新人教版八年级上册数学教案[1]

合集下载

八级上册数学教案人教版(全册)

八级上册数学教案人教版(全册)

八级上册数学教案人教版(第一部分)一、教学目标1. 知识与技能:使学生掌握本册数学的基本概念、性质、定理和公式,提高学生的数学思维能力和解决问题的能力。

2. 过程与方法:通过自主学习、合作探讨、实践操作等方式,培养学生的数学学习兴趣,提高学生的数学素养。

3. 情感态度与价值观:让学生体验到数学在实际生活中的运用,认识到数学的重要性,培养学生的责任感和使命感。

二、教学内容1. 第一章:实数与函数(1) 实数的概念、性质和运算;(2) 函数的定义、性质和图像;(3) 一次函数、二次函数、反比例函数的解析式、图像和性质。

2. 第二章:几何基础(1) 点、线、面的基本概念和性质;(2) 直线方程、圆方程;(3) 三角形、四边形的性质和判定;(4) 坐标系的应用。

三、教学重点与难点1. 教学重点:实数的运算、函数的性质、几何图形的判定与性质。

2. 教学难点:函数的图像、几何图形的复杂计算和证明。

四、教学方法1. 采用问题驱动法,引导学生主动探究数学问题;2. 运用案例分析法,让学生通过实际例子理解数学概念;3. 利用数形结合法,培养学生直观的数学思维;4. 实施分组合作学习,培养学生的团队协作能力。

五、教学评价1. 课堂表现:观察学生在课堂上的参与程度、提问回答等情况,了解学生的学习状态。

2. 作业完成情况:检查学生作业的准确性、书写规范性,评估学生的学习效果。

3. 考试成绩:定期进行数学考试,对学生的知识掌握程度进行评估。

4. 学生自评:鼓励学生自我评价,反思自己的学习过程,提出改进措施。

八级上册数学教案人教版(第二部分)六、教学安排1. 课时分配:本部分共安排课时,具体分配如下:第一章:实数与函数:课时第二章:几何基础:课时第十五章:课时2. 教学计划:根据课时分配,合理安排每个章节的教学内容,确保教学目标的达成。

七、教学资源1. 教材:使用人教版八级上册数学教材。

2. 教辅资料:提供相应的教辅资料,辅助教学。

最新人教版八年级数学上册教案(全册 共168页)

最新人教版八年级数学上册教案(全册 共168页)

最新人教版八年级数学上册教案(全册共168页)第十一章三角形一、课标要求(1)理解三角形及三角形有关的线段(边、高、中线、角平分线)的概念,证明三角形两边的和大于第三边,了解三角形的重心的概念,了解三角形的稳定性。

(2)理解三角形的内角、外角的概念,探索并证明三角形内角和定理,探索并掌握直角三角形的两个锐角互余,掌握有两个角互余的三角形是直角三角形,掌握三角形的一个外角等于与它不相邻的两个内角的和。

(3)了解多边形的有关概念(边、内角、外角、对角线、正多边形),探索并掌握多边形的内角和与外角和公式。

二、教材分析第1节研究与三角形有关的线段。

首先结合引言中的实际例子给出三角形的概念,进而研究三角形的分类。

对于三角形的边,证明了三角形两边的和大于第三边。

然后给出三角形的高、中线与角平分线的概念。

结合三角形的中线介绍三角形的重心的概念。

最后结合实际例子介绍三角形的稳定性。

第2节研究与三角形有关的角,对于三角形的内角,证明了三角形内角和定理。

然后由这个定理推出直角三角形的性质:直角三角形的两个锐角互余。

最后给出三角形的外角的概念,并由三角形内角和定理推出:三角形的外角等于与它不相邻的两个内角的和。

第3节介绍多边形的有关概念与多边形的内角和、外角和公式。

三角形是多边形的一种,因而可以借助三角形给出多边形的有关概念,如多边形的边、内角、外角、内角和都可由三角形的有关概念推广而来。

三角形是最简单的多边形,因而常常将多边形分为若干个三角形,利用三角形的性质研究多边形。

多边形的内角和公式就是利用上述方法得到的。

将多边形的有关内容与三角形的有关内容紧接安排,可以加强它们之间的联系,便于学生学习。

三、教学建议1.把握好教学要求与三角形有关的一些概念在本章中只要求达到理解的程度就可以了,进一步的要求可通过后续学习达到。

如对于三角形的角平分线,在本章中只要知道它的定义,能够从定义得出角相等就可以了,学生在画角平分线时发现三条角平分线交于一点,可直接肯定这个结论,在下一章“全等三角形”中再证明这个结论,同样,三角形的三条中线交于一点的结论也可直接点明。

新人教版八年级数学上册全册名师教案大全5篇_1

新人教版八年级数学上册全册名师教案大全5篇_1

新人教版八年级数学上册全册名师教案大全5篇新人教版八班级数学上册全册名师教案【篇1】一、学习目标:1、会推导两数差的平方公式,会用式子表示及用文字语言叙述;2、会运用两数差的平方公式进行计算。

二、学习过程:请同学们快速阅读课本第27—28页的内容,并完成下面的练习题:(一)探究1、计算: (a - b) =方法一:方法二:方法三:2、两数差的平方用式子表示为_________________________;用文字语言叙述为___________________________ 。

3、两数差的平方公式结构特征是什么?(二)现学现用利用两数差的平方公式计算:1、(3 - a)2、 (2a -1)3、(3y-x)4、(2x – 4y)5、( 3a - )(三)合作攻关敏捷运用两数差的平方公式计算:1、(999)2、( a – b – c )3、(a + 1) -(a-1)(四)达标训练1、、选择:下列各式中,与(a - 2b)肯定相等的是()A、a -2ab + 4bB、a -4bC、a +4bD、 a - 4ab +4b2、填空:(1)9x + + 16y = (4y - 3x )(2) ( ) = m - 8m + 162、计算:( a - b) ( x -2y )3、有一边长为a米的正方形空地,现预备将这块空地四周均留出b米宽修筑围坝,中间修建喷泉水池,你能计算出喷泉水池的面积吗?(四)提升1、本节课你学到了什么?2、已知a – b = 1,a + b = 25,求ab 的值新人教版八班级数学上册全册名师教案【篇2】一、教学目标(一)、学问与技能:(1)使同学了解因式分解的意义,理解因式分解的概念。

