =,把使()0f x =的X 叫()y f x =的零点。
即 ()y f x =的图象与X 轴相交时交点的横坐标。
2.函数零点存在性定理:如果函数()y f x =在区间[],a b 上的图象是连续不断的一条 曲线,并有()()0f a f b ⋅<,那么()y f x =在区间(),a b 内有零点,即存在(),c a b ∈, 使得()0f c =,这个C 就是零点。
二、圆:1、斜率的计算公式:k = tanα=1212x x y y --(α ≠ 90°,x 1≠x 2)2、直线的方程(1)斜截式 y = k x + b(k 存在) ;(2)点斜式 y – y 0 = k ( x – x 0 ) (k 存在); (3)两点式121121x x x x y y y y --=--(1212,x x y y ≠≠) ;4)截距式 1=+b ya x (0,0ab ≠≠) (5)一般式0(,0Ax Byc A B ++=不同时为) 3、两条直线的位置关系:4、两点间距离公式:设P 1 ( x 1 , y 1 ) 、P 2 ( x 2 , y 2 ),则 | P 1 P 2 | =()()221221y y x x -+-5、点P ( x 0 , y 0 )到直线l :A x + B y + C = 0的距离:2200BA CBy Ax d +++=6、圆的方程7.点与圆的位置关系点00(,)P x y 与圆222)()(r b y a x =-+-的位置关系有三种若d =则 d r >⇔点P 在圆外⇔222)()(r b y a x >-+-d r =⇔点P 在圆上⇔222)()(r b y a x =-+- d r <⇔点P 在圆内⇔222)()(r b y a x <-+-8.直线与圆的位置关系(圆心到直线的距离为d)直线0=++C By Ax 与圆222)()(r b y a x =-+-的位置关系有三种:①0<∆⇔⇔>相离r d ②0=∆⇔⇔=相切r d ③0>∆⇔⇔<相交r d . 9.两圆位置关系的判定方法设两圆圆心分别为O 1,O 2,半径分别为r 1,r 2,d O O =21条公切线外离421⇔⇔+>r r d ; 条公切线外切321⇔⇔+=r r d ;条公切线相交22121⇔⇔+<<-r r d r r ; 条公切线内切121⇔⇔-=r r d ; 无公切线内含⇔⇔-<<210r r d .三、立体几何:(一)、线线平行判定定理:1、平行于同一条直线的两条直线互相平行。
2、垂直于同一平面的两直线平行。
3、如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行。
4、如果两个平行平面同时与第三个平面相交,那么它们的交线平行。
(二)、线面平行判定定理1、若平面外的一条直线与此平面内的一条直线平行,则该直线与此平面平行。
2、若两个平面平行,则其中一个平面内的任何一条直线都与另一个平面平行。
(三)、面面平行判定定理:如果一个平面内有两条相交直线分别平行于另一个平面,那么这两个平面平行。
(四)、线线垂直判定定理:若一直线垂直于一平面,则这条直线垂直于这个平面内的所有直线。
(五)、线面垂直判定定理1、如果一条直线和一个平面内的两条相交直线都垂直,那么这条直线垂直于这个平面。
2、如果两个平面互相垂直,那么在一个平面内垂直于它们交线的直线垂直于另一个平面。
(六)、面面垂直判定定理如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直。
四、三角函数:1、同角三角函数公式 sin 2α+ cos 2α= 1 αααcos sin tan = tan αcot α=1 2、二倍角的三角函数公式sin2α= 2sin αcos α cos2α=2cos 2α-1 = 1-2 sin 2α ααα2tan 1tan 22tan -=3、两角和差的三角函数公式sin (α±β) = sin αcos β土cos αsin β cos (α±β) = cos αcos β干sin αsin β()βαβαβαtan tan 1tan tan tan μ±=±4、三角函数的诱导公式 “奇变偶不变,符号看象限。
”5、三角函数的周期公式函数sin()y x ωϕ=+,x ∈R 及函数cos()y x ωϕ=+,x ∈R(A,ω,ϕ为常数,且A ≠0,ω>0)的周期2T πω=;函数tan()y x ωϕ=+,,2x k k Z ππ≠+∈(A,ω,ϕ为常数,且A≠0,ω>0)的周期T πω=.五、平面向量 :1、向量的模计算公式:(1)向量法:|=(2)坐标法:设a =(x ,y ),则|a | =22y x +2、平行向量规定:零向量与任一向量平行。
设=(x 1,y 1),=(x 2,y 2),λ为实数 向量法:a ∥b (b ≠0)<=> a =λb坐标法:∥(≠)<=> x 1 y 2 – x 2 y 1 = 0 <=> 2211y x y x =(y 1 ≠0 ,y 2 ≠0) 3、垂直向量规定:零向量与任一向量垂直。
设a =(x 1,y 1),b =(x 2,y 2) 向量法:a ⊥b <=> a ·b = 0 坐标法:a ⊥b <=> x 1 x 2 + y 1 y 2 = 0 4、平面两点间的距离公式,A B d =||AB =u u u r =11(,)x y ,B 22(,)x y ).5、向量的加法(1)向量法:三角形法则(首尾相接首尾连),平行四边形法则(起点相同连对角) (2)坐标法:设a =(x 1,y 1),b =(x 2,y 2),则a +b =(x 1+ x 2 ,y 1+ y 2) 6、向量的减法(1)向量法:三角形法则(首首相接尾尾连,差向量的方向指向被减向量) (2)坐标法:设a =(x 1,y 1),b =(x 2,y 2),则a -b =(x 1 - x 2 ,y 1- y 2) 7、两个向量的夹角计算公式:(1)向量法:cos θ =(2)坐标法:设=(x 1,y 1),=(x 2,y 2),则cos θ =222221212121yx yx y y x x +++8、平面向量的数量积计算公式:(1)向量法:a ·b = |a | |b | cos θ (2)坐标法:设a =(x 1,y 1),b =(x 2,y 2),则a ·b = x 1 x 2 + y 1 y 2(3) a ·b 的几何意义:数量积a ·b 等于a 的长度|a|与b 在a 的方向上的投影|b|cos θ的乘积.六、解三角形:ΔABC 的六个元素A, B, C, a , b, c 满足下列关系: 1、角的关系:A + B + C = π,特殊地,若ΔABC 的三内角A, B, C 成等差数列,则∠B = 60º,∠A +∠C = 120º 2、诱导公式的应用:sin ( A + B ) = sinC , cos ( A + B ) = --cosC ,3、边的关系:a + b > c , a – b < c (两边之和大于第三边,两边之差小于第三边。