工业机械臂设计手册
机械臂设计毕设计说明书

机械臂设计毕设计说明书机械臂设计毕设计说明书1.引言1.1 编写目的本文档旨在详细介绍机械臂的设计方案和技术细节,为毕业设计提供合理的指导和参考。
1.2 背景机械臂作为一种重要的工业自动化设备,广泛应用于物料搬运、装配等领域。
本设计致力于设计一款具有高稳定性和精确性的机械臂。
2.需求分析2.1 功能需求①物料搬运:机械臂需要能够准确地抓取、搬运和放置物体。
②精确定位:机械臂需要能够准确定位到指定位置,并完成相应的动作。
③安全性:机械臂需要具备安全性能,保证在工作过程中不会对人员和设备造成伤害。
2.2 技术需求①控制系统:机械臂需要配备稳定可靠的控制系统,以实现运动和动作的控制。
②传感器:机械臂需要搭载合适的传感器,以获取环境信息和实时反馈数据。
③动力系统:机械臂需要具备足够的动力,以保证其能够承担物料搬运等任务。
④结构设计:机械臂需要进行合理的结构设计,以实现稳定性和精确性的要求。
⑤软件开发:机械臂需要有相应的软件支持,以实现控制和功能调试。
3.设计方案3.1 机械结构设计①关节设计:根据机械臂的功能需求和工作负荷,设计合适的关节结构。
②传动设计:选择适当的传动装置,确保机械臂的高效和稳定运作。
③结构材料选择:根据机械臂的工作环境和负荷,选择合适的结构材料。
3.2 控制系统设计①控制器选择:根据机械臂的功能需求和预算限制,选择合适的控制器。
②控制算法:设计合适的控制算法,实现机械臂的运动和动作控制。
③通讯接口:设计合适的通讯接口,与其他设备或系统进行数据传输。
3.3 传感器选择与配置①位置传感器:选择合适的位置传感器,实现机械臂的准确定位。
②力传感器:选择合适的力传感器,实现机械臂的力控制和物料搬运。
③视觉传感器:选择合适的视觉传感器,实现机械臂的感知和视觉导航。
3.4 动力系统设计①驱动器选择:选择合适的驱动器,提供足够的动力输出。
②电源系统设计:设计合适的电源系统,为机械臂提供稳定的电力供应。
平面关节型机械臂设计说明书

平面关节型机械臂设计说明书一、机器人简图(见图1)图1 机器人简图已知参数:Ф1=150°,Ф2=45°,z=600mm,4=90°,=60°/s,=90°/s =300mm/s,=90°/s;加减速时间0.3s;手腕负荷:质量为2.5kg,直径为60mm的铁质圆柱体;驱动源型式:交流伺服电机。
二、机器人工作范围(见图2)图2 机器人工作范围三、运动简图(见图3)图3 机器人运动简图该平面关节型机器人有以下几种运动结构形式:腰座转动机构: 布置在基座上的腰座安装在角接触球轴承上,电动机M1的轴与谐波发生器的中心轮连接,谐波发生器的刚轮与腰座固定部分联结,而谐波发生器的柔轮则与腰座的输出部分联接,当电机M1转动时带动腰座实现回转运动。
手臂转动机构: 布置在腰座上的大臂安装在角接触球轴承上,电动机M2的轴与谐波发生器的中心轮连接,谐波发生器的刚轮与大臂固定部分联结,而谐波发生器的柔轮则与大臂的输出部分联接,当电机M2转动时带动大臂实现回转运动。
手臂举升机构: 包括手腕机构在内的机体沿固定在上、下支承板中的两个导向柱可以上下移动。
在上支承板上装有电机基座,电机通过联轴器与滚珠丝杠相连,滚珠丝杠副的螺母紧固在手臂伸缩组件的机体上。
这样一来,电机M3的转动就变为手臂的上下往复移动。
手腕的俯仰及回转机构: 在手腕机构的机体前后装有电机M4及M5。
M4通过谐波减速器减速后,通过一组直齿齿轮及一组锥齿轮,将电机M4的转动变为手腕的俯仰运动。
