1博弈论概述2完全信息静态博弈3完全信息动态博弈4
合集下载
第11章-博弈论教材全篇

田忌
齐王 b1 b2 b3 b4 b5 b6
a1
3 1 1 1 1 1
a2
1 3 1 1 1 1
a3
1 1 3 1 1 1
a4 1 1 1 3 1 1
a5
1 1 1 1 3 1
a6
1 1 1 1 1 3
2-2 具有鞍点的博弈
通过下面的例3说明,什么是局中人的最优纯策略, 如何求出这个纯策略以及博弈解和博弈值的概念。
博弈的三个要素的矩阵表示(局中人A的收益)
局中人B
局中人A
策
a1
a2
略
am
b1
c11 c21
cm1
策
b2
c12 c22
cm 2
略
bn
c1n c2 n
cmn
局中人A的收益函数可用如下的矩阵表示:
c11
A
c21
cm1
c12 c22
cm 2
c1n c2n
cmn
二人零和博弈也称为矩阵博弈。
博弈论的研究建立在下述假设前提下:即参与博弈 的各局中人都是理性的。
“博弈中一个理性的决策必定建立在预测其他局中人 的反应之上。一个局中人将自己置身于其他局中人的 位置,并为他着想从而预测其他局中人将选择的行为, 在这个基础上该局中人决定自己最理想的行动。”
博弈的三个要素,即局中人,策略集和收益函数 构成了博弈信息,根据不同信息可对博弈做如下 分类:
同样乙方应从收益表中每列找出最大正数(恰为乙 方输掉的数值),为了减少损失,应从这些数字中 求出最小数,它所对应的列策略为乙方的最优纯策 略。
计算过程如下:
对局中人甲,先从每一行中求出最小值
min6,1, 8 8,min3, 2,6 2, min3,0, 4 3,再求出其中的最大值 max8, 2, 3 2。数字2对应的行策略
《西方经济学》第七章 博弈论

21
第五节
不完全信息动态博弈
对应于不完全信息动态博弈的均衡概念是精炼 精炼 贝叶斯均衡(perfect Bayesian equilibrium). 贝叶斯均衡 这个概念是完全信息动态博弈的子博弈精炼纳 什均衡与不完全信息静态均衡的贝叶斯纳什均 衡的结合.具体来说,精炼贝叶斯均衡是所有 参与人战略和信念的一种结合.它满足如下条 件:第一,在给定每个参与人有关其他参与人 类型的信念的条件下,该参与人的战略选择是 最优的.第二,每个参与人关于其他参与人所 属类型的信念,都是使用贝叶斯法则从所观察 到的行为中获得的.
22
贝叶斯法则 贝叶斯法则是概率统计中的应用所观察 到的现象对有关概率分布的主观判断 (即先验概率)进行修正的标准方法.
23
习
题
1. 什么是占优策略均衡?什么是重复剔除的占优策 略均衡?什么是纳什均衡? 2. 什么是子博弈精炼纳什均衡?重复博弈与一次性 博弈有何不同? 3. 假定两寡头生产同质产品,两寡头的边际成本为 0.两寡头所进行的是产量竞争.对于寡头产品 的市场需求曲线为P=30-Q,其中Q=Q1+ Q2.Q1是寡头1的产量,Q2是寡头2的产量. (1)假定两个寡头所进行的是一次性博弈. 如果两寡头同时进行产量决策,两个寡头各生产 多少产量?各获得多少利润?