(2)熟悉因式分解与整式乘法的相互关系——互逆关系,并能运用这种关系寻求因式分解的方法。

(二)、过程与方法:(1)由同学自主探究解题途径,在此过程中,通过观看、类比等手段,寻求因式分解与因数分解之间的关系,培育同学的观看力量,进一步进展同学的类比思想。

人教版八年级数学上册全册教案

人教版八年级数学上册全册教案

人教版八年级数学上册全册教案目标本教案的目标是为人教版八年级数学上册提供全册教学计划,包含各单元的教学目标、教学内容、教学方法和评估方式。

教学计划第一单元:有理数- 教学目标:了解有理数的概念和性质,掌握有理数的加减运算规则。

- 教学内容:有理数的概念、有理数的运算规则、有理数的绝对值。

- 教学方法:讲解、示范、练、讨论。

- 评估方式:课堂练、小测、作业。

第二单元:代数方程与不等式- 教学目标:掌握代数方程的解法和不等式的求解方法,能够解决实际问题。

- 教学内容:一元一次方程的解法、二元一次方程的解法、一元一次不等式的解法。

- 教学方法:讲解、示范、练、实际问题分析。

- 评估方式:课堂练、小测、作业、解决实际问题。

第三单元:图形的认识与运用- 教学目标:认识常见图形的性质和特点,能够进行图形的判定和计算。

- 教学内容:平面图形的分类、圆的性质和计算、三角形的性质和计算。

- 教学方法:讲解、示范、练、实际问题分析。

- 评估方式:课堂练、小测、作业、解决实际问题。

第四单元:全等与相似- 教学目标:了解全等和相似的概念,能够进行全等和相似三角形的判定和计算。

- 教学内容:全等三角形的判定和性质、相似三角形的判定和性质、相似三角形的计算。

- 教学方法:讲解、示范、练、实际问题分析。

- 评估方式:课堂练、小测、作业、解决实际问题。

第五单元:三角函数- 教学目标:掌握正弦、余弦、正切的概念和计算方法,能够解决与三角函数相关的实际问题。

- 教学内容:角的概念、正弦、余弦、正切的概念和计算、实际问题中的应用。

- 教学方法:讲解、示范、练、实际问题分析。

- 评估方式:课堂练、小测、作业、解决实际问题。

总结本文档提供了人教版八年级数学上册的全册教案,包含各单元的教学目标、教学内容、教学方法和评估方式。

教案的设计旨在通过简单的教学策略和明确的教学目标,帮助学生轻松理解和掌握数学知识。

新人教版八年级数学上册名师教案(6篇)_1

新人教版八年级数学上册名师教案(6篇)_1

新人教版八年级数学上册名师教案(6篇)新人教版八班级数学上册名师教案(篇1)教学目标:1、经受数据离散程度的探究过程2、了解刻画数据离散程度的三个量度极差、标准差和方差,能借助计算器求出相应的数值。

教学重点:会计算某些数据的极差、标准差和方差。

教学难点:理解数据离散程度与三个差之间的关系。

教学预备:计算器,投影片等教学过程:一、创设情境1、投影课本P138引例。

(通过对问题串的解决,使同学直观地估量从甲、乙两厂抽取的20只鸡腿的平均质量,同时让同学初步体会平均水平相近时,两者的离散程度未必相同,从而顺理成章地引入刻画数据离散程度的一个量度极差)2、极差:是指一组数据中最大数据与最小数据的差,极差是用来刻画数据离散程度的一个统计量。

二、活动与探究假如丙厂也参与了竞争,从该厂抽样调查了20只鸡腿,数据如图(投影课本159页图)问题:1、丙厂这20只鸡腿质量的平均数和极差是多少?2、如何刻画丙厂这20只鸡腿质量与其平均数的差距?分别求出甲、丙两厂的20只鸡腿质量与对应平均数的差距。

3、在甲、丙两厂中,你认为哪个厂鸡腿质量更符合要求?为什么?(在上面的情境中,同学很简单比较甲、乙两厂被抽取鸡腿质量的极差,即可得出结论。

这里增加一个丙厂,其平均质量和极差与甲厂相同,此时导致同学思想熟悉上的冲突,为引出另两个刻画数据离散程度的量度标准差和方差作铺垫。

三、讲解概念:方差:各个数据与平均数之差的平方的平均数,记作s2 设有一组数据:x1, x2, x3,,xn,其平均数为则s2= ,而s= 称为该数据的标准差(既方差的算术平方根)从上面计算公式可以看出:一组数据的极差,方差或标准差越小,这组数据就越稳定。

四、做一做你能用计算器计算上述甲、丙两厂分别抽取的20只鸡腿质量的方差和标准差吗?你认为选哪个厂的鸡腿规格更好一些?说说你是怎样算的?(通过对此问题的解决,使同学回顾了用计算器求平均数的步骤,并自由探究求方差的具体步骤)五、巩固练习:课本第172页随堂练习六、课堂小结:1、怎样刻画一组数据的离散程度?2、怎样求方差和标准差?七、布置作业:习题5.5第1、2题。

人教版八年级上册数学教案(5篇)

人教版八年级上册数学教案(5篇)

人教版八年级上册数学教案(5篇)人教版八年级上册数学教案(5篇)人教版八年级上册数学教案1 一、内容和内容解析1.内容三角形高线、中线及角平分线的概念、几何语言表达及它们的画法.2.内容解析本节内容概念较多,有三角形的高、中线、角平分线和重心等有关概念;需要学生动手的频率也较高,要掌握任意三角形的高、中线、角平分线的画法,培养学生动手操作及解决问题的才能;鼓励学生主动参与,体验几何知识在现实生活中的真实性,激发学生热爱生活、勇于探究的思想感情。

