江苏省昆山市兵希中学九年级数学总复习:一轮复习第17课时:二次函数(一)

合集下载

初中数学中考复习二次函数知识点总结归纳整理

初中数学中考复习二次函数知识点总结归纳整理

初中数学中考复习二次函数知识点总结归纳整理二次函数是中学数学中非常重要的一个内容,也是中考数学中的重点。

下面是对初中数学中考复习二次函数知识点的总结和归纳整理。

一、二次函数的定义1. 二次函数的一般形式:y = ax² + bx + c,其中a、b、c为常数,且a ≠ 0。

2.二次函数的图像为抛物线,开口方向与a的正负有关。

-当a>0时,抛物线开口向上。

-当a<0时,抛物线开口向下。

二、二次函数的性质1.对称轴:二次函数的对称轴与抛物线的开口方向垂直,其方程为x=-b/2a。

2.顶点:二次函数的顶点位于对称轴上,其坐标为(-b/2a,f(-b/2a))。

-当a>0时,顶点是抛物线的最低点。

-当a<0时,顶点是抛物线的最高点。

3. 判别式:对于二次函数y = ax² + bx + c,其判别式Δ = b² -4ac表示方程ax² + bx + c = 0的根的情况。

-当Δ>0时,方程有两个不相等的实根。

-当Δ=0时,方程有两个相等的实根。

-当Δ<0时,方程没有实根。

4.单调性:-当a>0时,二次函数在对称轴左侧单调递增,右侧单调递减。

-当a<0时,二次函数在对称轴左侧单调递减,右侧单调递增。

三、二次函数的图像特征1.a的正负决定了抛物线的开口方向。

2.,a,的大小决定了抛物线的陡峭程度,a,越大抛物线越陡峭。

3.当b=0时,抛物线经过原点。

4.当c=0时,抛物线经过x轴。

5.当a>0时,函数值在顶点处取得最小值。

6.当a<0时,函数值在顶点处取得最大值。

四、二次函数的方程求解1. 解二次方程ax² + bx + c = 0的一般步骤:- 利用判别式Δ = b² - 4ac判断方程的根的情况。

-若Δ>0,方程有两个不相等的实根,可以用求根公式x₁=(-b+√Δ)/2a和x₂=(-b-√Δ)/2a求解。

九年级数学------二次函数基础知识点(全)

九年级数学------二次函数基础知识点(全)

二次函数知识点复习1.定义:一般地,如果c b a c bx axy ,,(2++=是常数,)0≠a ,那么y 叫做x 的二次函数.2.二次函数2ax y =的性质:抛物线2ax y =)(0≠a 的顶点是 ,对称轴是 .3.二次函数c bx ax y ++=2用配方法可化成: 的形式,其中abac k ab h 4422-=-=,.4.抛物线的三要素:开口方向、对称轴、顶点.a 决定抛物线的开口方向:当 时,开口向上;当 时,开口向下;a 相等,抛物线的开口大小、形状相同. 5.求抛物线的顶点、对称轴的方法 (1)公式法:a b ac a b x a c bx ax y 442222-+⎪⎭⎫ ⎝⎛+=++=,∴顶点是 ,对称轴是直线 .(2)配方法:运用配方法将抛物线的解析式化为()k h x a y +-=2的形式,得到顶点为 ,对称轴是 .(3)运用抛物线的对称性:由于抛物线是以对称轴为轴的轴对称图形,所以对称轴的连线的垂直平分线是抛物线的对称轴,对称轴与抛物线的交点是 . 6.抛物线c bx axy ++=2中,c b a ,,的作用(1)a 决定(2)b 和a 共同决定 .由于抛物线c bx ax y ++=2的对称轴是直线 ,故:①0=b 时,对称轴为y 轴;②0>a b(即a 、b 同号)时,对称轴在y 轴左侧;③0<ab(即a 、b 异号)时,对称轴在y 轴右侧.(3)c 的大小决定 .①0=c ,抛物线经过原点; ②0>c ,与y 轴交于正半轴;③0<c ,与y 轴交于负半轴. 7. 二次函数的三种表达式 一般式: 顶点式: 交点式:8.用待定系数法求二次函数的解析式. 二次函数的解析式有三种形式:顶点式,一般式,交点式。

(1)已知图像上三点或三对x 、y 的值,通常选择(2)已知图像的顶点或对称轴,通常选择 . (3)已知图像与x 轴的交点坐标1x 、2x ,通常 . 9.直线与抛物线的交点 (1)y 轴与抛物线c bx axy ++=2得交点为(2)抛物线与x 轴的交点 二次函数c bx axy ++=2的图像与x 轴的两个交点的横坐标1x 、2x ,是对应一元二次方程02=++c bx ax的两个实数根. 抛物线与x 轴的交点情况可以由对应的一元二次方程的根的判别式判定:①有两个交点⇔②有一个交点(顶点在x 轴上)⇔ ; ③没有交点⇔(3)一次函数()0≠+=k n kx y 的图像l 与二次函数()02≠++=a c bx ax y 的图像G 的交点,由方程组的解的数目来确定:①方程组有两组不同的解时⇔l 与G 有 交点; ②方程组只有一组解时⇔l 与G 只有 交点; ③方程组无解时⇔l 与G 交点. (4)抛物线与x 轴两交点之间的距离:若抛物线c bx axy ++=2与x 轴两交点为()()0021,,,x B x A ,由于1x 、2x 是方程02=++c bx ax的两个根,故 ac x x ab x x =⋅-=+2121,()()aaac b a c a b x x x x x x x x AB ∆=-=-⎪⎭⎫⎝⎛-=--=-=-=4442221221221211、抛物线的顶点是(-2,3),且过点(-1,5),求二次函数解析式。

苏教版九年级下册数学[《二次函数》全章复习与巩固—知识点整理及重点题型梳理](基础)

苏教版九年级下册数学[《二次函数》全章复习与巩固—知识点整理及重点题型梳理](基础)