25
�
第七章
第一节 第三节 第四节 第五节
博弈论
完全信息静态博弈 完全信息动态博弈 不完全信息静态博弈 不完全信息动态博弈
第一节 博弈问题概述
一,博弈的基本概念 二,博弈的分类
2
一,博弈的基本概念
博弈论 博弈论(game theory)是研究决策主体的 行为发生直接相互作用时候的决策以及这 种决策的均衡问题的. 博弈论的基本概念包括:参与人 行动 参与人,行动 参与人 行动, 战略,信息 支付函数,结果 均衡. 信息,支付函数 结果,均衡 战略 信息 支付函数 结果 均衡
第三章信息经济学的研究方法—博弈论

第一节 概述-人生处处皆博弈
人生是永不停歇的博弈过程,博弈意 略达到合意的结果。
作为博弈者,最佳策略是最大限度地 利用游戏规则,最大化自己的利益;
作为社会最佳策略,是通过规则使社 会整体福利增加。
一、博弈论的定义
博弈论(game theory,又译为对策论,游戏论)
定义:研究决策主体的行为在直接相互作用时,人们如 何进行决策、以及这种决策如何达到均衡。
五、博弈论与信息经济学
博弈论是给定信息结构求均衡结果,它实际上是一种均衡理论, 我们最终要找的是一个均衡的结果,博弈论是方法论导向的, 它实际上是一种解决问题的方法。它是一个实证的方法。
信息经济学是给定信息结构求契约的安排。它实际上是一种契 约设计理论,它是问题导向的。它是一个规范的方法。
石匠的决策与拳击手的决策的区别
一、博弈论的定义
2、理性人假设 理性人是指一个很好定义的偏好,在面临给定的约束条件下
最大化自己的偏好。
博弈论说起来有些绕嘴,但理解起来很好理解,那就是 每个对弈者在决定采取哪种行动时,不但要根据自身的利益 和目的行事,而且要考虑到他的决策行为对其他人可能的影 响,通过选择最佳行动计划,来寻求收益或效用的最大化。
(一)囚徒困境
假定: (1)每个局中人都知道博弈规则和博弈结果的支付
矩阵; (2)每个局中人都是理性的(个人理性和个人最优
决策); (3)不能“串通”
(一)囚徒困境——纳什均衡
囚徒A
坦白
坦白 囚徒 B
-8,-8
抵赖 -10,0
抵赖 0,-10 -1,-1
-8大于-10 0大于-1
(坦白,坦白)是纳什均衡
第三章 信息经济学的研究方法 ——博弈论
博弈模型汇总

博弈模型汇总如下:
1.合作博弈与非合作博弈:这是根据参与者之间是否可以达成具
有约束力的协议来划分的。
合作博弈强调团队合作和协作,目标是达成共赢;而非合作博弈则强调个人利益最大化,不考虑其他参与者的利益。
2.静态博弈与动态博弈:这是根据参与者做出决策的时间顺序来
划分的。
静态博弈是指所有参与者同时做出决策,或者决策顺序没有影响;动态博弈是指参与者的决策有先后顺序,后行动者可以观察到先行动者的决策。
3.完全信息博弈与不完全信息博弈:这是根据参与者对其他参与
者的偏好、策略和支付函数了解的程度来划分的。
完全信息博弈是指所有参与者都拥有完全的信息,能够准确判断其他参与者的策略和支付函数;不完全信息博弈则是指参与者只拥有部分信息,无法准确判断其他参与者的策略和支付函数。
4.零和博弈与非零和博弈:这是根据所有参与者的总收益是否为
零来划分的。
零和博弈是指所有参与者的总收益为零,一方的收益等于另一方的损失;非零和博弈则是指所有参与者的总收益不为零,各方的收益和损失不一定相关。
5.竞争博弈与合作博弈:这是根据参与者之间是否存在竞争或合
作关系来划分的。
竞争博弈是指参与者之间存在竞争关系,目标是追求个人利益最大化;合作博弈则是指参与者之间存在合作关系,目标是追求共同利益最大化。
6.微分博弈与离散博弈:这是根据决策变量的连续性来划分的。
微分博弈是指决策变量是连续变化的,需要考虑时间、速度等因素;离散博弈则是指决策变量只有有限个可能的取值,通常只考虑状态的变化而不考虑时间、速度等因素。
博弈论概述

“坦白”是A的占优策略。同样,“坦白”也是B的占优策略。
一般地,称 si*为局中人i的(严格)占优策略, 若对应所有的
si , s i*是i的严格最优策略 , 即:
ui (si*, si ) ui (si' , si ) si , si' si*
对应地,所有的 si' si* 被称为“劣策略”。注意:这
甲的策略
1
2
3
乙的策略
1
7
8
9
2
6
2
3
3
5
4
0
1.乙先行动。若乙选1,则甲选3;乙选2,则甲选1;乙选3, 则甲选1。乙在行动时会估计到甲的行动,它估计三种选择 中的最高代价为策略1(损失900万),其次为策略2(损失 600万),最低为策略3(损失为500万)。因此,乙必选代 价最低的策略3。——最大最小原理。结论:乙选择3,甲选 1作为回应,乙损失500万,甲获益500万。
在博弈论里,一个博弈可以有两种表述方式:一种是策 略式(strategic form representation)表述,另一种是 扩展式( extensive form representation )表述。前者 适合于讨论静态博弈,后者适合于讨论动态博弈。在策略式 表述中,所有参与人同时选择各自的策略,所有参与人选择 的策略一起决定每个参与人的支付。
2007 - Leonid Hurwicz, Eric S. Maskin, Roger B. Myerson 2005 - Robert J. Aumann, Thomas C. Schelling 2001 - George A. Akerlof, A. Michael Spence, Joseph E.
