高考数学复习-分类加法计数原理与分步乘法计数原理教案(说课赛课)
高考数学一轮复习 第十一篇 计数原理 第1讲 分类加法计数原理与分步乘法计数原理教案 理 新人教版

第1讲分类加法计数原理与分步乘法计数原理【2013年高考会这样考】考查分类加法计数原理和分步乘法计数原理的应用.【复习指导】复习时要弄清分类加法计数原理和分步乘法计数原理的区别与联系,这是解排列组合问题的基础.基础梳理1.分类加法计数原理完成一件事有n类不同的方案,在第一类方案中有m1种不同的方法,在第二类方案中有m2种不同的方法,……,在第n类方案中有m n种不同的方法,则完成这件事情共有N=m1+m2+…+m n种不同的方法.2.分步乘法计数原理完成一件事情需要分成n个不同的步骤,完成第一步有m1种不同的方法,完成第二步有m2种不同的方法,……,完成第n步有m n种不同的方法,那么完成这件事情共有N=m1×m2×…×m n种不同的方法.两个原理分类加法计数原理与分步乘法计数原理是解决排列组合问题的基础并贯穿始终.分类加法计数原理中,完成一件事的方法属于其中一类并且只属于其中一类,简单的说分类的标准是“不重不漏,一步完成”.而分步乘法计数原理中,各个步骤相互依存,在各个步骤中任取一种方法,即是完成这件事的一种方法,简单的说步与步之间的方法“相互独立,多步完成”.类比加法与乘法的关系,在特定的情况下分步乘法计数原理可简化运用分类加法计数原理的过程.双基自测1.(人教A版教材习题改编)由0,1,2,3这四个数字组成的四位数中,有重复数字的四位数共有( ).A.238个 B.232个 C.174个 D.168个解析可用排除法由0,1,2,3可组成的四位数共有3×43=192(个),其中无重复的数字的四位数共有3A33=18(个),故共有192-18=174(个).答案 C2.(2010·广州模拟)已知集合A={1,2,3,4},B={5,6,7},C={8,9}.现在从这三个集合中取出两个集合,再从这两个集合中各取出一个元素,组成一个含有两个元素的集合,则一共可以组成多少个集合( ).A.24个 B.36个 C.26个 D.27个解析C14C13+C14C12+C13C12=26,故选C.答案 C3.(2012·滨州调研)甲、乙两人从4门课程中各选修2门,则甲、乙所选的课程中恰有1门相同的选法有( ).A.6种 B.12种 C.24种 D.30种解析分步完成.首先甲、乙两人从4门课程中同选1门,有4种方法,其次甲从剩下的3门课程中任选1门,有3种方法,最后乙从剩下的2门课程中任选1门,有2种方法,于是,甲、乙所选的课程中恰有1门相同的选法共有4×3×2=24(种),故选C.答案 C4.(2010·湖南)在某种信息传输过程中,用4个数字的一个排列(数字允许重复)表示一个信息,不同排列表示不同信息.若所用数字只有0和1,则与信息0110至多有两个对应位置上的数字相同的信息个数为( ).A.10 B.11 C.12 D.15解析若4个位置的数字都不同的信息个数为1;若恰有3个位置的数字不同的信息个数为C34;若恰有2个位置上的数字不同的信息个数为C24,由分类计数原理知满足条件的信息个数为1+C34+C24=11.答案 B5.某电子元件是由3个电阻组成的回路,其中有4个焊点A、B、C、D,若某个焊点脱落,整个电路就不通,现在发现电路不通了,那么焊点脱落的可能情况共有________种.解析法一当线路不通时焊点脱落的可能情况共有2×2×2×2-1=15(种).法二恰有i个焊点脱落的可能情况为C i4(i=1,2,3,4)种,由分类计数原理,当电路不通时焊点脱落的可能情况共C14+C24+C34+C44=15(种).答案15考向一分类加法计数原理【例1】►(2011·全国)某同学有同样的画册2本,同样的集邮册3本,从中取出4本赠送给4位朋友,每位朋友一本,则不同的赠送方法共有( ).A.4种 B.10种 C.18种 D.20种[审题视点] 由于是两类不同的书本,故用分类加法计数原理.