苏教版九年级下册数学重难点突破知识点梳理及重点题型巩固练习《二次函数》全章复习与巩固—知识讲解(基础)【学习目标】1.通过对实际问题情境的分析确定二次函数的表达式,并体会二次函数的意义;2.会用描点法画出二次函数的图象,能从图象上认识二次函数的性质;3.会根据公式确定图象的顶点、开口方向和对称轴(公式不要求记忆和推导),并能解决简单的实际问题;4.会利用二次函数的图象求一元二次方程的近似解.【知识网络】【要点梳理】要点一、二次函数的定义一般地,如果是常数,,那么叫做的二次函数.要点诠释:如果y=ax2+bx+c(a,b,c是常数,a≠0),那么y叫做x的二次函数.这里,当a=0时就不是二次函数了,但b、c可分别为零,也可以同时都为零.a 的绝对值越大,抛物线的开口越小.要点二、二次函数的图象与性质1.二次函数由特殊到一般,可分为以下几种形式: ①;②;③;④,其中;⑤.(以上式子a≠0)当(轴) (轴)(,)2.抛物线的三要素:开口方向、对称轴、顶点.(1)的符号决定抛物线的开口方向:当时,开口向上;当时,开口向下;相等,抛物线的开口大小、形状相同. (2)平行于轴(或重合)的直线记作.特别地,轴记作直线.3.抛物线20()y ax bx c a =++≠中,,,a b c 的作用: (1)决定开口方向及开口大小,这与中的完全一样.(2)和共同决定抛物线对称轴的位置.由于抛物线的对称轴是直线, 故:①时,对称轴为轴;②(即、同号)时,对称轴在轴左侧;③(即、异号)时,对称轴在轴右侧.(3)的大小决定抛物线与轴交点的位置.当时,,∴抛物线与轴有且只有一个交点(0,):①,抛物线经过原点; ②,与轴交于正半轴;③,与轴交于负半轴.以上三点中,当结论和条件互换时,仍成立.如抛物线的对称轴在轴右侧,则.4.用待定系数法求二次函数的解析式: (1)一般式:(a≠0).已知图象上三点或三对、的值,通常选择一般式. (2)顶点式:(a≠0).已知图象的顶点或对称轴,通常选择顶点式.(可以看成的图象平移后所对应的函数.)(3)“交点式”:已知图象与轴的交点坐标、,通常选用交点式:(a≠0).(由此得根与系数的关系:).要点诠释:求抛物线2y ax bx c =++(a≠0)的对称轴和顶点坐标通常用三种方法:配方法、公式法、代入法,这三种方法都有各自的优缺点,应根据实际灵活选择和运用.要点三、二次函数与一元二次方程的关系 函数,当时,得到一元二次方程,那么一元二次方程的解就是二次函数的图象与x 轴交点的横坐标,因此二次函数图象与x 轴的交点情况决定一元二次方程根的情况.(1)当二次函数的图象与x 轴有两个交点,这时,则方程有两个不相等实根;(2)当二次函数的图象与x 轴有且只有一个交点,这时,则方程有两个相等实根;(3)当二次函数的图象与x 轴没有交点,这时,则方程没有实根.要点诠释:二次函数图象与x 轴的交点的个数由的值来确定.(1)当二次函数的图象与x 轴有两个交点,这时,则方程有两个不相等实根;(2)当二次函数的图象与x 轴有且只有一个交点,这时,则方程有两个相等实根;(3)当二次函数的图象与x 轴没有交点,这时,则方程没有实根.要点四、利用二次函数解决实际问题利用二次函数解决实际问题,要建立数学模型,即把实际问题转化为二次函数问题,利用题中存在的公式、内含的规律等相等关系,建立函数关系式,再利用函数的图象及性质去研究问题.在研究实际问题时要注意自变量的取值范围应具有实际意义. 利用二次函数解决实际问题的一般步骤是: (1)建立适当的平面直角坐标系;(2)把实际问题中的一些数据与点的坐标联系起来; (3)用待定系数法求出抛物线的关系式;(4)利用二次函数的图象及其性质去分析问题、解决问题. 要点诠释:常见的问题:求最大(小)值(如求最大利润、最大面积、最小周长等)、涵洞、桥梁、抛物体、抛物线的模型问题等.解决这些实际问题关键是找等量关系,把实际问题转化为函数问题,列出相关的函数关系式.【典型例题】类型一、求二次函数的解析式1.已知二次函数的图象经过原点及点11,24⎛⎫-- ⎪⎝⎭,且图象与x 轴的另一交点到原点的距离为1,则该二次函数的解析式为____ ____. 【答案】 21133y x x =-+或2y x x =+. 【解析】 正确找出图象与x 轴的另一交点坐标是解题关键.由题意知另一交点为(1,0)或(-1,0). 因此所求抛物线的解析式有两种. 设二次函数解析式为2y ax bx c =++.则有0,1114420c a b c a b c =⎧⎪⎪-=-+⎨⎪++=⎪⎩,或0,111,4420,c a b c a b c =⎧⎪⎪-=-+⎨⎪-+=⎪⎩解之13130a b c ⎧=-⎪⎪⎪=⎨⎪=⎪⎪⎩,或1,1,0.a b c =⎧⎪=⎨⎪=⎩因此所求二次函数解析式为21133y x x =-+或2y x x =+. 【点评] 此题容易出错漏解的错误.举一反三:【课程名称:二次函数复习357019 :(1)-(2)问精讲】【变式】已知:抛物线y=x 2+bx+c 的对称轴为x=1,交x 轴于点A 、B(A 在B 的左侧),且AB=4,交y 轴于点C.求此抛物线的函数解析式及其顶点M 的坐标. 【答案】∵对称轴x=1,且AB=4∴抛物线与x 轴的交点为:A(-1,0),B(3,0)bb=-212c=-31b c 0⎧-=⎧⎪∴∴⎨⎨⎩⎪-+=⎩∴y=x 2-2x-3为所求,∵x=1时y=-4 ∴M(1,-4) ∵对称轴x=1,且AB=4∴抛物线与x 轴的交点为:A(-1,0),B(3,0)bb=-212c=-31b c 0⎧-=⎧⎪∴∴⎨⎨⎩⎪-+=⎩∴y=x 2-2x-3为所求,∵x=1时y=-4 , ∴M(1,-4).类型二、根据二次函数图象及性质判断代数式的符号2.二次函数2y ax bx c =++的图象如图1所示,反比例函数ay x=与正比例函数y =(b+c)x 在同一坐标系中的大致图象可能是( ).【答案】B ;【解析】由2y ax bx c =++的图象开口向上得a >0,又02ba->,∴ b <0. 由抛物线与y 轴负半轴相交得c <0. ∵ a >0,∴ ay x=的图象在第一、三象限. ∵ b+c <0,∴ y =(b+c)x 的图象在第二、四象限. 同时满足ay x=和()y b c x =+图象的只有B . 