理解三角形高、角平分线及中线概念到用几何语言准确表述,这是学生在几何学习上的一个深化.学习了这一课,对于学生增长几何知识,运用几何知识解决生活中的有关问题,起着非常重要的作用.它也是学习三角形的角、边的延续以及三角形全等、相似等后继知识一个准备.本节的重点是理解三角形的高、中线及角平分线概念的同时还要掌握它们的画法,难点是钝角三角形的高的画法及不同类型的三角形高线的位置关系.二、目的和目的解析1.教学目的(1)理解三角形的高、中线与角平分线等概念;(2)会用工具画三角形的高、中线与角平分线;2.教学目的解析(1)经历画图理论过程,理解三角形的高、中线与角平分线等概念.(2)可以纯熟用几何语言表达三角形的高、中线与角平分线的性质.(3)掌握三角形的高、中线与角平分线的画法.(4)理解三角形的三条高、三条中线与三条角平分线分别相交于一点.三、教学问题诊断分析^p三角形的高线的理解:三角形的高是线段,不是直线,它的一个端点是三角形的顶点,另一个端点在这个顶点的对边或对边所在的直线上.三角形的中线的理解:三角形的中线也是线段,它是一个顶点和对边中点的连线,它的一个端点是三角形的顶点,另一个端点是这个顶点的对边中点.三角形的角平分线的理解:三角形的角平分线也是一条线段,角的顶点是一个端点,另一个端点在对边上.而角的平分线是一条射线,即就是说三角形的角平分线与通常的角平线有一定的联络又有本质的区别.人教版八年级上册数学教案2 一、教学目的1、认识中位数和众数,并会求出一组数据中的众数和中位数。

人教版八年级数学上册教案册5篇

人教版八年级数学上册教案册5篇

人教版八年级数学上册教案全册5篇一、教材分析1、特点与地位:重点中的重点。

本课是教材求两结点之间的最短路径问题是图最常见的应用的之一,在交通运输、通讯网络等方面具有肯定的有用意义。

2、重点与难点:结合学生现有抽象思维力量水平,已把握根本概念等学情,以及求解最短路径问题的自身特点,确立本课的重点和难点如下: (1)重点:如何将现实问题抽象成求解最短路径问题,以及该问题的解决方案。

(2)难点:求解最短路径算法的程序实现。

3、教学安排:最短路径问题包含两种状况:一种是求从某个源点到其他各结点的最短路径,另一种是求每一对结点之间的最短路径。

依据教学大纲安排,重点讲解第一种状况问题的解决。

安排一个课时讲授。

教材直接分析算法,考虑实际应用需要,补充旅游景点线路选择的实例,实例中问题解决与算法分析相结合,逐步推动教学过程。

二、教学目标分析1、学问目标:把握最短路径概念、能够求解最短路径。

2、力量目标:(1)通过将旅游景点线路选择问题抽象成求最短路径问题,培育学生的数据抽象力量。

(2)通过旅游景点线路选择问题的解决,培育学生的独立思索、分析问题、解决问题的力量。

3、素养目标:培育学生讲究工作方法、与他人合作,提高效率。

三、教法分析课前充分预备,研读教材,查阅相关资料,制作多媒体课件。

教学过程中除了使用传统的“讲授法”以外,主要采纳“案例教学法”,同时辅以多媒体课件,以启发的方式绽开教学。

由于本节课的内容属于图这一章的难点,考虑学生的承受力量,留意与学生沟通,依据学生的反响掌握好教学进度是本节课胜利的关键。

四、学法指导1、课前上次课结课时给学生布置任务,使其有针对性的预习。

2、课中指导学生争论任务解决方法,引导学生分析本节课学问点。

3、课后给学生布置同类型任务,加强练习。

五、教学过程分析(一)课前复习(3~5分钟)回忆“路径”的概念,为引出“最短路径”做铺垫。

教学方法及留意事项:(1)采纳提问方式,留意准时小结,提问的目的是帮忙学生回忆概念。

八年级数学(上)全册优秀教案(新人教版)

八年级数学(上)全册优秀教案(新人教版)

第十一章全等三角形11.1全等三角形教学目标:1了解全等形及全等三角形的的概念;2理解全等三角形的性质;3在图形变换以及实际操作的过程中发展学生的空间观念,培养学生的几何直觉;4学生通过观察、发现生活中的全等形和实际操作中获得全等三角形的体验在探索和运用全等三角形性质的过程中感受到数学的乐趣。

重点:探究全等三角形的性质难点:掌握两个全等三角形的对应边,对应角教学过程:观察下列图案,指出这些图案中中形状与大小相同的图形问题:你还能举出生活中一些实际例子吗?这些形状、大小相同的图形放在一起能够完全重合。

能够完全重合的两个图形叫做全等形能够完全重合的两个三角形叫做全等三角形引导学生完成课本P3思考:归纳:一个图形经过平移、翻折、旋转后,位置变化了,但形状、大小都没有改变,即平移、翻折、旋转前后的图形全等。

“全等”用“望”表示,读作“全等于”两个三角形全等时,通常把表示对应顶点的字母写在对应的位置上,如/ ABC和/ DEF全等时,点A和点D,点B和点E,点C和点F是对应顶点,记作/ ABC^/DEF 把两个全等的三角形重合到一起,重合的顶点叫做对应顶点,重合的边叫做对应边,重合的角叫做对应角思考:如课本P3思考图11.1-1中,/ ABC^/ DEF对应边有什么关系?对应角呢?归纳:全等三角形性质:全等三角形的对应边相等;全等三角形的对应角相等。

思考:(1)下面是两个全等的三角形,按下列图形的位置摆放,指出它们的对应顶点、对应边、对应角(2)将/ ABC沿直线BC平移,得到/ DEF说出你得到的结论,说明理由?(3)如图,/ABE^/ACD,AB与AC AD与AE是对应边,已知:/ A=43°, / B=30°, 求/ ADC的大小。