电机M5经过谐波减速后,通过两组直齿齿轮传动,将电机M5的转动变为手腕的回转运动。
四、负载分析与结构设计计算1、腕部(见图4)图4 腕部传动简图传递路线:(1)关节4:电机M4—谐波减速器1—轴1—圆柱直齿轮Z1/Z2—轴5—带动手腕的回转运动Ф4(2)关节5:电机M5—谐波减速器2—轴2—圆柱直齿轮Z3/Z4—轴4—带动手腕上下俯仰运动Ф5A、由手腕负载求腕部驱动力矩:已知:手腕负载为M1=2.5kg的铁质圆柱体,且H=D=60mm,已知铁的密度ρ=7300kg/m3则:解得:H=D=75.8mm而(N.m)其中系数的值0.83-0.91.求回转关节驱动力矩T4:设其回转轴D5=60mm,腕部质量m2与负载m1相同均为2.5kg,则:求得=0.18N.m其中f——静摩擦系数其中,——偏心距=0.12N.m其中——腕载对关节4回转轴转动惯量2.求俯仰关节驱动力矩T5:设其回转轴D4=20mm,腕部质量m3与负载m1相同均为2.5kg,则=0.15 N.m则B、初选电机其中:——关节电机的额定功率K——安全系数,K=1.2-2——负载最大角速度对回转关节4:对回转关节5:初选选取电机M4与M5相同,型号为:MSMA系列(小惯量),其主要参数为:r/min联接键的选择:根据电机轴径,选择:键315(GB1096-79)C、总传动比及各级传动比确定:对回转关节4:=200 (4.10)取对俯仰关节5:(4.11)取D、谐波减速器的选型:1号谐波减速器的型号为杯型谐波减速器:CS-25A-200 i=200 m=0.7kg 2号谐波减速器的型号为杯型谐波减速器:CS-25A-100 i=100 m=0.7kgE、齿轮的选择1.直齿圆柱齿轮Z1、Z2:主动齿轮Z2,转速n1=20r/min,传动比为1,齿轮传动功率100w,选Z1、Z2材料为45调质。
挖掘机机械臂设计说明书

山西机电职业技术学院工种实习挖掘机机械臂设计说明书系别:机械工程系班级:机设0801组别:第3小组成员:崔云龙,史杰,武连成挖掘机设计说明书挖掘机功能介绍:挖掘机是用来开挖土壤的施工机械。
它是用铲斗上的斗齿切削土壤并装入斗内,装满土后提升铲斗并回旋刀卸土地点卸土,然后再使转台回转、铲斗下降到挖掘面,进行下一次挖掘。
挖掘机在建筑、筑路、水利、电力、采矿、石油、天然气管道铺设和军事工程中被广泛地使用。
挖掘机主要用于筑路工程中的堑壕开挖,建筑工程中开挖基础,水利工程中开挖沟渠、运河和疏浚河道,采石场、露天开采等工程中剥离和矿石的挖掘等。
据统计,一般工程施工中约有60%的土方量、露天矿山中80%的剥离量和采掘量是用挖掘机完成的。
此外,挖掘机更换工作装置后还可以进行浇筑、起重、安装、打桩、夯土和拔桩等作用,所以挖掘机兼有推土机、装载机、起重机等的功能,能代替这些机械工作。
随着我国基础设施建设的深入和在建设中挖掘机的广泛应用,挖掘机市场有着广阔的发展空间,因此发展满足我国国情所需要的挖掘机是十分必要的。
而其机械臂作为挖掘机的重要组成部分,对其研究和控制是对整机开发的基础。
国内外研究状况:当前,国际上挖掘机的生产正向大型化、微型化、多能化和专用化的方向发展。
国外挖掘机行业重视采用新技术、新工艺、新结构和新材料,加快了向标准化、系列化、通用化发展的步伐。
我国己经形成了挖掘机的系列化生产,近年来还开发了许多新产品,引进了国外的一些先进的生产率较高的挖掘机型号。
由于使用性能、技术指标和经济指标上的优越,世界上许多国家,特别是工业发达国家,都在大力发展单斗液压挖掘机。