【点评】由图1得到a 、b 、c 的符号及其相互关系,去判断选项的正误.类型三、数形结合3.(2015•陕西模拟)已知二次函数y=ax 2+bx+c (a >0)经过点M (﹣1,2)和点N (1,﹣2),交x 轴于A ,B 两点,交y 轴于C .则: ①b=﹣2;②该二次函数图象与y 轴交于负半轴;③存在这样一个a ,使得M 、A 、C 三点在同一条直线上;④若a=1,则OA •OB=OC 2. 以上说法正确的有( )A .①②③④B .②③④C .①②④D .①②③ 【思路点拨】①二次函数y=ax 2+bx+c (a >0)经过点M (﹣1,2)和点N (1,﹣2),因而将M 、N 两点坐标代入即可消去a 、c 解得b 值.②根据图象的特点及与直线MN 比较,可知当﹣1<x <1时,二次函数图象在直线MN 的下方. ③同②理.④当y=0时利用根与系数的关系,可得到OA •OB 的值,当x=0时,可得到OC 的值.通过c 建立等量关系求证. 【答案】C ;【解析】①∵二次函数y=ax 2+bx+c (a >0)经过点M (﹣1,2)和点N (1,﹣2),∴,解得b=﹣2.故该选项正确.②方法一:∵二次函数y=ax2+bx+c,a>0∴该二次函数图象开口向上∵点M(﹣1,2)和点N(1,﹣2),∴直线MN的解析式为y﹣2=,即y=﹣2x,根据抛物线的图象的特点必然是当﹣1<x<1时,二次函数图象在y=﹣2x的下方,∴该二次函数图象与y轴交于负半轴;方法二:由①可得b=﹣2,a+c=0,即c=﹣a<0,所以二次函数图象与y轴交于负半轴.故该选项正确.③根据抛物线图象的特点,M、A、C三点不可能在同一条直线上.故该选项错误.④当a=1时,c=﹣1,∴该抛物线的解析式为y=x2﹣2x﹣1当y=0时,0=x2﹣2x+c,利用根与系数的关系可得x1•x2=c,即OA•OB=|c|,当x=0时,y=c,即OC=|c|=1=OC2,∴若a=1,则OA•OB=OC2,故该选项正确.总上所述①②④正确.故选C.【点评】本题是二次函数的综合题型,其中涉及到的知识点较多,熟练掌握所学函数的图象性质及特点对于解题很重要;同时也要灵活应对知识点彼此之间的联系.类型四、函数与方程4.(2016•台湾)如图,坐标平面上,二次函数y=﹣x2+4x﹣k的图形与x轴交于A、B两点,与y 轴交于C点,其顶点为D,且k>0.若△ABC与△ABD的面积比为1:4,则k值为何?()A.1 B.C.D.【思路点拨】求出顶点和C的坐标,由三角形的面积关系得出关于k的方程,解方程即可.【答案】D.【解析】解:∵y=﹣x2+4x﹣k=﹣(x﹣2)2+4﹣k,∴顶点D(2,4﹣k),C(0,﹣k),∴OC=k,∵△ABC的面积=AB•OC=AB•k,△ABD的面积=AB(4﹣k),△ABC与△ABD的面积比为1:4,∴k=(4﹣k),解得:k=.【点评】本题考查了抛物线与x 轴的交点、抛物线的顶点式;根据三角形的面积关系得出方程是解决问题的关键. 举一反三:【变式1】无论x 为何实数,二次函数的图象永远在x 轴的下方的条件是( )A .B .C .D .【答案】二次函数的图象与x 轴无交点,则说明y=0时,方程无解,即.又图象永远在x 轴下方,则. 答案:B【变式2】对于二次函数,我们把使函数值等于0的实数x 叫做这个函数的零点,则二次函数(m 为实数)的零点的个数是( )A .1B .2C .0D .不能确定 【答案】当y=0时,,,即二次函数的零点个数是2. 故选B.类型五、分类讨论5.已知点A(1,1)在二次函数22y x ax b =-+的图象上.(1)用含a 的代数式表示b ;(2)如果该二次函数的图象与x 轴只有一个交点,求这个二次函数的图象的顶点坐标. 【思路点拨】(1)将A(1,1)代入函数解析式.(2)由△=b 2-4ac =0求出a . 【答案与解析】(1)因为点A(1,1)在二次函数22y x ax b =-+的图象上,所以1=1-2a+b ,所以b =2a . (2)根据题意,方程220x ax b -+=有两个相等的实数根,所以2244480a b a a -=-=, 解得a =0或a =2.当a =0时,y =x 2,这个二次函数的图象的顶点坐标是(0,0). 当a =2时,2244(2)y x x x =-+=-,这个二次函数的图象的顶点坐标为(2,0).所以,这个二次函数的图象的顶点坐标为(0,0)或(2,0).【点评】二次函数2y ax b c =++(0)a ≠的图象与x 轴只有一个交点时,方程20ax bx c ++=有两个相等的实数根,所以240b ac =-=△.类型六、二次函数与实际问题6.(2015•黄陂区校级模拟)进价为每件40元的某商品,售价为每件50元时,每星期可卖出500件,市场调查反映:如果每件的售价每降价1元,每星期可多卖出100件,但售价不能低于每件42元,且每星期至少要销售800件.设每件降价x 元 (x 为正整数),每星期的利润为y 元. (1)求y 与x 的函数关系式并写出自变量x 的取值范围;(2)若某星期的利润为5600元,此利润是否是该星期的最大利润?说明理由. (3)直接写出售价为多少时,每星期的利润不低于5000元? 【思路点拨】(1)根据利润y=每件利润×销售量,每件利润=50﹣40﹣x ,销售量=500+100x ,而售价50﹣x≥42,销售量=500+100x≥800,列不等式组求x 的取值范围;(2)根据(1)的关系式配方后确定最大利润,与5600比较后即可发现是否为最大利润; (3)设当y=5000时x 有两个解,可推出0≤x≤5时,y≥5000. 【答案与解析】解:(1)依题意,得y=(50﹣40﹣x )•(500+100x )=﹣100x 2+500x+5000,∵,∴3≤x≤8;(2)y=﹣100x 2+500x+5000=﹣100(x ﹣)+5625,∵5600<5625,∴5600不是最大利润.(3)当y=5000时,y=﹣100x 2+500x+5000=5000,解得x 1=0,x 2=5,故当0≤x≤5时,y≥5000,即当售价在不小于45元且不大于50元时,月利润不低于5000元.【点评】本题考查二次函数的实际应用.一般求最值问题,大多是建立二次函数关系,从而借助二次函数解决实际问题.。