作业:P4习题11.1第1,2,3题课题:11. 2三角形全等的判定(1)教学目标①经历探索三角形全等条件的过程,体会利用操作、归纳获得数学结论的过程.②掌握三角形全等的“边边边”条件,了解三角形的稳定性.③通过对问题的共同探讨,培养学生的协作精神. 教学难点三角形全等条件的探索过程.一、复习过程,引入新知多媒体显示,带领学生复习全等三角形的定义及其性质,从而得出结论:全等三角形三条边对应相等,三个角分别对应相等.反之,这六个元素分别相等,这样的两个三角形一定全等.二、创设情境,提出问题根据上面的结论,提出问题:两个三角形全等,是否一定需要六个条件呢?如果只满足上述六个条件中的一部分,是否也能保证两个三角形全等呢?组织学生进行讨论交流,经过学生逐步分析,各种情况逐渐明朗,进行交流予以汇总归纳. 三、建立模型,探索发现出示探究1,先任意画一个△ ABC再画一个厶A'B'C',使厶ABC与厶A'B'C',满足上述条件中的一个或两个.你画出的△ A'B'C'与厶ABC-定全等吗?让学生按照下面给出的条件作出三角形.(1) 三角形的两个角分别是30°、50°.(2) 三角形的两条边分别是4cm, 6cm(3) 三角形的一个角为30°,—条边为3cm再通过画一画,剪一剪,比一比的方式,得出结论:只给出一个或两个条件时,都不能保证所画出的三角形一定全等.出示探究2,先任意画出一个厶A'B'C',使A'B' = AB B'C' = BC,C'A' = CA 把画好的厶A'B'C'剪下,放到△ ABC上,它们全等吗?让学生充分交流后,在教师的引导下作出厶A'B'C',并通过比较得出结论:三边对应相等的两个三角形全等.四、应用新知,体验成功实物演示:由三根木条钉成的一个三角形的框架,它的大小和形状是固定不变的.鼓励学生举出生活中的实例.给出例I,如下图△ ABC是一个钢架,A吐AC, AD是连接点A与BC中点D的支架,求证△ ABD^A ACDB D C让学生独立思考后口头表达理由,由教师板演推理过程. 例2女口图是用圆规和直尺画已知角的平分线的示意图,作法如下:①以A为圆心画弧,分别交角的两边于点B和点C;②分别以点B、C为圆心,相同长度为半径画两条弧,两弧交于点D;③画射线ADAD就是/ BAC的平分线.你能说明该画法正确的理由吗?例3 如图四边形ABCD中, A吐CD AD= BC你能把四边形ABCD^成两个相互全等的三角形吗?你有几种方法?你能证明你的方法吗?试一试.A D五、巩固练习:课本P8页的练习.六、反思小结回顾反思本节课对知识的研究探索过程、小结方法及结论,提炼数学思想, 掌握数学规律.七、布置作业课本P15习题11. 2第1、2题.八年级数学教案(马兰勤)课题:11.2~~三角形全等的判定2)教学目标①经历探索三角形全等条件的过程,培养学生观察分析图形能力、动手能力.②在探索三角形全等条件及其运用的过程中,能够进行有条理的思考并进行简单的推理.③通过对问题的共同探讨,培养学生的协作精神.教学难点指导学生分析问题,寻找判定三角形全等的条件.知识重点应用“边角边”证明两个三角形全等,进而得出线段或角相等.教学过程(师生活动)一、情境,引入课题多媒体出示探究3:已知任意厶ABC画厶A'B'C',使A'B' = AB, AC = AC,/ A =/ A.教帅点拨,学生边学边画图,再让学生把画好的△ A'B'C',剪下放在厶ABC上,观察这两个三角形是否全等.二、交流对话,探求新知根据前面的操作,鼓励学生用自己的语言来总结规律:两边和它们的夹角对应相等的两个三角形全等. (SAS)补充强调:角必须是两条相等的对应边的夹角,边必须是夹相等角的两对边.三、应用新知,体验成功出示例2,如图,有一池塘,要测池塘两端A、B的距离,可先在平地上取一个可以直接到达A 和B的点C,连接AC并延长到D,使C[> CA连接BC并延长到E,使CE =CB.连接DE那么量出DE 的长就是A、B的距离,为什么?让学生充分思考后,书写推理过程,并说明每一步的依据.(若学生不能顺利得到证明思路,教师也可作如下分析:要想证A吐DE只需证△ ABC^A DEC△ ABC tA DEC全等的条件现有……还需要……)明确证明分别属于两个三角形的线段相等或者角相等的问题,常常通过证明这两个三角形全等来解决.补充例题:1、已知:如图AB=AC,AD=AE, BAC=/ DAE ACADAB=AC(已知) / BAD=Z CAE (已证) AD=AE(已知) •••△ ABD^A ACE ( SAS ) 思考:求证:1.BD=CE 2./ B= / C 3. / ADB=Z AEC 变式 1:已知:如图,AB 丄 AC,ADL AE,AB=AC,AD=AE. 求证: △ DAC^A EABBE=DC / B= / C / D= Z E BE 丄 CD四、再次探究,释解疑惑出示探究4,我们知道,两边和它们的夹角对应相等的两个 三角形全等.由“两边及其中一边的对角对应相等”的条件 能判定两个三角形全等吗?为什么?让学生模仿前面的探究方法,得出结论:两边及其中一边的对角对应相等的两 个三角形不一定全等.教师演示:方法(一)教科书10页图11.2-7 . 方法(二)通过画图,让学生更直观地获得结论.五、巩固练习 课本P10页,练习1、2.六、 小结提高1. 判定三角形全等的方法;2.证明线段、角相等常见的方法有哪些 ?让学生自由表述,其他学生补充,让学生 自己将知识系统化,以自己的方式进行建构.七、 布置作业1. 课本P15页,习题11. 2第3、4题.2. 选作题:DE= DF, EH h FH,你能发现哪些结沦?并说求证BO DE(1)小明做了一个如图所示的风筝,测得 明理由.八年级数学教案(马兰勤)课题:11.2~~三角形全等的判定(3)教学目标① 探索并掌握两个三角形全等的条件:“ASA “AAS ,并能应用它们判别两个三角形 是否全等. ② 经历作图、比较、证明等探究过程,提高分析、作图、归纳、表达、逻辑推理等 能力;并通过对知识方法的总结,培养反思的习惯,培养理性思维.③ 敢于面对教学活动中的困难,能通过合作交流解决遇到的困难.教学重点 理解,掌握三角形全等的条件:“ASA “AAS .教学难点探究出“ ASA “AAS 以及它们的应用.教学过程(师生活动)创设情境复习:师:我们已经知道,三角形全等的判定条件有哪些 ?生: “SSS “SAS师:那除了这两个条件,满足另一些条件的两个三角形 也可能全等呢?今天我们就来探究三角形全等的另一些 探究新知:一张教学用的三角形硬纸板不小心被撕坏了,如图,你能制作一张与原来同样大小的新教具?能恢复原来三角形的原貌吗?1. 师:我们先来探究第一种情况.(课件出示“探究5……”)⑴探究5先任意画出一个厶ABC 再画一个厶A'B'C',使 A'B' = AB, / A' =Z A ,Z B'= / B (即使两角和它们的夹边对应相等).把画好的△ A'B'C'剪下,放到△ ABC 上,它 们全等吗?师:怎样画出△ A'B'C'?先自己独立思考,动手画一画。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第11章全等三角形教学设计11.1 全等三角形教学目标①通过实例理解全等形的概念和特征,并能识别图形的全等.②知道全等三角形的有关概念,能正确地找出对应顶点、对应边、对应角;掌握全等三角形对应边相等,对应角相等的性质.③能运用性质进行简单的推理和计算,解决一些实际问题.④通过两个重合的三角形变换其中一个的位置,使它们呈现各种不同位置的活动,让学生从中了解并体会图形变换的思想,逐步培养学生动态的研究几何图形的意识.教学重点与难点重点:全等三角形的有关概念和性质.难点:理解全等三角形边、角之间的对应关系.教学设计问题情境1.展现生活中的大量图片.片断1:图案.片断2:教科书第90页的3幅图案.2.学生讨论:(1)从上面的片断中你有什么感受?(2)你能再举出生活中的一些类似例子吗?学生分组讨论、思考探究1.上面这些图形有什么共同的特征?2.有人用“全等形”一词描述上面的图形,你认为这个词是什么含义?教师明晰。