一般地,称 si*为局中人i的(严格)占优策略, 若对应所有的
si , s i*是i的严格最优策略 , 即:
ui (si*, si ) ui (si' , si ) si , si' si*
对应地,所有的 si' si* 被称为“劣策略”。注意:这
甲的策略
1
2
3
乙的策略
1
7
8
9
2
6
2
3
3
5
4
0
1.乙先行动。若乙选1,则甲选3;乙选2,则甲选1;乙选3, 则甲选1。乙在行动时会估计到甲的行动,它估计三种选择 中的最高代价为策略1(损失900万),其次为策略2(损失 600万),最低为策略3(损失为500万)。因此,乙必选代 价最低的策略3。——最大最小原理。结论:乙选择3,甲选 1作为回应,乙损失500万,甲获益500万。
在博弈论里,一个博弈可以有两种表述方式:一种是策 略式(strategic form representation)表述,另一种是 扩展式( extensive form representation )表述。前者 适合于讨论静态博弈,后者适合于讨论动态博弈。在策略式 表述中,所有参与人同时选择各自的策略,所有参与人选择 的策略一起决定每个参与人的支付。
2007 - Leonid Hurwicz, Eric S. Maskin, Roger B. Myerson 2005 - Robert J. Aumann, Thomas C. Schelling 2001 - George A. Akerlof, A. Michael Spence, Joseph E.
博弈论概述

定义: 标准型或战略型表达
一个博弈G的标准型或战略型表达:
有限的参与人集合{1,
2, ..., n}, 参与人的战略空间(战略集)S1 S2 ... Sn 以及 他们的收益函数u1 u2 ... un 这里 ui : S1 × S2 × ...× Sn→R.
标准型表达: 2人博弈
完全信息静态 (或者同时行动)博弈
参与人是否会相互合作?
不. 我们只考虑非合作博弈 方法论个人主义(哈耶克意义上的:参见《个人主 义与经济秩序》) 决策时点 每一参与人i 选择他/她的战略 si 时并不知晓别人的 选择(如果知道别人的选择会有好处吗?). 每一参与人i 得到他/她的收益为 ui(s1, s2, ..., sn). 博弈结束.
-9 ,
0
认罪
-6 , -6
经典例子: 囚徒困境
The meaning of symmetry
Single population dynamics Evolutionary game theory
Smith(1982)
例子:男女之争
克里斯和帕特需要决定在晚上到底是去看歌剧
呢还是看拳赛. 他们认为: 他们都想共渡一个夜晚而不想分开. 但克里斯更喜欢歌剧. 而帕特则更喜欢拳赛.
博弈论概述
什么是博弈? 完全信息静态博弈(最简单); 完全信息动态博弈(比较简单); 不完全信息静态博弈(比较困难); 不完全信息动态博弈(十分困难)
完全信息静态博弈概要
博弈的介绍 标准型 (或者战略型) 表达 重复剔除严格劣战略
纳什均衡
纳什均衡的应用 混合战略纳什均衡
Player 1 s12 s13
第七章博弈论高鸿业

(二)重复剔除的占优策略均衡
• 在绝大多数博弈中,占优策略均衡是不存在的。 在绝大多数博弈中,占优策略均衡是不存在的。 • 智猪博弈(boxed pigs)是博弈论中的另一个著名的例子。 pigs)是博弈论中的另一个著名的例子。 智猪博弈( • 表7 -3 智 猪 博 弈 的 收 益 矩 阵 小猪 等待 2,4 0,0
求解智猪博弈均衡的方法
• 首先找出某一个参与者的严格劣战略,将其剔除 首先找出某一个参与者的严格劣战略, 严格劣战略 然后构造新博弈, 掉,然后构造新博弈,继续剔除新博弈中某一参 与人的严格劣战略;重复进行这一过程, 与人的严格劣战略;重复进行这一过程,直到剩 下唯一的参与人战略组合为止, 下唯一的参与人战略组合为止,这一唯一剩下的 参与人战略组合就是这个博弈的均衡解, 参与人战略组合就是这个博弈的均衡解,称为 重复剔除的占优战略均衡” “重复剔除的占优战略均衡” • 严格劣战略是指无论其他参与者选择什么战略, 严格劣战略是指无论其他参与者选择什么战略, 某一参与人可能采取的对自己不利的战略
这个博弈的均衡解是什么呢? 这个博弈的均衡解是什么呢?