解析赠送一本画册,3本集邮册,共4种方法;赠送2本画册,2本集邮册共C24种方法,由分类计数原理知不同的赠送方法共4+C24=10(种).答案 B分类时,首先要确定一个恰当的分类标准,然后进行分类;其次分类时要注意完成这件事情的任何一种方法必须属于某一类,并且分别属于不同种类的两种方法是不同的方法,只有满足这些条件,才可以用分类加法计数原理.【训练1】如图所示,在连接正八边形的三个顶点而成的三角形中,与正八边形有公共边的三角形有________个.解析把与正八边形有公共边的三角形分为两类:第一类,有一条公共边的三角形共有8×4=32(个);第二类,有两条公共边的三角形共有8(个).由分类加法计数原理知,共有32+8=40(个).答案40考向二分步乘法计数原理【例2】►(2011·北京)用数字2,3组成四位数,且数字2,3至少都出现一次,这样的四位数共有________个(用数字作答).[审题视点] 组成这个四位数须分4步完成,故用分步乘法计数原理.解析法一用2,3组成四位数共有2×2×2×2=16(个),其中不出现2或不出现3的共2个,因此满足条件的四位数共有16-2=14(个).法二满足条件的四位数可分为三类:第一类含有一个2,三个3,共有4个;第二类含有三个2,一个3共有4个;第三类含有二个2,二个3共有C24=6(个),因此满足条件的四位数共有2×4+C24=14(个).答案14此类问题,首先将完成这件事的过程分步,然后再找出每一步中的方法有多少种,求其积.注意:各步之间相互联系,依次都完成后,才能做完这件事.简单说使用分步计数原理的原则是步与步之间的方法“相互独立,逐步完成”.【训练2】由数字1,2,3,4,(1)可组成多少个3位数;(2)可组成多少个没有重复数字的3位数;(3)可组成多少个没有重复数字的三位数,且百位数字大于十位数字,十位数字大于个位数字.解(1)百位数共有4种排法;十位数共有4种排法;个位数共有4种排法,根据分步计数原理共可组成43=64个3位数.(2)百位上共有4种排法;十位上共有3种排法;个位上共有2种排法,由分步计数原理共可排成没有重复数字的3位数4×3×2=24(个).(3)排出的三位数分别是432、431、421、321,共4个.考向三涂色问题【例3】►如图,用5种不同的颜色给图中A、B、C、D四个区域涂色,规定每个区域只涂一种颜色,相邻区域颜色不同,求有多少种不同的涂色方法?[审题视点] 根据乘法原理逐块涂色,要注意在不相邻的区域内可使用同一种颜色.解法一如题图分四个步骤来完成涂色这件事:涂A有5种涂法;涂B有4种方法;涂C有3种方法;涂D有3种方法(还可以使用涂A的颜色).根据分步计数原理共有5×4×3×3=180种涂色方法.法二由于A、B、C两两相邻,因此三个区域的颜色互不相同,共有A35=60种涂法;又D 与B、C相邻、因此D有3种涂法;由分步计数原理知共有60×3=180种涂法.涂色问题的实质是分类与分步,一般是整体分步,分步过程中若出现某一步需分情况说明时还要进行分类.涂色问题通常没有固定的方法可循,只能按照题目的实际情况,结合两个基本原理和排列组合的知识灵活处理.【训练3】如图所示,将一个四棱锥的每一个顶点染上一种颜色,并使同一条棱上的两端异色,如果只有5种颜色可供使用,求不同的染色方法种数.解法一可分为两大步进行,先将四棱锥一侧面三顶点染色,然后再分类考虑另外两顶点的染色数,用分步乘法原理即可得出结论.由题设,四棱锥SABCD的顶点S、A、B所染的颜色互不相同,它们共有5×4×3=60种染色方法.当S、A、B染好时,不妨设其颜色分别为1、2、3,若C染2,则D可染3或4或5,有3种染法;若C染4,则D可染3或5,有2种染法,若C染5,则D可染3或4,有2种染法.