江苏省昆山市兵希中学九年级数学总复习:一轮复习第18课时:二次函数(二)

江苏省昆山市兵希中学九年级数学总复习:一轮复习第18课时:二次函数(二)

初三第一轮复习第18课时:二次函数(二)【课前预习】一、知识梳理:1、二次函数图象的位置与二次函数解析式中各字母系数的关系.2、利用二次函数图象来确定某些特殊代数式的取值或取值范围.3、利用二次函数图象来求方程解及不等式的解集.4、利用二次函数图象的对称性、直观性解决其它的一些问题.二、课前预习:1、若二次函数22y ax bx a 2=++-(a ,b 为常数)的图象如图,则a 的值为( )A . 1B . 2C . 2-D . -22、抛物线y =-3x 2-x +4与坐标轴的交点个数是( )A .3B .2C .1D .03、已知二次函数y =ax 2+bx +c 的图象如图所示,它与x 轴的两个交点分别为(﹣1,0),(3,0).对于下列命题:①b ﹣2a =0;②abc <0;③a ﹣2b +4c <0;④8a +c >0.其中正确的有( )A .3个B .2个C .1个D .0个4、二次函数2y ax bx c =++的图象如图所示,则函数值y 0<时x 的取值范围是( ) A .x 1<- B .x >3 C .-1<x <3 D .x 1<-或x >35、二次函数n x x y +-=62的部分图像如图所示,若关于x 的一元二次方程062=+-n x x 的一个解为11=x ,则另一个解2x = .6、如图,抛物线y 1=a (x +2)2-3与y 2=12(x -3)2+1交于点A (1,3),过点A 作x 轴的平行线,分别交两条抛物线于点B ,C .则以下结论:①无论x 取何值,y 2的值总是正数;②a =1;③当x =0时,y 2-y 1=4;④2AB =3AC ;其中正确结论是( )A .①②B .②③C .③④D .①④7、二次函数2y a x b x =+的图象如图,若一元二次方程20ax bx m ++=有实数根,则m 的最大值为【 】A .3-B .3C .6-D .9【解题指导】例1如图,二次函数y =(x -2)2+m 的图象与y 轴交于点C ,点B 是点C 关于该二次函数图象的对称轴对称的点.已知一次函数y =kx +b 的图象经过该二次函数图象上点A(1,0)及点B.(1)求二次函数与一次函数的解析式;(2)根据图象,写出满足kx +b ≥(x -2)2+m 的x 的取值范围.例2求证拋物线y =(3-k)x 2+(k -2)x +2k -1(k≠3)过定点,并求出定点的坐标.例3如图,Rt △ABO 的两直角边OA 、OB 分别在x 轴的负半轴和y 轴的正半轴上,O 为坐标原点,A 、B 两点的坐标分别为(-3,0)、(0,4),抛物线y =23x 2+bx +c 经过点B ,且顶点在直线x =52上. (1)求抛物线对应的函数关系式;(2)若把△ABO 沿x 轴向右平移得到△DCE ,点A 、B 、O 的对应点分别是D 、C 、E ,当四边形ABCD 是菱形时,试判断点C 和点D 是否在该抛物线上,并说明理由;(3)在(2)的条件下,连接BD ,已知对称轴上存在一点P ,使得△PBD 的周长最小,求出P点的坐标;(4)在(2)、(3)的条件下,若点M 是线段OB 上的一个动点(点M 与点O 、B 不重合),过点M 作MN ∥BD交x 轴于点N ,连接PM 、PN ,设OM 的长为t ,△PMN 的面积为S ,求S 和t 的函数关系式,并写出自变量t 的取值范围,S 是否存在最大值?若存在,求出最大值和此时M 点的坐标;若不存在,说明理由.【巩固练习】1、二次函数y =ax 2+bx +c (a ≠0)的图象的对称轴是直线x =1,其图象的一部分如图所示.下列说法正确的是 (填正确结论的序号).①abc <0;②a -b +c <0;③3a +c <0;④当-1<x <3时,y >0. 2、已知抛物线()()22y=x 12a x a a 0+-+≠与x 轴交于两点()1A x 0 ,,()()212B x 0x x ≠ ,(1)求a 的取值范围,并证明A 、B 两点都在原点O 的左侧;(2)若抛物线与y 轴交于点C ,且OA +OB =OC -2,求a 的值。

九年级数学二次函数复习知识点归纳汇总

九年级数学二次函数复习知识点归纳汇总

五、二次函数 y a x h2 k 与 y ax2 bx c 的比较 从解析式上看, y a x h2 k 与 y ax2 bx c 是两种不同的表达形式,后者通过
配方可以得到前者,即
y

a

x

b 2a
2

4ac 4a
b2
,其中 h b 何 2a
九年级数学二次函数复习知识点归纳汇总
一、二次函数概念:
1.二次函数的概念:一般地,形如 y=ax2+bx+c(a,b,c 是常数,a≠0)的函数,叫
做二次函数。
这里需要强调:和一元二次方程类似,二次项系数 a≠0,而
b何 c 可以为零.二次函数的定义域是全体实数.
2. 二次函数 y=ax2+bx+c 的结构特征:
的大小决定开口的大小.
2. 一次项系数 b (a 和 b 共同决定抛物线对称轴的位置)
.抛物线 y ax 2 bx c 的对称轴是直线 x b ,故:① b 0 时,对称轴为 y 2a
轴;②
(即 a 、 b 同号)时,对称轴在 y 轴左侧;③
(即 a 、 b 异号)时,
对称轴在 y 轴右侧.
x
b 2a
(x1 x2 )
无实根
两根为 x1,x2
(有两个不相等的实数根)
(有两个相等的实数根)
▲抛物线上两点
A( x1 ,
y0 ),
B(x2 ,
y0 )
,则抛物线对称轴为直线
x

x1
2
x2
十一、函数的应用
何 何 何 何 二次函数应用 何 何 何 何 何 何 何 何

江苏省昆山市兵希中学九年级数学总复习:一轮复习第17课时:二次函数(一)

江苏省昆山市兵希中学九年级数学总复习:一轮复习第17课时:二次函数(一)