目前,单斗液压挖掘机的发展着眼于动力和传动系统的改进以达到高效节能;应用范围不断扩大,成本不断降低,向标准化、模块化发展,以提高零部件、配件的可靠性,从而保证整机的可靠性;电子计算机监测与控制,实现机电一体化;提高机械作业性能,降低噪音,减少停机维修时间,提高适应能力,消除公害,纵观未来,单斗液压挖掘机有以下的趋势:(1)向大型化发展的同时向微型化发展。
机械臂控制系统的设计说明书

机械臂控制系统的设计1 引言近年来,随着制造业在我国的高速开展,工业机器人技术也得到了迅速的开展。
根据负载的大小可以将机械臂分为大型、中型、小型三类。
大型机械臂主要用于搬运、码垛、装配等负载较重的场合;中小型机械臂主要用于焊接、喷漆、检测等负载较小的场合。
随着国外工业机器人技术的不断开展,尤其是一些中小型机器人,它们具有体积小、质量轻、精度高、控制可靠的特点,甚至研发出更为轻巧的控制箱,可以在工作区域随时移动,这样大大方便了工作人员的操作。
在工业机器人的应用中最常见的是六自由度的机械臂。
它是由6个独立的旋转关节串联形成的一种工业机器人,每个关节都有各自独立的控制系统。
2机械臂硬件系统设计2.1 机械臂构型的选择要使机器臂的抓持器能够以准确的位置和姿态移动到给定点,这就要求机器人具有一定数量的自由度。
机器臂的自由度是设计的关键参数,其数目应该与所要完成的任务相匹配。
为了使安装在双轮自平衡机器人上的机械臂能够具有完善的功能,能够完成复杂的任务,将其自由度数目定为6个,这样抓持器就可以到达空间中的任意位姿,并且不会出现冗余问题。
在确定自由度后,就可以合理的布置各关节来分配这些自由度了。
由于计算数值解远比封闭解费时,数值解很难用于实时控制,这样,后3个关节就确定了末端执行器的姿态,而前3个关节确定腕关节原点的位置。
采用这种方法设计的机械臂可以认为是由定位构造及其后面串联的定向构造或手腕组成的。
这样设计出来的机器人都具有封闭解。
另外,定位构造都采用简单构造连杆转角为0或90°的形式,连杆长度可以不同,但是连杆偏距都为0,这样的构造会使推倒逆解时计算简单。
定位机构是涉及形式主要有以下几种:SCARA型机械臂,直角坐标型机械臂,圆柱坐标型机械臂,极坐标型机械臂,关节坐标型机械臂等。
SCARA机械臂是平面关节型,不能满足本文对机械臂周边3维空间任意抓取的要求;直角坐标型机械臂投影面积较大,工作空间小;极坐标方式需要线性移动,机械臂如需较大的工作空间,那么臂长较长;和其他类型相比关节型机械臂在其工作空间内干预是最小的,是一种较为优良的构造。
四轴机械臂设计说明书

四轴机械臂设计说明书四轴机械臂设计说明书一、引言机械臂作为工业自动化领域的重要组成部分,在生产制造、装配、搬运等环节中发挥着重要作用。
本设计说明书旨在介绍一种四轴机械臂的设计方案,提供一个生动、全面、有指导意义的设计参考。
二、机械结构设计1. 机械臂结构:本设计采用四轴结构,包括垂直旋转基座、水平旋转基座、伸缩臂和末端执行器。
垂直旋转基座和水平旋转基座通过关节连接,伸缩臂通过滑动导轨实现伸缩。
末端执行器根据不同需求可以选择夹具、吸盘等形式。
2. 驱动机构:本设计选用步进电机作为驱动源。
垂直旋转基座和水平旋转基座分别由两台步进电机驱动,伸缩臂采用导轨驱动方式。
电机控制器可通过电脑或者PLC进行控制,实现机械臂的自动化操作。
三、传感器和控制系统设计1. 位置传感器:为了实现机械臂的准确定位和运动控制,本设计在关节连接处安装光电编码器,通过检测脉冲数来计算位置和角度信息。