可见,当S、A、B已染好时,C、D还有7种染法,故不同的染色方法有60×7=420(种).法二以S、A、B、C、D顺序分步染色第一步,S点染色,有5种方法;第二步,A点染色,与S在同一条棱上,有4种方法;第三步,B点染色,与S、A分别在同一条棱上,有3种方法;第四步,C点染色,也有3种方法,但考虑到D点与S、A、C相邻,需要针对A与C是否同色进行分类,当A与C同色时,D点有3种染色方法;当A与C不同色时,因为C与S、B 也不同色,所以C点有2种染色方法,D点也有2种染色方法.由分步乘法、分类加法计数原理得不同的染色方法共有5×4×3×(1×3+2×2)=420(种).法三按所用颜色种数分类第一类,5种颜色全用,共有A55种不同的方法;第二类,只用4种颜色,则必有某两个顶点同色(A与C,或B与D),共有2×A45种不同的方法;第三类,只用3种颜色,则A与C、B与D必定同色,共有A35种不同的方法.由分类加法计数原理,得不同的染色方法总数为A55+2×A45+A35=420(种).规范解答20——如何解决涂色问题【问题研究】涂色问题是由两个基本原理和排列组合知识的综合运用所产生的一类问题,这类问题是计数原理应用的典型问题,由于涂色本身就是策略的一个运用过程,能较好地考查考生的思维连贯性与敏捷性,加之涂色问题的趣味性,自然成为新课标高考的命题热点. 【解决方案】涂色问题的关键是颜色的数目和在不相邻的区域内是否可以使用同一种颜色,具体操作法和按照颜色的数目进行分类法是解决这类问题的首选方法.【示例】► (本小题满分12分)用红、黄、蓝、白、黑五种颜色涂在“田”字形的4个小方格内,每格涂一种颜色,相邻两格涂不同的颜色,如果颜色可以反复使用,共有多少种不同的涂色方法?颜色可以反复使用,即说明在不相邻的小方格内可以使用同一种颜色,首先确定第一个小方格的涂法,再考虑其相邻的两个小方格的涂法.1 23 4[解答示范] 如图所示,将4,第1个小方格可以从5种颜色中任取一种颜色涂上,有5种不同的涂法.(2分)①当第2个、第3个小方格涂不同颜色时,有A24=12种不同的涂法,第4个小方格有3种不同的涂法.由分步计数原理可知,有5×12×3=180种不同的涂法;(6分)②当第2个、第3个小方格涂相同颜色时,有4种涂法,由于相邻西格不同色,因此,第4个小方格也有4种不同的涂法,由分步计数原理可知.有5×4×4=80种不同的涂法.(10分)由分类加法计数原理可得,共有180+80=260种不同的涂法.(12分)在涂色问题中一定要看颜色是否可以重复使用,不允许重复使用的涂色问题实际上就是一般的排列问题,当颜色允许重复使用时,要充分利用两个计数原理分析解决问题.【试一试】(2011·湖北)给n个自上而下相连的正方形着黑色或白色.当n≤4时,在所有不同的着色方案中,黑色正方形互不相邻的着色方案如下图所示:由此推断,当n=6时,黑色正方形互不相邻的着色方案共有__________种,至少有两个黑色正方形相邻的着色方案共有________种.(结果用数值表示)[尝试解答] (1)当n=6时,如果没有黑色正方形有1种方案,当有1个黑色正方形时,有6种方案,当有两个黑色正方形时,采用插空法,即两个黑色正方形插入四个白色正方形形成的5个空内,有C25=10种方案,当有三个黑色正方形时,同上方法有C34=4种方案,由图可知不可能有4个,5个,6个黑色正方形,综上可知共有21种方案.(2)将6个正方形空格涂有黑白两种颜色,每个空格都有两种方案,由分步计数原理一共有26种方案,本问所求事件为(1)的对立事件,故至少有两个黑色正方形相邻的方案有26-21=43(种).答案21 43。
分类加法计数原理与分步乘法计数原理教案

分类加法计数原理与分步乘法计数原理教案一、教学目标1. 让学生理解分类加法计数原理和分步乘法计数原理的概念。