初三第一轮复习第17课时:二次函数(一)【课前预习】 一、知识梳理:1、二次函数的概念:形如 的函数叫做二次函数.2、二次函数的解析式:①一般式;②顶点式;③交点式3、二次函数的图象、性质:①图象是 ;②开口方向 ③对称轴 ④顶点坐标 ⑤增减性 ⑥最值.4、二次函数的图象的变换(平移、旋转、轴对称)5、用待定系数法确定二次函数解析式.6、利用二次函数的性质解决数学问题. 二、课前练习:1.已知以x 为自变量的二次函数22(2)2y m x m m =-+--的图象经过原点,则m 的值是 . 2.填表:3.234y x x =--与x 轴的交点坐标是__________,与y 轴的交点坐标是__________. 4、已知点A (x 1,y 1)、B (x 2,y 2)在二次函数y =(x -1)2+1的图象上,若x 1>x 2>1,则y 1______y 2. 5、关于x 的二次函数()()y=x+1x m -,其图象的对称轴在y 轴的右侧,则实数m 的取值范围是( )A . m<1-B . 1<m<0-C . 0<m<1D . m>16、已知函数y =3x 2-4x +1,当0≤x ≤4时,则y 的变化范围是 . 7. 将抛物线y =3x 2向上平移3个单位,再向左平移2个单位,那么得到的抛物线的解析式为( )A .y =3(x +2)2+3 B .y =3(x -2)2+3 C .y =3(x +2)2-3 D .y =3(x -2)2-3 8、若抛物线y =ax 2+bx +c 的顶点是A (2,1),且经过点B (1,0),则抛物线的函数关系式为 .9、如图,在平面直角坐标系中,点A 是抛物线()2y=a x 3+k -与y 轴的交点,点B 是这条抛物线上的另一点,且AB ∥x 轴,则以AB 为边的等边三角形ABC 的周长为 .【解题指导】例1 已知二次函数经过点(-1,0),(1,4),(3,0).(1)求这个二次函数的解析式; (2)直接写出二次函数的三个性质.例2 如图,抛物线y =x 2+bx +c 经过点(1,-4)和(-2,5),请解答下列问题:(1)求抛物线的解析式;(2)若与x 轴的两个交点为A ,B ,与y 轴交于点C .在该抛物线上是否存在点D ,使得△ABC 与△ABD 全等?若存在,求出D 点的坐标;若不存在,请说明理由例3 已知二次函数23y (t 1)x 2(t 2)x 2=++++在x 0=和x 2=时的函数值相等。

九年级数学二次函数知识点总结

九年级数学二次函数知识点总结

二次函数是中学数学中重要的一个章节,主要涉及到解析式、图像和性质等方面。

本文将对九年级数学中二次函数的知识点进行总结,包括定义、基本性质、图像及其变化规律、求解等方面,以及与实际生活中的应用。

一、定义:二次函数是指形如y=ax²+bx+c(a≠0)的函数,其中a、b、c都是实数,并且a的值决定了图像的开口方向。

二、基本性质:1.零点和轴对称:二次函数的零点是使得函数值等于0的x值,零点的个数取决于判别式的值。

二次函数关于y轴对称。

2.求导和凹凸性:二次函数的导数是一次函数,二次函数的凹凸性由二次项系数的符号决定。

当a>0时,函数的图像开口向上,二次函数是凹的;当a<0时,函数的图像开口向下,二次函数是凸的。

3.极值:二次函数的极值点是函数图像的最高点或者最低点,极值点的x坐标是二次函数的顶点。

当a>0时,函数的极值是最小值;当a<0时,函数的极值是最大值。

三、图像及其变化规律:1.开口方向:二次函数的开口方向由二次项系数a的符号决定。

当a>0时,图像开口向上;当a<0时,图像开口向下。

2.平移:二次函数的图像可以进行平移操作,平移后的函数图像仍然是一条二次曲线。

平移的规律是对原函数的输入x进行平移操作。

例如,y=(x-3)²平移到y=x²后,图像整体向右移动3个单位。

3.缩放:二次函数的图像也可以进行缩放操作,缩放后的函数图像仍然是一条二次曲线。

缩放的规律是对原函数的自变量x进行缩放操作。

例如,y=(2x)²相当于y=4x²,图像整体变窄。

四、求解:1. 二次函数的解析式:求解二次函数的关键是求出二次函数的零点,即令y=0,并解方程ax²+bx+c=0。

根据二次函数的解析式,可以根据判别式的值确定二次函数的零点个数,判别式D=b²-4ac。

-当D>0时,有两个不相等的实数根;-当D=0时,有两个相等的实数根;-当D<0时,没有实数根,但有两个共轭复数根。

金老师教育-中考数学总复习:17二次函数--知识讲解(附基础掌握题练习含答案解析)

金老师教育-中考数学总复习:17二次函数--知识讲解(附基础掌握题练习含答案解析)