建立模型1.给出“全等形”、“全等三角形”的定义.2.列举反例,强调定义的条件.3.提出问题“你能构造一对全等三角形”吗?你是如何构造的,与同伴交流.4.全等三角形的对应元素及性质:教师结合手中的教具说明对应元素(顶点、边、角)的含义,并引导学生观察全等三角形中对应元素的关系,发现对应边相等,对应角相等(教师启发学生根据“重合”来说明道理).解析、应用与拓广1.以图13.1-1中的两个三角形为例,介绍对应边、对应角以及两个三角形全等的符号表示、读法、写法,并说出图13.1—2、图13.1—3的对应顶点、对应边、对应角,写出相等的边和角(解释“≌”的含义和读法,并强调对应顶点写在对应位置上).2.总结寻找全等三角形对应元素的方法,渗透全等变换的思想.3.学生运用自制的两块全等三角形模板,用平移、翻折、旋转等方法,先独立拼出教科书92~93页中的5个图形,说出它们的对应顶点、对应边、对应角,再与同伴交流,你还能拼出其他图形吗?拓展与延伸1.例 1 已知△ABC≌△DFE,∠A=96°,∠B=25°,DF=10cm.求∠E的度数及AB的长.随堂练习注:检查学生对本节课的掌握情况.1.全等用符号__表示.读作__.2.△ABC全等于三角形△DEF,用式子表示为__.3.△ABC≌△DEF,∠A的对应角是∠D,∠B的对应角∠E,则∠C与__是对应角;AB与__是对应边,BC与__是对应边,AC与__是对应边.4.判断题:(1)全等三角形的对应边相等,对应角相等. ( )(2)全等三角形的周长相等. ( )(3)面积相等的三角形是全等三角形. ( )(4)全等三角形的面积相等. ( )5.找出由七巧板拼成的图案中的全等三角形.小结提高1.回忆这节课:在自己动手实际操作中,得到了全等三角形的哪些知识?注:对于学生的发言,教师要给予肯定的评价.2.找全等三角形对应元素的方法,注意挖掘图形中隐含的条件,如公共元素、对顶角等,但公共顶点不一定是对应顶点;3.在运用全等三角形的定义和性质时应注意规范书写格式.布置作业1.必做题:教科书92页习题13.1第1题,第2题,第3题.2.选做题:教科书92页习题13.1第4题.教学后记11.2 三角形全等的条件(1)教学目标①经历探索三角形全等条件的过程,体会利用操作、归纳获得数学结论的过程.②掌握三角形全等的“边边边”条件,了解三角形的稳定性.③通过对问题的共同探讨,培养学生的协作精神.教学重点与难点重点:指导学生分析问题,寻找判定三角形全等的条件.难点:三角形全等条件的探索过程.教学设计复习过程,引入新知带领学生复习全等三角形的定义及其性质,从而得出结论:全等三角形三条边对应相等,三个角分别对应相等.反之,这六个元素分别相等,这样的两个三角形一定全等.创设情境,提出问题根据上面的结论,提出问题:两个三角形全等,是否一定需要六个条件呢?如果只满足上述六个条件中的一部分,是否也能保证两个三角形全等呢?组织学生进行讨论交流,经过学生逐步分析,各种情况逐渐明朗,进行交流予以汇总归纳.建立模型,探索发现出示探究1,先任意画一个△ABC,再画一个△A'B'C',使△ABC与△A'B'C'满足上述条件中的一个或两个.你画出的△A'B'C'与△ABC一定全等吗?让学生按照下面给出的条件作出三角形.(1)三角形的两个角分别是30°、50°.(2)三角形的两条边分别是4 cm,6 cm.(3)三角形的一个角为30°,一条边为3 cm.再通过画一画,剪一剪,比一比的方式,得出结论:只给出一个或两个条件时,都不能保证所画出的三角形一定全等.出示探究2,先任意画出一个△A'B'C',使A'B'=AB,B'C'=BC,C'A'=CA,把画好的△A'B'C'剪下,放到△ABC上,它们全等吗?通过交流,归纳得出结论:三边对应相等的两个三角形全等(SSS).同时也明确判定三角形全等需要三个条件.应用新知,体验成功实物演示:由三根木条钉成的一个三角形的框架,它的大小和形状是固定不变的.让学生通过实物来理解三角形的稳定性.鼓励学生举出生活中的实例.注:让学生体验数学在生活中应用的广泛性.给出例1,如图△ABC是一个钢架,AB=AC,AD是连接点A与BC中点D的支架,求证△ABD≌△ACD.巩固练习教科书第96页的思考及练习.反思小结回顾反思本节课对知识的研究探索过程、小结方法及结论,提炼数学思想,掌握数学规律.再次渗透分类的数学思想,体会分析问题的方法,积累数学活动的经验.作业1.必做题:教科书第103页习题13.2中的第1、2题.2.选做题:教科书第104页第9题.教学后记11.2 三角形全等的条件(2)教学目标①经历探索三角形全等条件的过程,培养学生观察分析图形能力、动手能力.②在探索三角形全等条件及其运用的过程中,能够进行有条理的思考并进行简单的推理.③通过对问题的共同探讨,培养学生的协作精神.教学重点与难点重点:应用“边角边”证明两个三角形全等,进而得出线段或角相等.难点:指导学生分析问题,寻找判定三角形全等的条件.教学设计创设情境,引入课题出示探究3:已知任意△ABC,画△A'B'C',使A'B'=AB,A'C'=AC,∠A'=∠A.教师点拨,学生边学边画图,再让学生把画好的ΔA'B'C'剪下,放在ΔABC上,观察这两个三角形是否全等.交流对话,探求新知根据前面的操作,鼓励学生用自己的语言来总结规律:两边和它们的夹角对应相等的两个三角形全等.(SAS)注:培养学生的概括能力和语言表达能力.补充强调:角必须是两条相等的对应边的夹角,边必须是夹相等角的两对边.