2. 培养学生运用计数原理解决实际问题的能力。
3. 引导学生通过合作交流,提高思维能力和创新能力。
二、教学内容1. 分类加法计数原理:(1)了解分类加法计数原理的概念。
(2)学会运用分类加法计数原理解决问题。
2. 分步乘法计数原理:(1)了解分步乘法计数原理的概念。
(2)学会运用分步乘法计数原理解决问题。
三、教学重点与难点1. 教学重点:(1)分类加法计数原理的应用。
(2)分步乘法计数原理的应用。
2. 教学难点:(1)理解分类加法计数原理的含义。
(2)理解分步乘法计数原理的含义。
四、教学方法1. 采用问题驱动法,引导学生主动探究。
2. 运用实例分析,让学生直观理解计数原理。
3. 组织小组讨论,培养学生合作交流能力。
五、教学准备1. 课件、黑板、粉笔等教学工具。
2. 相关实例和练习题。
教案内容:一、分类加法计数原理1. 导入:通过生活中的实例,如“统计班级男生女生人数”,引出分类加法计数原理。
2. 讲解:解释分类加法计数原理的概念,即把总数分成几个部分,分别计算每个部分的数量,再相加得到总数。
3. 练习:让学生运用分类加法计数原理解决实际问题,如“统计学校三个年级的学生总数”。
二、分步乘法计数原理1. 导入:通过实例“做一批玩具,每组有5个,一共要做3组”,引出分步乘法计数原理。
2. 讲解:解释分步乘法计数原理的概念,即每步的数量相乘得到最终结果。
3. 练习:让学生运用分步乘法计数原理解决实际问题,如“做一批玩具,每组有5个,一共要做4组,需要多少个玩具?”教学过程:一、分类加法计数原理1. 引导学生思考生活中的计数问题,如统计人数、物品数量等。
2. 讲解分类加法计数原理的概念和步骤。
3. 让学生举例说明并计算。
二、分步乘法计数原理1. 引导学生思考生活中的计数问题,如制作玩具、做饭等。
2. 讲解分步乘法计数原理的概念和步骤。
分类加法计数原理与分步乘法计数原理教案

分类加法计数原理与分步乘法计数原理教案一、教学目标1. 让学生理解分类加法计数原理和分步乘法计数原理的概念。
2. 让学生学会运用分类加法计数原理和分步乘法计法原理解决实际问题。
3. 培养学生的逻辑思维能力和解决问题的能力。
二、教学内容1. 分类加法计数原理:(1)概念介绍:同一类对象的数量相加得到总数。
(2)实例讲解:学校举办运动会,参加跑步的有20人,参加跳高的有15人,参加跳远的有10人,请问参加运动会的总人数是多少?a. 班级里有男生30人,女生20人,请问班级里总共有多少人?b. 图书馆里有小说50本,科普书籍30本,请问图书馆里总共有多少本书?2. 分步乘法计数原理:(1)概念介绍:完成一项任务需要多个步骤,每个步骤的数量相乘得到总数量。
(2)实例讲解:做一份报纸,需要先排版(10分钟),印刷(20分钟),装订(10分钟),请问完成这份报纸需要多长时间?a. 制作一个蛋糕,需要打发鸡蛋(10分钟),加入面粉和糖(5分钟),烘烤(20分钟),请问制作一个蛋糕需要多长时间?b. 工厂生产一批玩具,每台机器每小时可以生产10个玩具,共有3台机器工作,请问每小时可以生产多少个玩具?三、教学方法1. 采用讲授法,讲解分类加法计数原理和分步乘法计数原理的概念及应用。
2. 利用实例讲解,让学生更好地理解计数原理。
3. 设计练习题,让学生动手实践,巩固所学知识。
四、教学评价1. 课堂问答:检查学生对分类加法计数原理和分步乘法计数原理的理解。
2. 练习题解答:评价学生运用计数原理解决问题的能力。
3. 课后作业:布置相关题目,让学生进一步巩固所学知识。
五、教学资源1. PPT课件:展示分类加法计数原理和分步乘法计数原理的概念及实例。
2. 练习题:提供丰富的练习题,让学生动手实践。
3. 教学视频:可选用的相关教学视频,辅助学生理解计数原理。
4. 黑板、粉笔:用于板书关键词和讲解实例。