中考总复习:二次函数—知识讲解(基础)【考纲要求】1.二次函数的概念常为中档题.主要考查点的坐标、确定解析式、自变量的取值范围等; 2.二次函数的解析式、开口方向、对称轴、顶点坐标等是中考命题的热点;3.抛物线的性质、平移、最值等在选择题、填空题中都出现过,覆盖面较广,而且这些内容的综合题一般较难,在解答题中出现.【知识网络】【考点梳理】考点一、二次函数的定义一般地,如果2y ax bx c =++(a 、b 、c 是常数,a ≠0),那么y 叫做x 的二次函数. 要点诠释:二次函数2y ax bx c =++(a ≠0)的结构特征是:(1)等号左边是函数,右边是关于自变量x 的二次式,x 的最高次数是2.(2)二次项系数a ≠0.考点二、二次函数的图象及性质1.二次函数2y ax bx c =++(a ≠0)的图象是一条抛物线,顶点为24,24b ac b a a ⎛⎫-- ⎪⎝⎭. 2.当a >0时,抛物线的开口向上;当a <0时,抛物线的开口向下.3.①|a|的大小决定抛物线的开口大小.|a|越大,抛物线的开口越小,|a|越小,抛物线的开口越大. ②c 的大小决定抛物线与y 轴的交点位置.c =0时,抛物线过原点;c >0时,抛物线与y 轴交于正半轴;c <0时,抛物线与y 轴交于负半轴.③ab 的符号决定抛物线的对称轴的位置.当ab =0时,对称轴为y 轴;当ab >0时,对称轴在y 轴左侧;当ab <0时,对称轴在y 轴的右侧.4.抛物线2()y a x h k =++的图象,可以由2y ax =的图象移动而得到.将2y ax =向上移动k 个单位得:2y ax k =+. 将2y ax =向左移动h 个单位得:2()y a x h =+.将2y ax =先向上移动k(k >0)个单位,再向右移动h(h >0)个单位,即得函数2()y a x h k =-+的图象. 要点诠释:求抛物线2y ax bx c =++(a≠0)的对称轴和顶点坐标通常用三种方法:配方法、公式法、代入法,这三种方法都有各自的优缺点,应根据实际灵活选择和运用.考点三、二次函数的解析式1.一般式:2+y ax bx c =+(a ≠0).若已知条件是图象上的三个点,则设所求二次函数为2y ax bx c =++,将已知条件代入,求出a 、b 、c 的值.2.交点式(双根式):12()()(0)y a x x x x a =--≠.若已知二次函数图象与x 轴的两个交点的坐标为(x 1,0),(x 2,0),设所求二次函数为12()()y a x x x x =--,将第三点(m ,n)的坐标(其中m 、n 为已知数)或其他已知条件代入,求出待定系数,最后将解析式化为一般形式. 3.顶点式:2()(0)y a x h k a =-+≠.若已知二次函数图象的顶点坐标或对称轴方程与最大值(或最小值),设所求二次函数为2()y a x h k =-+,将已知条件代入,求出待定系数,最后将解析式化为一般形式.4.对称点式:12()()(0)y a x x x x m a =--+≠.若已知二次函数图象上两对称点(x 1,m),(x 2,m),则可设所求二次函数为12()()(0)y a x x x x m a =--+≠,将已知条件代入,求得待定系数,最后将解析式化为一般形式.要点诠释:已知图象上三点或三对、的值,通常选择一般式.已知图象的顶点或对称轴,通常选择顶点式.(可以看成的图象平移后所对应的函数).已知图象与轴的交点坐标、,通常选用交点式:(a≠0).(由此得根与系数的关系:).考点四、二次函数2y ax bx c =++(a ≠0) 的图象的位置与系数a 、b 、c 的关系 1.开口方向:a >0时,开口向上,否则开口向下. 2.对称轴:02b a ->时,对称轴在y 轴的右侧;当02b a-<时,对称轴在y 轴的左侧. 3.与x 轴交点:240b ac ->时,有两个交点;240b ac -=时,有一个交点;240b ac -<时,没有交点.要点诠释:当x =1时,函数y =a+b+c ; 当x =-1时,函数y =a-b+c ;当a+b+c >0时,x =1与函数图象的交点在x 轴上方,否则在下方; 当a-b+c >0时,x =-1与函数图象的交点在x 轴的上方,否则在下方.考点五、二次函数的最值1.当a >0时,抛物线2y ax bx c =++有最低点,函数有最小值,当2bx a=-时,244ac b y a -=最小.2.当a <0时,抛物线2y ax bx c =++有最高点,函数有最大值,当2bx a=-时,244ac b y a -=最大.要点诠释:在求应用问题的最值时,除求二次函数2y ax bx c =++的最值,还应考虑实际问题的自变量的取值范围.【典型例题】类型一、应用二次函数的定义求值1.二次函数y=x 2-2(k+1)x+k+3有最小值-4,且图象的对称轴在y 轴的右侧,则k 的值是 . 【思路点拨】因为图象的对称轴在y 轴的右侧,所以对称轴x=k+1>0,即k >-1;又因为二次函数y=x 2-2(k+1)x+k+3有最小值-4,所以y 最小值= 442(k+3)-(2k+2)=-4,可以求出k 的值.【答案与解析】解:∵图象的对称轴在y 轴的右侧, ∴对称轴x=k+1>0, 解得k >-1,∵二次函数y=x 2-2(k+1)x+k+3有最小值-4,∴y 最小值= 442(k+3)-(2k+2)=k+3-(k+1)2=-k 2-k+2=-4,整理得k 2+k-6=0, 解得k=2或k=-3,∵k=-3<-1,不合题意舍去, ∴k=2.【总结升华】求二次函数的最大(小)值有三种方法,第一种可由图象直接得出,第二种是配方法,第三种是公式法.举一反三:【变式】已知24(3)k k y k x +-=+是二次函数,求k 的值.【答案】∵24(3)k k y k x+-=+是二次函数,则242,30k k k ⎧+-=⎨+≠⎩,由242k k +-=得260k k +-=,即(3)(2)0k k +-=,得13k =-,22k =.显然,当k =-3时, 原函数为y =0,不是二次函数. ∴ k =2即为所求.类型二、二次函数的图象及性质的应用2.把抛物线2y x =-向左平移1个单位,然后向上平移3个单位,则平移后抛物线的解析式为( ).A .2(1)3y x =--- B .2(1)3y x =-+-C .2(1)3y x =--+ D .2(1)3y x =-++【思路点拨】抛物线的平移问题,实质上是顶点的平移,原抛物线y=-x 2顶点坐标为(0,0),向左平移1个单位,然后向上平移3个单位后,顶点坐标为(-1,3),根据抛物线的顶点式可求平移后抛物线的解析式. 【答案】 D ;【解析】根据抛物线的平移规律可知:2y x =-向左平移1个单位可变成2(1)y x =-+,再向上平移3个单位后可变成2(1)3y x =-++.【总结升华】(1)2y ax =图象向左或向右平移|h|个单位,可得2()y a x h =-的图象(h <0时向左,h >0时向右).(2)2y ax =的图象向上或向下平移|k|个单位,可得2y ax k =+的图象(k >0时向上,k <0时向下).举一反三:【变式】将二次函数2y x =的图象向右平移1个单位长度,再向上平移2个单位长度后,所得图象的函数表达式是( )A .2(1)2y x =-+ B .2(1)2y x =++C .2(1)2y x =-- D .2(1)2y x =+-【答案】按照平移规律“上加下减,左加右减”得2(1)2y x =-+.故选A.类型三、求二次函数的解析式3.已知二次函数2y ax bx c =++的图象经过点(1,0),(-5,0),顶点纵坐标为92,求这个二次函数的解析式. 【思路点拨】将点(1,0),(-5,0)代入二次函数y=ax 2+bx+c ,再由4942ac a =2-b ,从而求得a ,b ,c 的值,即得这个二次函数的解析式.【答案与解析】解法一:由题意得0,2550,942,2a b c a b c a b c ⎧⎪++=⎪-+=⎨⎪⎪-+=⎩ 解得1,22,5.2a b c ⎧=-⎪⎪=-⎨⎪⎪=⎩所以二次函数的解析式为215222y x x =--+. 解法二:由题意得 (1)(5)y a x x =-+.把2x =-92y =代入,得9(21)(25)2a --⨯-+=,解得12a =-. 所以二次函数的解析式为1(1)(5)2y x x =--+,即 215222y x x =--+.解法三:因为二次函数的图象与x 轴的两交点为(1,0),(-5,0),由其对称性知,对称轴是直线2x =-.所以,抛物线的顶点是92,2⎛⎫- ⎪⎝⎭. 可设函数解析式为29(2)2y a x =++.即215222y x x =--+. 【总结升华】根据题目的条件,有多种方法求二次函数的解析式.举一反三:【高清课程名称:二次函数与中考 高清ID 号:359069 关联的位置名称(播放点名称):经典例题1】 【变式】已知:抛物线2(1)y x b x c =+-+经过点(12)P b --,. (1)求b c +的值;(2)若3b =,求这条抛物线的顶点坐标;(3)若3b >,过点P 作直线PA y ⊥轴,交y 轴于点A ,交抛物线于另一点B ,且2BP PA =,求这条抛物线所对应的二次函数关系式.