注:归纳、分析得到的规律,使学生有更深刻的认识和理解.应用新知,体验成功出示例2,如图,有一池塘,要测池塘两端A、B的距离,可先在平地上取一个可以直接到达A和B的点C,连接AC并延长到D,使CD=CA,连接BC并延长到E,使CE=CB.连接DE,那么量出DE的长就是A、B的距离,为什么?再次探究,释解疑惑出示探究4,我们知道,两边和它们的夹角对应相等的两个三角形全等.由“两边及其中一边的对角对应相等”的条件能判定两个三角形全等吗?为什么?让学生模仿前面的探究方法,得出结论:两边及其中一边的对角对应相等的两个三角形不一定全等.教师演示:方法(一)教科书98页图13.2-7.方法(二)通过画图,让学生更直观地获得结论.巩固练习教科书第99页,练习(1)(2).小结1.判定三角形全等的方法;2.证明线段、角相等常见的方法有哪些?让学生自由表述,其他学生补充,让学生自己将知识系统化,以自己的方式进行建构.注:通过课堂小结,归纳整理本节课学习的内容,帮学生完善认知结构,形成解题经验.作业1.必做题:教科书第104页,习题13.2第3、4题.2.选做题:教科书第105页第10题.教学后记11.2 三角形全等的条件(3)教学目标①探索并掌握两个三角形全等的条件:“ASA”“AAS”,并能应用它们判别两个三角形是否全等.②经历作图、比较、证明等探究过程,提高分析、作图、归纳、表达、逻辑推理等能力;并通过对知识方法的总结,培养反思的习惯,培养理性思维.③敢于面对教学活动中的困难,能通过合作交流解决遇到的困难.教学重点与难点重点:理解、掌握三角形全等的条件:“ASA”“AAS”.难点:探究出“ASA”“AAS”以及它们的应用.教学设计创设情境1.复习(1)作线段AB等于已知线段a,(2)作∠ABC,等于已知∠α2.引人我们已经知道,三角形全等的判定条件有哪些?那除了这两个条件,满足另一些条件的两个三角形是否也可能全等呢?今天我们就来探究三角形全等的另一些条件.探究新知出示探究5先任意画出一个△ABC,再画一个△A'B'C',使A'B'=AB,∠A'=∠A,∠B'=∠B(即使两角和它们的夹边对应相等).把画好的△A'B'C'剪下,放到△ABC上,它们全等吗?保证作图的正确性,这是探究出正确规律的前提.在画的过程中若遇到不能解决的问题,可小组合作交流解决.两角和它们的夹边对应相等的两个三角形全等. “ASA”至此,我们又增加了一种判别三角形全等的方法.特别应注意,“边”必须是“两角的夹边”.2.探究6师:我们再看看下面的条件:在△ABC和△DEF中,∠A=∠D,∠B=∠E,BC=EF,△ABC与△DEF全等吗?能利用角边角条件证明你的结论吗?从这可以看出,从这些已知条件中能得出两个三角形全等.这又反映了一个什么规律?两个角和其中一条边对应相等的两个三角形全等.“AAS”“边”可以是“其中一个角的对边”.3.例3下面我们看用“ASA”、“AAS”能否解决一些问题.出示例3,让学生自己看题、审题.师:根据已知条件,能得出什么?又联系所求证的,该如何证明?(先独立探究,再与同桌或四人小组交换意见,再全班交流)注:留给学生较充分的独立思考、探究的时间,在探究过程中,提高逻辑推理能力.与学生一起回顾证明方法,逐步培养反思的习惯,形成理性思维.从这道例题中,我们又得出了证明线段相等的又一方法,先证两线段所在的三角形全等,这样,对应边也就相等了.4.探究7:(1)三角对应相等的两个三角形全等吗?(课件出示题目)引导学生通过“画两个三角对应相等的三角形”,看是否一定全等,或“用两个同一形状但大小不同的三角板”等等方法来探究说明.注:引导学生先确定探究的思路与方法,进一步培养理性思维.也为学生提供创新的空间与可能.判定两个三角形全等我们已有了哪些方法?SSS SAS ASA AAS小结师:这节课通过对两个三角形全等条件的进一步探究,你有什么收获?让学生各抒己见,积极地在知识、学习方法、习惯等方面加以小结,以培养反思的习惯,培养理性思维.巩固练习教科书第101页,练习1、2.作业1.必做题:教科书第103页习题13.2第5题.2.选做题:教科书第105页第11、12题.教学后记11.2 三角形全等的条件(4)教学目标①探索出直角三角形全等的条件——HL,并掌握,能进行简单的应用.②经历作图、比较、证明等探究过程,提高分析、作图、归纳、表达、逻辑推理能力.③通过探究与交流,解决一些问题,获得成功的体验,进一步激发探究的积极性.教学重点与难点重点:掌握判定两个直角三角形全等的特殊方法——HL.难点:熟练选择判定方法,判定两个直角三角形全等.教学设计创设情境,引入新课判定两个三角形全等的条件有哪些?(SSS、SAS、AAS、ASA)师:根据这些条件,对于两个直角三角形,除了直角相等的条件,还要满足几个条件,这两个直角三角形就全等了?今天我们就来探究两个直角三角形全等的条件.探究新知两个直角三角形,除了直角相等外,还要满足几个条件,这两个直角三角形就全等了?(让学生观察课件中的两个直角三角形并思考回答)1:再满足一边一锐角对应相等,就可用“AAS"或“ASA"证全等了.2:再满足两直角边对应相等,就可用"SAS"证全等了.那么,如果满足斜边和一条直角边对应相等,这两个直角三角形全等吗?通过动手探究,你是否能得出结论.直角三角形我们用Rt△表示.3.探究8:任意画出一个Rt△ABC,使∠C=90°,再画一个Rt△A'B'C',使B'C'=BC,A'B'=AB,把画好的RtΔA'B'C'剪下,放到Rt△ABC上,看看它们是否全等.