同时,在末端执行器处安装力传感器,用于测量夹持物体的力度。
2. 控制系统:本设计采用开源控制软件和硬件平台,例如ROS(机器人操作系统)和Arduino等。
通过编程实现机械臂的运动规划、轨迹控制、碰撞检测等功能。
四、安全性设计1. 电气安全:在设计中,遵循相关电气安全标准,合理选用电气元件和电缆。
同时,设置过载保护和短路保护装置,确保机械臂的电气安全性。
2. 机械安全:机械臂的各个部件应具备足够的强度和刚度,以承受工作过程中的负载。
在设计中,应考虑防护罩、紧急停止按钮和限位装置等安全措施,保证操作人员的安全。
五、应用场景示例1. 生产制造:机械臂能够替代人工完成重复性高、危险性大的工作任务,提高生产效率和质量。
例如,可以用于零件的搬运、组装和焊接等作业。
2. 医疗护理:机械臂在医疗领域能够承担繁琐重复的工作,例如手术器械的传递、患者护理等。
通过精准的运动控制和传感器反馈,可实现高精度操作。
六、结论通过本设计说明书的介绍,我们可以了解到一种四轴机械臂的设计方案,包括机械结构、传感器和控制系统设计,以及安全性设计和应用场景示例。
机械臂结构设计

工业机械臂结构设计1)连杆设计步骤如下:1.选择“前视基准面”作为草图绘制平面,绘制草图1,如图3-69所示。
2.点选拉伸特征图标,在属性管理器中输入:终止条件:两侧对称,拉伸高度值15mm,确定,完成实体造型1。
3.选择“右视基准面”作为草图绘制平面,绘制草图1,如图3-69所示。
4.点选切除-拉伸特征图标,在属性管理器中输入拉伸高度值61mm,确定,完成实体造型2。
5.选择图示边线,点选圆角特征按钮,添加半径为5mm的圆角。
完成连杆实体造型如图所示。
2)连接件11.选择“前视基准面”作为草图绘制平面,绘制草图1,如图3-69所示。
3)连接件21.选择“前视基准面”作为草图绘制平面,绘制草图1,如图3-69所示。
2.点选拉伸特征图标,在属性管理器中输入终止条件:两侧对称,拉伸高度值15mm,确定,完成实体造型。
3.选择“上视基准面”作为草图绘制平面,绘制草图1,如图3-69所示。
4.点选切除-拉伸特征图标,在属性管理器中输入终止条件:给定深度,拉伸高度值12mm,确定,完成实体造型2。
5.选择图示表面作为草图绘制平面,绘制草图1,如图3-69所示。
6.点选切除-拉伸特征图标,在属性管理器中输入拉伸高度值40mm,确定,完成实体造型3。
7.选择“前视基准面”作为草图绘制平面,绘制草图1,如图3-69所示。
8.点选拉伸特征图标,在属性管理器中输入终止条件:两侧对称,拉伸高度值12mm,确定,完成实体造型。
9.选择图示表面作为草图绘制平面,绘制草图1,如图3-69所示。
10.点选切除-拉伸特征图标,在属性管理器中输入拉伸高度值40mm,确定,完成实体造型3。
11.选择“前视基准面”作为草图绘制平面,绘制草图1,如图3-69所示。
12.点选切除-拉伸特征图标,在属性管理器中输入拉伸高度值20mm,确定,完成实体造型3。
13.选择图示表面作为草图绘制平面,绘制草图1,如图3-69所示。
14.点选拉伸特征图标,在属性管理器中输入终止条件:给定深度,拉伸高度值5mm,确定,完成实体造型。
机械手毕业设计说明书

机械手毕业设计说明书一、设计目的本毕业设计旨在设计一种机械手,能够根据预先设定的程序自动执行各种操作。
通过该设计,可以提高工作效率,减少人力成本,同时具备高精度和高可靠性。