(提示:请画示意图思考) 【答案】解:(1)依题意得:2(1)(1)(1)2b c b -+--+=-,2b c ∴+=-.(2)当3b =时,5c =-,2225(1)6y x x x ∴=+-=+- ∴抛物线的顶点坐标是(16)--,.(3)解法1:当3b >时,抛物线对称轴112b x -=-<-, ∴对称轴在点P 的左侧.因为抛物线是轴对称图形,(12)P b --,且2BP PA =.(32)B b ∴--,122b -∴-=-. 5b ∴=.又2b c +=-,7c ∴=-.∴抛物线所对应的二次函数关系式247y x x =+-.解法2:当3b >时,112b x -=-<-, ∴对称轴在点P 的左侧.因为抛物线是轴对称图形,(12)P b --,,且2(32)BP PA B b =∴--,, 2(3)3(2)2b c b ∴---+=-.又2b c +=-,解得:57b c ==-,∴这条抛物线对应的二次函数关系式是247y x x =+-.解法3:2b c +=-,2c b ∴=--,2(1)2y x b x b ∴=+---BP x ∥轴,2(1)22x b x b b ∴+---=-即:2(1)20x b x b +-+-=.解得:121(2)x x b =-=--,,即(2)B x b =-- 由2BP PA =,1(2)21b ∴-+-=⨯.57b c ∴==-,∴这条抛物线对应的二次函数关系式247y x x =+-.类型四、二次函数图象的位置与a 、b 、c 的关系4.如图所示是二次函数y=ax 2+bx+c 图象的一部分,图象过A 点(3,0),对称轴为x=1,给出四个结论:①b 2-4ac >0;②2a+b=0;③a+b+c=0;④当x=-1或x=3时,函数y 的值都等于0.把正确结论的序号填在横线上 .【思路点拨】根据函数图象得出抛物线开口向下得到a 小于0,且抛物线与x 轴交于两个点,得出根的判别式大于0,即选项①正确;对称轴为x=1,利用对称轴公式列出关于a 与b 的关系式,整理后得到2a+b=0,选项②正确;由图象得出x=1时对应的函数值大于0,将x=1代入抛物线解析式得出a+b+c 大于0,故选项③错误;由抛物线与x 轴的一个交点为A (3,0),根据对称轴为x=1,利用对称性得出另一个交点的横坐标为-1,从而得到x=-1或x=3时,函数值y=0,选项④正确,即可得出正确的选项序号. 【答案与解析】解:由图象可知:抛物线开口向下,对称轴在y 轴右侧,对称轴为x=1, 与y 轴交点在正半轴,与x 轴有两个交点,∴a <0,b >0,c >0,b 2-4ac >0,选项①正确; 当x=1时,y=a+b+c >0,选项③错误; ∵图象过A 点(3,0),对称轴为x=1,∴另一个交点的横坐标为-1,即坐标为(-1,0), 又12ba-=,∴2a+b=0,选项②正确; ∴当x=-1或x=3时,函数y 的值都等于0,选项④正确, 则正确的序号有①②④. 故答案为:①②④. 【总结升华】此题考查了抛物线图象与系数的关系,其中a 由抛物线的开口方向决定,a 与b 同号对称轴在y 轴左边;a 与b 异号对称轴在y 轴右边,c 的符合由抛物线与y 轴的交点在正半轴或负半轴有关;抛物线与x 轴的交点个数决定了根的判别式的正负,此外还要在抛物线图象上找出特殊点对应函数值的正负来进行判断. 举一反三:【变式】如图所示是二次函数2y ax bx c =++图象的一部分,图象经过点A(-3,0),对称轴为1x =-.给出四个结论:①24b ac >;②20a b +=;③0a b c -+=;④5a b <.其中正确结论是( ).A .②④B .①④C .②③D .①③【答案】本例是利用二次函数图象的位置与a 、b 、c 的和、差、积的符号问题,其中利用直线1x =,1x =-交抛物线的位置来判断a b c ++,a b c -+的符号问题应注意理解和掌握.由图象开口向下,可知a <0,图象与x 轴有两个交点,所以240b ac =->△,24b ac >, ① 确.对称轴为12bx a=-=-,所以2b a =,又由a <0,b =2a ,可得5a <b ,④正确. 故选B.类型五、求二次函数的最值5.某商品的进价为每件40元,售价为每件50元,每个月可卖出210件;如果每件商品的售价每上涨1元,则每个月少卖10件(每件售价不能高于65元).设每件商品的售价上涨x 元(x 为正整数),每个月的销售利润为)y 元.(1)求y 与x 的函数关系式并直接写出自变量x 的取值范围.(2)每件商品的售价定为多少元时,每个月可获得最大利润?最大的月利润是多少元?(3)每件商品的售价定为多少元时,每个月的利润恰为2200元?根据以上的结论,请你直接写出售价在什么范围时,每个月的利润不低于2200元? 【思路点拨】(1)每件商品的售价每上涨1元,则每个月少卖10件,当每件商品的售价上涨x 元时,每个月可卖出(210-10x )件,每件商品的利润为x+50-40=10+x ; (2)每个月的利润为卖出的商品数和每件商品的乘积,即(210-10x )(10+x ),当每个月的利润恰为2200元时得到方程(210-10x )(10+x )=2200.求此方程中x 的值. 【答案与解析】(1)y =(210-l0x)(50+x-40)=-10x 2+110x+2100(0<x ≤15且x 为整数).(2)y =-10(x-5.5)2+2402.5.∵ a =-10<0,∴ 当x =5.5时,y 有最大值2402.5. ∵ 0<x ≤15,且x 为整数,∴ 当x =5时,50+x =55,y =2400(元);当x =6时,50+x =56,y =2400(元).∴ 当售价定为每件55元或56元时,每个月的利润最大,最大的月利润是2400元.(3)当y =2200时,-10x 2+110x+2100=2200, 解得x 1=1,x 2=10.∴ 当x =1时,50+x =51;当x =10时,50+x =60.∴ 当售价定为每件51元或60元时,每个月的利润为2200元. 【总结升华】做此类应用题时,要明确题目中所给的信息,并找到其中相等的量可以用不同的表达式表示就可以列出方程. 举一反三:【变式】某水果批发商销售每箱进价为40元的苹果,物价部门规定每箱售价不得高于55元,市场调查发现,若每箱以50元的价格销售,平均每天销售90箱,价格每提高l 元,平均每天少销售3箱。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初三第一轮复习第17课时:二次函数(一)
【课前预习】 一、知识梳理:
1、二次函数的概念:形如 的函数叫做二次函数.
2、二次函数的解析式:①一般式;②顶点式;③交点式
3、二次函数的图象、性质:①图象是 ;②开口方向 ③对称轴 ④顶点坐标 ⑤增减性 ⑥最值.
4、二次函数的图象的变换(平移、旋转、轴对称)
5、用待定系数法确定二次函数解析式.
6、利用二次函数的性质解决数学问题. 二、课前练习:
1.已知以x 为自变量的二次函数22(2)2y m x m m =-+--的图象经过原点,则m 的值是 .
2.填表:
3.2
34y x x =--与x 轴的交点坐标是__________,与y 轴的交点坐标是__________. 4、已知点A (x 1,y 1)、B (x 2,y 2)在二次函数y =(x -1)2+1的图象上,若x 1>x 2>1,则y 1______y 2. 5、关于x 的二次函数()()y=x+1x m -,其图象的对称轴在y 轴的右侧,则实数m 的取值范围是( )
A . m<1-
B . 1<m <0-
C . 0<m <1
D . m>1
6、已知函数y =3x 2-4x +1,当0≤x ≤4时,则y 的变化范围是 . 7. 将抛物线y =3x 2向上平移3个单位,再向左平移2个单位,那么得到的抛物线的解析式
为( )
A .y =3(x +2)2
+3 B .y =3(x -2)2
+3 C .y =3(x +2)2
-3 D .y =3(x -2)2
-3 8、若抛物线y =ax 2+bx +c 的顶点是A (2,1),且经过点B (1,0),则抛物线的函数关系式为 .
9、如图,在平面直角坐标系中,点A 是抛物线()2
y=a x 3+k -与y 轴的交点,
点B 是这条抛物线上的另一点,且AB ∥x 轴,则以AB 为边的等边三角形ABC 的周长为 .
【解题指导】
例1 已知二次函数经过点(-1,0),(1,4),(3,0).
(1)求这个二次函数的解析式; (2)直接写出二次函数的三个性质.
例2 如图,抛物线y =x 2
+bx +c 经过点(1,-4)和(-2,5),请解答下列问题:
(1)求抛物线的解析式;
(2)若与x 轴的两个交点为A ,B ,与y 轴交于点C .在该抛物线上是否存在点D ,使得△ABC 与△ABD 全等?若存在,求出D 点的坐标;若不存在,请说明理由
例3 已知二次函数23y (t 1)x 2(t 2)x 2
=++++在x 0=和x 2=时的函数值相等。