斜边和一条直角边对应相等的两个直角三角形全等.“HL”可以简写成“斜边,直角边”或“HL”,这是不同于一般全等三角形的判定方法.4.例4出示例4注:与学生一起反思总结,逐步培养学生反思的习惯.巩固练习教科书第103页练习1、2.小结你有什么收获?作业1.必做题:教科书第103页习题13.2第6、7题.2.选做题:教科书第103页习题13.2第8题.教学后记11.3 角的平分线的性质(1)教学目标①经历探索、猜想、证明的过程,进一步发展学生的推理证明意识和能力.②能够利用三角形全等,证明角平分线的性质和判定.③会用尺规作已知角的平分线.④能对角平分线性质进行简单的推理,解决一些实际问题.教学重点与难点重点:角平分线画法、性质和判定.难点:运用角平分线性质进行简单的推理及解决实际问题.创设情境,导入新课1.学生翻看教科书第96页练习题,回顾怎样用全等三角形的知识来说明这种画法的道理;2.学生阅读教科书第107页探究题(教师演示画图,并介绍“平分角的仪器”的特点);3.出示问题:你能用①的类似方法说明②画法的道理吗?复习旧知识,引导学生用类似的方法解决新问题,让学生在思考的过程中激发学习兴趣.探索新知,建立模型1.学生分组讨论,并写出证明过程;2.通过探究练习题与探究题的画法原理,得出用直尺和圆规画已知角平分线的方法,并写出“已知”“求作”;体验利用证明三角形全等的方法来对画法做出说明.要求学生能说明所作的射线是角平分线的理由.注:说理方法的迁移,教给学生类比的学习方法.3.做一做:边写“作法”,边画图,互相欣赏作品.4.练一练:(1)教科书第108页练习题;(2)教科书第110页复习巩固第1题(用“HL"证明三角形全等),观察图形,探究结果后可得到:PM⊥OA,PN⊥OB,且PM=PN;5.折一折:按教科书108页“探究”题的要求,让学生分组折纸,验证上面的事实,并利用三角形全等知识进行解释;在已有成功经验的基础上,继续探究与应用,提升分析解决问题的能力并增进运用数学的情感体验.6.给出角平分线的性质和判定定理.解析、应用与拓展1.解决教科书108页思考题分析:把公路、铁路看成两条相交线,先作其交角的平分线OB(O为顶点),再在OB上作OS,使OS=2.5cm,点S即为所求.2.如图,在△ABC中,∠C=90°,AD平分∠BAC交BC于点D,若BC=8,BD=5,则点D到AB的距离为多少?小结归纳引导学生小组合作交流:1.本节课学到了哪些角平分线的知识?2.角平分线有多种画法(借助量角器、透明纸、角尺、平分角的仪器等),但尺规画图最佳,这些画法的道理可以通过三角形全等的证明来获得.布置作业1.必做题:教科书第110页习题13.3第2、4题.2.选做题:教科书第114页复习题13第5题.教学后记11.3 角的平分线的性质(2)教学目标①能够利用角平分线的性质和判定进行推理和计算,解决一些实际问题.②进一步发展学生的推理证明意识和能力.③结合实际,创造丰富的情境,提高学生的学习兴趣,让他们在活动中获得成功的体验,培养学生的探索精神,树立学习的信心.教学重点与难点重点:角平分线性质和判定的应用.难点:运用角平分线性质和判定证明及解决实际问题.教学设计创设情境,提出问题讨论交流,探究问题1.学生活动一:剪一个三角形纸片,通过折叠找出每个角的平分线,观察这三条角平分线,你发现了什么?与同伴进行交流.2.学生活动二:画一个三角形,利用尺规作出这个三角形三个内角的平分线.你是否也发现了同样的结果?与同伴进行交流.通过折纸及作图过程,由学生自己去发现结论,教师要有足够的耐心,要为学生的思考留有时间和空间.教师针对学生的讨论情况,进行点评,引导分析,渗透数学建模的思想,达成共识后得到结论:三角形三个内角的平分线交于一点,并且这一点到三边的距离相等.建立模型,解决问题1.练一练:学生在教科书第115页第6题上画出度假村的位置.2.想一想:在确定度假村的位置时,一定要画出三个角的平分线吗?你是怎样思考的?你是如何证明的?4.例1:(教科书第109页例题)分析:(1)此题证明方法对学生来说有些抽象,教师应一步一步引导,避免操之过急,学生对它的接受和理解有一个过程.(2)教师要现场作图,并给学生一个示范,加强对学生数学语言规范的训练.(3)理解“同理”的含义,强调规范的书写.拓展与延伸1.教科书第109页练习题.小结归纳今天你又学到了哪些新的知识?有什么收获?注:发挥学生的主体意识,培养学生的归纳能力.布置作业1.必做题:教科书第110页习题13.3第3、5题.2.选做题:教科书111页习题13.3第6题.教学后记第十二章轴对称教学设计12.1 轴对称(1)教学目标1.通过丰富的实例认识轴对称图形,并能找出轴对称图形的对称轴.2.了解轴对称图形、两个图形成轴对称这两个概念之间的联系和区别.3.经历丰富材料的学习过程,发展对图形的观察、分析、判断、归纳等能力.4.体验数学与生活的联系、发展审美观.教学重点:轴对称的有关概念;教学难点:轴对称图形与两个图形关于某条直线对称这两个概念之间的联系与区别.教学准备教师:收集有关轴对称的素材(包括图形、实物、图片等).学生:准备复写纸;收集有关窗花的素材,并要求进行剪纸----双喜字或其他窗花.教学设计作品展示,交流体会1.作品展示:让部分学生展示课前的剪纸作品(可以将作品粘贴到黑板上);2.小组活动: (1)在窗花的制作过程中,你是如何进行剪纸的?