这个博弈的均衡解是大猪选择按按钮, 这个博弈的均衡解是大猪选择按按钮,小 猪选择等待,这时, 猪选择等待,这时,大猪和小猪的净收益水平 分别为2个单位和4个单位。 分别为2个单位和4个单位。 这是一个“多劳不多得,少劳不少得” 这是一个“多劳不多得,少劳不少得”的 均衡。 均衡。
• 占优策略均衡 占优策略均衡要求任何一个参与人对于其 他参与人的任何策略 任何策略选择来说,其最优的 任何策略 策略都是唯一的。 • 纳什均衡 纳什均衡只要求任何一个参与人在其他参 与人的策略选择给定 策略选择给定的条件下,其选择的 策略选择给定 策略是最优的。 • 占优策略均衡一定是纳什均衡,但纳什均 衡不一定就是占优策略均衡。
博弈论完整版PPT课件

ac 3
纳什均衡利润为:
Π1NE
Πቤተ መጻሕፍቲ ባይዱ
NE 2
(a c)2 9
.
31
q2 a-c
(a-c)/2 (a-c)/3
.
19
理性共识
0-阶理性共识:每个人都是理性的,但不知道其 他人是否是理性的;
1-阶理性共识:每个人都是理性的,并且知道其 他人也是理性的,但不知道其他人是否知道自己 是理性的;
2-阶理性共识:每个人都是理性的,并且知道其
他人也是理性的,同时知道其他人也知道自己是
理性的;但不知道其他人是否知道自己知道他们
国外经济学教科书改写,加入大量博弈论内容
博弈论进入主流经济学,反映了:
经济学的研究对象越来越转向个体放弃了有些没有微观基础的假设
经济学的研究对象越来越转向人与人之间行为的相互影响和作用
经济学越来越重视对信息的研究
传统微观经济学的工具是数学(微积分、线性代数、统计学),而
博弈论是一种新的数学。以前只有陆军,现在有了空军,其差异
不完全信息
静态
纳什均衡
(纳什)
贝叶斯纳什均衡
(海萨尼)
.
动态
子博弈精练纳什均衡
(泽尔腾)
精练叶贝斯纳什均衡
(泽尔腾等)
9
博弈的分类
根据参与人是否合作
根据参与人的多少
根据博弈结果
根据行动的先后次序
两人博弈 多人博弈
静态博弈 动态博弈
合作博弈 非合作博弈
零和博弈 常和博弈 变和博弈
根据参与人对其他参与人的
4-阶理性:C相信R相信C相信R相信C是理性的,C会将R1从R的战略空间 中剔除, C不会选择C3;
5-阶理性:R相信C相信R相信C相信R相信C是理性的,R会将C3从C的战
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
②从局中人行动的先后顺序可划分为静 态博弈(Static game)和动态博弈 (dynamic game)。静态博弈是指在博弈中, 局中人同时选择行动或虽非同时行动但后行 动者并不知道先行动者采取了什么具体行动。 动态博弈是指局中人的行动有先后顺序,且 后行动者能够观察到先行动者所选择的行动。
③从局中人是否具有有关其他参与人 (对手)的特征、策略空间及支付函数方面 的知识的角度,可划分为完全信息博弈
合作博弈和非合作博弈的区别在于人们的行动为相互 作用时,当事人能否达成一个具有约束力(binding agreement)的协议。若有,就是合作博弈;否则就是非合 作博弈。例如,两个寡头企业,如果他们之间达成一个协议, 联合最大化垄断利润,且各自按该协议生产,即是合作博弈。 其面临的问题是如何分享合作带来的剩余。但若两个企业间 的协议不具有约束力,即没有哪一方能强制另一方遵守该协 议,每个企业都只选择自己的最优产量(或价格),则是非 合作博弈。另外,合作博弈强调的是团体理性、效率、公正 和公平。非合作博弈强调的是个人理性、个人最优决策,其 结果可能是有效率的,也可能是无效率的。
一、占优策略均衡
通常情况下,每个局中人的支付是博弈中所有参与 人策略的函数,故每个局中人的最优策略选择依赖于所 有其他参与人的策略选择。但在一些特殊博弈中,一个 参与人的最优策略选择可能并不依赖于其他参与人的策 略选择,即无论其他参与人选择什么策略,他的最优策 略是唯一的,这种最优策略被称为“占优策略” (dominant strategy)。 例:“囚徒困境” 囚徒困境是博弈论中的经典案例。该故事讲的是,两 个嫌疑犯作案后被警察抓住,分别被关在不同的房间里 进行审讯。警察知道两人有罪,但缺乏有力的证据,除 非两人之中有一个坦白。警察告诉每个人,他们的可选 择的策略与支付如下表:
第二节 完全信息静态博弈
“完全信息”指的是每个局中人对所有其他参与人的特 征(策略空间、支付函数等)有完全的了解,“静态”指的 是所有局中人同时选择行动且只选择一次。纳什均衡是完全 信息静态博弈解的一般概念,也是所有其他类型博弈解的基 本要求。本节先讨论纳什均衡的特殊情况,然后讨论纳什均 衡的一般概念。 在博弈论里,一个博弈可以有两种表述方式:一种是策 略式(strategic form representation)表述,另一种是 扩展式( extensive form representation )表述。前者 适合于讨论静态博弈,后者适合于讨论动态博弈。在策略式 表述中,所有参与人同时选择各自的策略,所有参与人选择 的策略一起决定每个参与人的支付。
博弈论的基本概念包括:局中人、策略、支付。
①局中人(Player):局中人是指在博弈中选择行动以最 大化自身效用的决策主体。可能是个ห้องสมุดไป่ตู้或团体(如国家、企 业等)。
②策略或策略空间(Strategy):策略是局中人选 择行动的规则,它规定局中人如何对其他人的行动作 出反应,即在每种可能的情况下应该如何行动。它与 行动不同,行动是局中人的决策变量。如“人不犯我, 我不犯人;人若犯我,我必犯人”是一种策略,而 “犯”与“不犯”是两种不同的行动,策略规定了什 么时候选择“犯”什么时候选择“不犯”。局中人可 选择的策略的全体构成了策略空间(或策略集)。 ③支付(Payoff)(支付函数与支付矩阵):博弈 论中,可用数值表示各局中人从博弈中所获得的收益 或效用水平,该数值称为支付。支付依赖于各个局中 人所作出的策略,这种收益与策略的依赖关系构成了 支付函数。参与博弈的多个局中人的收益可用一个矩 阵或框图表示,这种矩阵或框图叫做收益矩阵。
John F. Nash Jr
博弈论提供了一种研究人类理性行 为的通用方法,运用这些方法可以更为清 晰完整地分析各种社会力量冲突和合作的 形势,具体分析人与人之间在利益相互制 约下理性主体的策略选择行为及相应结局。 博弈论强调在既定约束条件下追求效用最 大化(服从微观经济学的一般分析方法)。 同时,信息和时序问题成为博弈论的两个
除此之外,博弈论中的基本概念还包括: 行动、信息、结果和均衡。它们关系是:行 动是局中人的决策变量;信息是局中人在进 行博弈时有关其他局中人的特征和行动的知 识;结果是博弈分析者感兴趣的要素的集合; 均衡是所有局中人的最优策略或行动的集合。
一、博弈论的基本概念
①根据博弈者选择的策略,博弈论可划 分为合作博弈与非合作博弈。纳什 (Nash)、泽尔腾(Selten)和海萨尼 (Harsanyi)(1994诺贝尔经济学奖获得 者)的主要贡献在于非合作博弈方面,而 且现在大多数经济学家论及博弈时,也主 要是指非合作博弈。
B
坦白
抵赖
A
坦白 抵赖
-8,-8 -10,0
0,-10 -1,-1
在该博弈中,每个囚徒有两种可能选择的策略:
坦白和抵赖。显然,无论同伙选择什么策略, 每个囚徒的最优策略都是“坦白”。如,B选 择坦白,若A选择坦白时支付为-8,选择抵赖 时支付为-10,因而坦白比抵赖好;若B选择抵 赖,A坦白时的支付为0,抵赖时为-1,因而坦
一、博弈论的基本概念
博弈论研究人与人之间相互“斗智”的形式和结果。 当经济主体间的利益存在冲突时,一方所获得的利益不仅取 决于自己所采取的行动,而且也取决于其他主体采取的行动 或对自己行动的反应。博弈论就是描述在这种形势下各方理 性地选择自己的行动所实现的结果,分析各决策主体的行为 发生相互作用时的决策以及这种决策的均衡问题。
第十章
§1.博弈论概述
博弈论
§2.完全信息静态博弈
§3.完全信息动态博弈
§4.不完全信息静态博弈 §5.不完全信息动态博弈
第一节
博弈论(the
博弈论概述
Game Theory)也就是运筹学 中的对策论,“是关于策略相互作用的理 论”,研究两个或两个以上参加者在对 抗性或竞争性局势下如何采取行动,如 何作出有利于己方的决策及其均衡问题。 对策思想最早产生于我国古代。 对策思想明确地应用于经济领域,始于 Cournot (1838), Bertrand (1883), Edgeworth (1925)等人关于寡头竞争、 产量与价格垄断、产品交易行为的研究。