①求二次函数的解析式;
②若一次函数y kx 6=+的图象与二次函数的图象都经过点A (3m)-,,求m 和k 的值; ③设二次函数的图象与x 轴交于点B ,C (点B 在点C 的左侧),将二次函数的图象在点B ,C
间的部分(含点B和点C)向左平移n(n0)
>个单位后得到的图象记为C,同时将(2)中得到的直线y kx6
=+向上平移n个单位。

请结合图象回答:当平移后的直线与图象G有公共点时,n的取值范围。

【巩固练习】
1、已知二次函数y=2(x﹣3)2+1.下列说法:①其图象的开口向下;②其图象的对称轴为直线x=﹣3;
③其图象顶点坐标为(3,﹣1);④当x<3时,y随x的增大而减小.则其中说法正确的有()
A.1个B.2个C.3个D.4个
2、已知一抛物线与x轴的交点是A(-2,0)、B(1,0),且经过C(2,8).
(1)求该抛物线的解析式;(2)求该抛物线的顶点坐标.
3、二次函数2
y=x+bx+c的图象经过点(4,3),(3,0)。

(1)求b、c的值;
(2)求出该二次函数图象的顶点坐标和对称轴;
(3)在所给坐标系中画出二次函数2
y=x+bx+c的图象。

【课后作业】班级姓名
一、必做题:
1、对于二次函数y2(x1)(x3)
=+-,下列说法正确的是()
A. 图象的开口向下
B. 当x>1时,y 随x 的增大而减小
C. 当x<1时,y 随x 的增大而减小
D. 图象的对称轴是直线x=-1 2、抛物线2y ax bx 3=+-经过点(2,4),则代数式8a 4b 1++的值为( )
A .3
B .9
C .15
D .15-
3、设A 1(2)y -,,B 2(1)y ,,C 3(2)y ,是抛物线2(1)y x a =-++上的三点,则1y ,2y ,
3y
的大小关系为( )
A .213y y y >>
B .312y y y >>
C .321y y y >>
D .312y y y >> 4、已知二次函数的图象(0≤x ≤3)如图所示,关于该函数在所给自变量取值范围
内,下列说法正确的是( ) A .有最小值0,有最大值3
B .有最小值-1,有最大值0
C .有最小值-1,有最大值3
D .有最小值-1,无最大值 5、抛物线2y x bx c =-++上部分点的横坐标x ,纵坐标y 的对应值如下表:
从上表可知,下列说法正确的个数是( ) ①抛物线与x 轴的一个交点为(20)-, ②抛物线与y 轴的交点为(06),
③抛物线的对称轴是:1x = ④在对称轴左侧y 随x 增大而增大
A . 1 B.2 C.3 D.4 6、二次函数622
+-=x x y 的最小值是 . 7、函数(2)(3)y x x =--取得最大值时,x =______.
8、如图,在平面直角坐标系xOy 中,边长为2的正方形OABC 的顶点A 、C 分别在x 轴、y
轴的正半轴上,二次函数y=c bx x ++-
2
3
2的图像经过B 、C 两点.
(1)求该二次函数的解析式;
(2)结合函数的图像探索:当y>0时x 的取值范围.
二.选做题: 1、给出下列命题:
命题1:点(1,1)是双曲线y =1x 与抛物线y =x 2
的一个交点.
命题2:点(1,2)是双曲线y =2x 与抛物线y =2x 2
的一个交 点. 命题3:点(1,3)是双曲线y =3
x
与抛物线y =3x 2的一个交点. ……
请你观察上面的命题,猜想出命题n (n 是正整数):______________________________. 2、对于二次函数2y x 2m x 3=--,有下列说法:
①它的图象与x 轴有两个公共点;
②如果当x ≤1时y 随x 的增大而减小,则m 1=;
③如果将它的图象向左平移3个单位后过原点,则m 1=-;
④如果当x 4=时的函数值与x 2008=时的函数值相等,则当x 2012=时的函数值为
3-.
其中正确的说法是 .(把你认为正确说法的序号都填上) 3、已知拋物线y =-1
3
2+2,当1≤x ≤5时,y 的最大值是( )
A .2 B.23 C.53 D.7
3
4、如图已知抛物线y =-x 2+bx +c 与一直线交于A(-1,0)、C(2,3)两点,与y 轴交于N.其顶点为D.
(1)求抛物线及直线AC 的函数关系式;
(2)设点M(3,m),求使MN+MD的值最小时m的值;
(3)若抛物线的对称轴与直线AC相交于点B,E为直线AC上的任意一点,过点E作 EF∥BD交抛物线于点F,以B、D、E、F为顶点的四边形能否为平行四边形?若能,求点E的坐标;若不能,请说明理由;
(4)若P是抛物线上位于直线AC上方的一个动点,求△APC的面积的最大值.。

相关文档
最新文档