为什么要这样?(2)这些窗花(图案)有什么共同的特点?概念形成(一)轴对称图形1.在学生充分交流的基础上,教师提出“轴对称图形”的概念,并让学生尝试给它下定义,通过逐步地修正形成“轴对称图形”的定义,同时给出“对称轴”.2.结合教科书第118页图14.1-1进一步分析轴对称图形的特点,以及对称轴的位置.3.学生举例:试举几个在现实生活中你所见到的轴对称例子.4.概念应用:(1)教科书第119页练习;(二)两个图形关于某条直线对称对于第二个概念的建立,分两个步骤进行:先观察图形,再进行画图.其目的是突出两个图形和这两个图形之间的关系,在这个基础上再给出定义,比较合理.1.观察教科书第119页中的图14.1-3,思考:图中的每对图形有什么共同的特点?2.操作:取一张薄纸,先对折,然后中间夹一张复写纸,再在纸上任意画一个图案,取出复写纸后你发现两层纸上的图案有什么关系?3.两个图形成轴对称的定义.如下图,图形F与图形F'就是关于直线l对称,点A与点A'是对称的.4.举例:你能举出一些生活中两个图形成轴对称的例子吗?5.练习:教科书第120页.辨析概念分组讨论:轴对称图形和两个图形成轴对称这两个概念之间的联系和区别.讨论后可列表比较如下:实践和应用1.下列图形是部分汽车的标志,哪些是轴对称图形?奔驰 宝马 大众 奥迪归纳小结 通过本节课的学习,你有什么收获?布置作业 教科书第125页第1、2题,第126页第6题.教学后记:12.1 轴对称(2)教学目标 ①探索并理解对应点所连的线段被对称轴垂直平分的性质. ②探索并理解线段垂直平分线的两个性质. ③通过观察、实验、猜测、验证与交流等数学活动,初步形成数学学习的方法. ④在数学学习的活动中,养成良好的思维品质.教学重点:图形轴对称的性质和线段垂直平分线的性质.教学难点:由线段垂直平分线的两个性质得出的“点的集合”的描述. 教学设计提出问题1.下面的图形是轴对称图形吗?如果是,请说出它的对称轴.2.如果两个图形成轴对称,那么这两个图形有什么关系?(如下图,△ABC 和△A'B'C'关于直线MN 对称)3.如图,△ABC 和△A'B'C'关于直线MN 对称,点A'、B'、C'分别是点A 、B 、C 的对称点,线段AA'、BB'、CC'与直线MN 有什么关系?实验探究1.折一折.要解决问题3,我们可以从最简单的一个点开始:先将一张纸对折,用圆规在纸上穿一个孔,然后再把纸展开,记两个孔的位置为点A 和点A',折痕为直线MN(如图3).显然,此时点A 和点A'关于直线MN 对称.连结点A ,A',交直线MN 于点P .2.说一说.观察图形,线段AA'与直线MN 有怎样的位置关系?你能说明理由吗?类似地,点B 与点B',点C 与点C'是否也有同样的关系?你能用语言归纳上述发现的规律吗?注:在这个基础上,教师给出垂直平分线的概念,然后把上述规律概括成图形轴对称的性质(教科书第121页)3.想一想.上述性质是对两个成轴对称的图形来说的,如果是一个轴对称图形,那么它的对应点的连线与对称轴之间是否也与同样的关系呢? (结合教科书第121页的图14.1-5让学生说明)从而得出:类似地,轴对称图形的对称轴,是任何一对对应点连线的垂直平分线.合作探究探究一:教科书第121页的“探究”.学生先思考教科书上的问题,然后让学生以线段代替木条进行画图探究.任意画一条线段AB ,再画出它的垂直平分线MN ,在MN 上任意取点P1,P2,P3(如图4),分别量一量点P1,P2,P3到A 与B 的距离,你有什么发现?你能说明理由吗?请与同伴交流.处理方式:要求学生在独立尝试、独立思考的基础上进行合作交流,然后小组汇报.学生可以量一量、折一折,也可以运用第十三章的知识证明三角形全等.在学生充分讨论的基础上归纳出:线段垂直平分线上的点与这条线段两个端点的距离相等.想一想:如图5,我们在教科书第99页的练习1中,应用三角形全等的知识说图3 图4图5 明了CB=CB ,你能运用今天所学的知识给出解释吗?问题:反过来,如果PA=PB ,那么点P 是否在线段AB 的垂直平分线上?探究二:如图6,PA=PB ,取线段AB 的中点O ,连结PO ,PO 与AB 有怎样的位置关系?从而得出:与一条线段两个端点距离相等的点在这条线段的垂直平分线上. 归纳结论:见教科书第122页的最后一段话.3.练习:教科书第123页.小结提高 1.本节课你学到了什么? 2.轴对称图形的性质与线段垂直平分线的性质之间的联系;在解决问题的过程中所看到的新旧知识之间的联系作业布置:教科书第125页第3题,第126页第5、9题.教学后记:12.1 轴对称(3)教学目标 ①了解线段垂直平分线的画法. ②会画两个成轴对称的图形(或一个轴对称图形)的对称轴. ③通过画图和欣赏,陶冶学生的审美情操. 教学重点:画图形的对称轴.教学难点:对对称轴画法的理解.教学设计提出问题问题1:如果我们感觉两个平面图形是成轴对称的,你准备用什么方法去验证? 问题2:两个成轴对称的图形,不经过折叠,你用什么方法画出它的对称轴? 学习新知我们已经知道,如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线.因此我们只要找到这两个图形的一对对应点,然后画出以这两个对应点为端点的线段的垂直平分线就可以了.如何画一条线段的垂直平分线呢?例1(补充)已知线段AB(如图1),用直尺和圆规作线段AB 的垂直平分线.图6。

相关文档
最新文档