二、设计背景近年来,随着工业自动化的不断发展,机械手在工业生产中的应用越来越广泛。
机械手凭借其高速、高精度、高可靠性等优势,成为工厂生产线上的重要设备之一。
因此,设计一种功能强大的机械手对于工业生产的提升具有重要意义。
三、设计内容1.机械结构设计本设计采用七自由度机械手结构,包括基座、旋转关节、摇摆关节、剪切关节以及爪子等部分。
结构设计中要考虑刚性、稳定性以及重量平衡等因素,确保机械手能够准确地执行各种操作。
2.传感器系统设计为了使机械手具备自主感知能力,本设计将配备多种传感器,如力传感器、视觉传感器等。
通过传感器系统的设计,机械手可以根据实时的反馈信息进行运动控制,提高操作的准确性和安全性。
3.运动控制系统设计运动控制系统是机械手的核心部分,本设计将采用PLC (可编程逻辑控制器)作为控制器,结合伺服驱动器实现机械手的精确定位和协调运动。
通过编写程序,机械手可以根据预先设定的路径和信号执行各种操作。
四、设计过程1.需求分析针对机械手的应用场景和功能需求,进行需求分析。
确定机械手所需执行的任务类型、速度要求、负载能力等。
2.机械结构设计根据需求分析,设计机械手的结构,包括基座、旋转关节、摇摆关节、剪切关节和爪子等。
进行力学分析和模拟,确保结构设计的合理性和可靠性。
3.传感器系统设计根据需求分析,确定机械手所需的传感器类型和数量。
选择合适的传感器并安装在机械手上,设计传感器的接口电路和数据处理算法。
4.运动控制系统设计选择合适的PLC和伺服驱动器,进行硬件选型和连接。
编写控制程序,实现机械手的位置控制、速度控制和力控制等功能。
5.整体集成与测试将机械结构、传感器系统和运动控制系统进行整体集成。
进行系统测试,检验机械手的功能和性能是否满足设计要求。
通用机械臂设计说明书

题目: 通用机械臂机构设计目录1.绪论 (1)1.1 选题背景 (1)1.2 国内外研究现状和趋势 (1)1.3机械臂的组成 (2)1.4 设计目的 (3)1.5研究内容 (4)2.机械臂的总体设计方案 (4)2.1 机械臂总体结构的类型 (4)2.2机械臂主要部件及其运动 (5)2.3驱动机构选择 (6)2.4机械臂技术参数 (6)3.机械臂手部计算 (7)3.1手部设计基本要求 (7)3.2典型手部结构 (7)3.3机械臂手爪的设计计算 (7)4.腕部的设计计算 (12)4.1腕部设计基本要求 (12)4.2腕部结构 (13)4.3腕部的设计计算 (13)5.臂部设计以及有关计算 (17)5.1臂部设计的基本要求 (18)5.2手臂的典型机构及其选择 (19)6机座设计 (24)结论 (24)参考文献 (25)1.绪论1.1 选题背景机械臂是在自动化生产过程中使用的一种具有抓取和移动工件功能的自动化装置,它是在机械化、自动化生产过程中发展起来的一种新型装置。
近年来,随着电子技术特别是电子计算机的广泛应用,机器人的研制和生产已成为高技术领域内迅速发展起来的一门新兴技术,它更加促进了机械臂的发展,使得机械臂能更好地实现与机械化和自动化的有机结合。
机械臂能代替人类完成危险、重复枯燥的工作,减轻人类劳动强度,提高劳动生产力。
机械臂越来越广泛的得到了应用,在机械行业中它可用于零部件组装,加工工件的搬运、装卸,特别是在自动化数控机床、组合机床上使用更普遍。
目前,机械臂已发展成为柔性制造系统FMS 和柔性制造单元FMC中一个重要组成部分。
把机床设备和机械臂共同构成一个柔性加工系统或柔性制造单元,它适应于中、小批量生产,可以节省庞大的工件输送装置,结构紧凑,而且适应性很强。