六、教学步骤1. 引入新课:通过一个简单的实例,让学生感受分类加法计数原理和分步乘法计数原理的应用。
分类加法计数原理与分步乘法计数原理教案

分类加法计数原理与分步乘法计数原理教案一、教学目标1. 理解分类加法计数原理和分步乘法计数原理的概念。
2. 学会运用分类加法计数原理和分步乘法计法原理解决实际问题。
3. 培养学生的逻辑思维能力和解决问题的能力。
二、教学内容1. 分类加法计数原理:定义:如果一个事件可以分成几个互斥的部分,这个事件发生的总次数就等于各部分事件发生次数的和。
公式:P(A) = P(A1) + P(A2) + + P(An)2. 分步乘法计数原理:定义:如果一个事件可以分成几个相互独立的步骤,这个事件发生的总次数等于各步骤事件发生次数的乘积。
公式:P(A) = P(A1) ×P(A2) ××P(An)三、教学重点与难点1. 教学重点:分类加法计数原理的概念和公式。
分步乘法计数原理的概念和公式。
2. 教学难点:如何运用分类加法计数原理和分步乘法计数原理解决实际问题。
四、教学方法1. 采用讲授法讲解分类加法计数原理和分步乘法计数原理的概念和公式。
2. 运用案例分析法引导学生运用分类加法计数原理和分步乘法计数原理解决实际问题。
3. 开展小组讨论法,让学生分组讨论和解决问题,培养学生的团队协作能力。
五、教学步骤1. 导入新课,介绍分类加法计数原理和分步乘法计数原理的概念。
2. 讲解分类加法计数原理的公式和应用示例。
3. 讲解分步乘法计数原理的公式和应用示例。
4. 开展案例分析,让学生运用分类加法计数原理和分步乘法计数原理解决实际问题。
5. 进行小组讨论,让学生分组讨论和解决问题,分享解题心得。
六、教学评估1. 课堂问答:通过提问学生,了解学生对分类加法计数原理和分步乘法计数原理的理解程度。
2. 案例分析报告:评估学生在案例分析中的表现,包括问题解决能力和逻辑思维能力。
3. 小组讨论评价:评价学生在小组讨论中的参与程度、团队合作能力和问题解决能力。
七、教学反思1. 反思教学内容:检查教学内容是否全面、清晰,是否需要调整或补充。
高考数学复习知识点讲解教案第58讲 分类加法计数原理与分步乘法计数原理

B
A.10 B.14 C.16 D.12
[解析] 符合题目要求的分类方法有甲3张乙1张,甲2张乙2张,甲1张乙3张三类.①若甲3张乙1张,则有4种分法;②若甲2张乙2张,则有6种分法;③若甲1张乙3张,则有4种分法.所以不同分法的种数为 .故选B.
(2) 某植物园要在如图所示的5个区域种植果树,现有5种不同的果树供选择,要求相邻区域不能种同一种果树,则不同的种植方法有( )
C
A.120种 B.360种 C.420种 D.480种
[思路点拨](2)利用分类加法计数原理求解,按2与4两区域种植果树是否相同进行分类即可.
[解析] 分两类情况:第一类,2与4区域种同一种果树.第一步种1区域,有5种方法,第二步种2与4区域,有4种方法,第三步种3区域,有3种方法,最后一步种5区域,有3种方法.由分步乘法计数原理得共有 (种)方法.第二类,2与4区域种不同果树.第一步种1区域,有5种方法,第二步种2区域,有4种方法,第三步种3区域,有3种方法,第四步种4区域,有2种方法,第五步种5区域,有2种方法.由分步乘法计数原理得共有 (种)方法.综上,由分类加法计数原理得,共有 (种)不同的种植方法.故选C.
[总结反思]
(1)分步乘法计数原理的实质:完成一件事要分为若干步,各个步骤相互依存,缺少其中的任何一步都不能完成这件事,只有当每个步骤都完成后,才能完成这件事.
(2)使用分步乘法计数原理应注意的问题:①明确题目中所要完成的这件事是什么,确定完成这件事需要几个步骤.
②将完成这件事划分成几个步骤来执行,各步骤之间有一定的连续性,只有当所有步骤都完成了,这件事才能完成,这是分步的基础,也是关键.