当工件变更时,柔性生产系统很容易改变,有利于企业不断更新适销对路的品种,提高产品质量,更好地适应市场竞争的需要。
而目前我国的工业机器人技术及其工程应用的水平和国外比还有一定的距离,应用规模和产业化水平低,机械臂的研究和开发直接影响到我国自动化生产水平的提高,从经济上、技术上考虑都是十分必要的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
工业机械臂设计手册
一、机械臂概述
本手册旨在为工业机械臂的设计、开发和使用提供全面的指导和建议。
机械臂是工业自动化领域的重要设备,能够执行一系列复杂的操作,如抓取、移动、装配和焊接等。
它们通常由多个关节和连杆组成,具有高度的灵活性和适应性,可用于各种不同的工作环境。
二、机械系统设计
在机械系统设计中,我们需要关注机械臂的尺寸、重量、负载、速度以及可操作性。
根据应用需求,选择合适的材料和驱动方式,并设计出符合要求的机械结构。
此外,还需要考虑到耐磨性、耐腐蚀性和抗疲劳性等方面的因素,以确保机械臂在长时间的工作中保持稳定和可靠。
三、电气控制系统设计
电气控制系统是机械臂的核心部分,它负责将用户的指令转化为机械动作。
在设计电气控制系统时,我们需要根据机械系统的需求选择合适的电机、控制器、传感器等元件,并设计出相应的控制电路。
同时,还需要对控制算法进行优化,以提高机械臂的反应速度和准确性。
四、感知与反馈系统设计
感知与反馈系统是实现机械臂自主操作的关键部分。
通过传感器技术,我们可以获取机械臂的位置、速度、力矩等实时信息,并根据这些信息对机械臂进行精确的控制。
在设计感知与反馈系统时,我们
需要选择合适的传感器,如编码器、陀螺仪、力传感器等,并将它们与控制系统紧密结合,以实现精确的感知与控制。
五、运动规划与控制
运动规划与控制是实现机械臂自主操作的重要环节。
它通过对机械臂的运动路径进行规划和控制,确保机械臂能够准确地执行一系列复杂的动作。
在设计运动规划与控制系统时,我们需要根据实际应用场景,采用合适的算法和优化方法,提高机械臂的运动性能和操作精度。
六、机械臂动力学
机械臂动力学是研究机械臂运动过程中力和运动之间关系的学科。
通过动力学分析,我们可以了解机械臂在不同条件下所受到的力和力矩,从而更好地控制其运动状态。
在设计机械臂时,我们需要根据动力学原理,对机械结构进行优化设计,并选择合适的驱动方式和控制器,以实现精确的动力学控制。
七、机械臂校准与调试
机械臂校准与调试是确保机械臂准确性和稳定性的关键环节。
在校准过程中,我们需要使用专门的设备和工具对机械臂的各部件进行精确的测量和调整,以确保其达到最佳的工作状态。
在调试过程中,我们需要根据实际应用场景对机械臂进行测试和调整,以优化其性能表现。
八、机械臂维护与故障排除
为了确保机械臂的长期稳定运行,我们需要定期对其进行维护和
保养。
这包括检查各部件的磨损情况、清洁机械结构、更换磨损部件等。
同时,当机械臂出现故障时,我们需要迅速采取措施进行排除。
为此,我们需要了解常见的故障类型和排除方法,并准备好相应的维修工具和备件。
九、机械臂性能评估与优化
为了不断提高机械臂的性能表现,我们需要定期对其性能进行评估和优化。
这包括评估机械臂的各项技术指标如定位精度、运动速度等,以及优化其操作性能如抓取力度、稳定性等。
同时,我们还需要关注新技术和新方法的发展动态,以便及时将它们应用到机械臂的设计和改进中。