分类加法计数原理与分步乘法计数原理说课

高中数学选修2-31.1分类加法计数原理与分步乘法计数原理第一课时说课稿(课前说课)和田地区第二中学:粟登科一.教学背景分析:1.教材分析“分类加法计数原理和分步乘法计数原理”(以下简称“两个计数原理”)是人教A版高中数学课标教材选修2-3“第一章计数原理”第1.1节的内容,教学需要安排4个课时,本节课为第1课时。
两个计数原理是人们在大量实践经验的基础上归纳出来的基本规律,是处理计数问题的两种基本思想方法,也是在日常生活中被经常使用的思想方法,是推导排列数、组合数计算公式的依据,其基本思想方法贯穿本章内容的始终。
因此,本节课的主要任务是在学生已有的认知基础上引导学生总结得出两个计数原理,并正确理解“完成一件事”的含义;根据实际问题的特征,正确区分“分类”或“分步”。
2.学情分析:两个计数原理从本质上看,是学生从小学就开始学习的加法运算与乘法运算,而且学生有运用两个计数原理解决实际问题的经验,会用列举法解决最简单的计数问题;同时在学习和生活中,学生已经习惯性地使用“分类”和“分步”的方法来思考和解决问题,这些都是学生学习两个计数原理的认知基础.但是学生缺少更深层次的归纳、理解和运用。
同时对于数学概念有的学生认为基本概念单调乏味,不去重视它,不求甚解。
本节课通过实例结合生活经验,让学生改变对数学概念课的认识。
3.教学目标分析:两个计数原理虽简单朴素,易学好懂,但如何让学生借助已有的实践活动经验,抽象概括出两个计数原理,并领悟其中重要的数学思想方法,实现认知的飞跃.为此,确定本节课的目标。
知识与技能:通过典型丰富的实例来帮助学生经历两个计数原理的抽象概括的发现过程,完成归纳提炼两个计数原理,体会从特殊到一般的思维过程,提升学生抽象概括能力。
过程与方法:根据问题情境,学生能描述“完成一件事”的具体含义,说出“分类”与“分步”的区别,体验数学概念产生的基础。
重视思维方式的形成,板演不作为本节课的重点。
情感态度价值观:体验数学来源于生活,高于生活的特点,逐步提高学生的认知水平,注重概念产生的本源,培养转化、归纳、分类与整合和特殊与一般的思维能力,树立目标意识,时刻知道我们要做什么,并思考怎么做。
分类加法计数原理与分步乘法计数原理教案

分类加法计数原理与分步乘法计数原理教案一、分类加法计数原理教案主旨: 学习分类加法计数原理,能够运用该原理解决实际问题。
一、导入 (5分钟)1. 引入问题:小明有3个红色球和4个蓝色球,他想穿一双颜色相同的球,有多少种可能性?2. 学生回答问题并讨论解决方法。
二、呈现 (10分钟)1. 介绍分类加法计数原理的概念: 分类加法计数原理是指在一个问题中,通过将问题进行分类,然后对每个分类进行计数,最后将各个分类的计数结果相加,得到最终的解决方案。
2. 给出示例问题: 一个篮球队有5个队员,一个足球队有6个队员,现在要选出两个队员进行混合比赛,有多少种可能性?三、讲解 (15分钟)1. 分类: 将问题分为篮球队员和足球队员两类。
2. 计数: 分别计算篮球队员和足球队员的可能性,篮球队员有C(5,2)种组合方式,足球队员有C(6,2)种组合方式。
3. 合并: 将篮球队员和足球队员的组合数相加得到最终的解。
四、练习 (15分钟)1. 分发练习册,让学生完成相关练习。
2. 教师巡视督促学生的练习过程,提供必要的帮助和指导。
五、总结 (5分钟)1. 总结分类加法计数原理的步骤:分类、计数、合并。
2. 强调分类加法计数原理在解决实际问题中的应用。
3. 回顾学生在课堂练习中的解题思路和结果。
二、分步乘法计数原理教案主旨: 学习分步乘法计数原理,能够运用该原理解决实际问题。
一、导入 (5分钟)1. 引入问题:小明喜欢穿不同颜色的T恤和裤子,他有3种不同颜色的T恤和4种不同颜色的裤子,他有多少种穿搭可能性?2. 学生回答问题并讨论解决方法。
二、呈现 (10分钟)1. 介绍分步乘法计数原理的概念: 分步乘法计数原理是指在一个问题中,将问题分为多个独立的步骤,然后计算每个步骤的可能性,并将各个步骤的可能性相乘,得到最终的解决方案。
2. 给出示例问题: 一个密码锁有3个拨轮,每个拨轮上分别有0-9的数字,求密码锁的可能组合数。
61 分类加法计数原理与分步乘数原理 (解析版)2023-2024新高考数学选择性必修三全册学案教案

【对点精练 1】 用 0,1,2,3,4 组成没有重复数字的四位数,其中奇数有______个. 【解答】特殊位置优先考虑,先考虑末尾,有 C21 种,在考虑首位非零有 C31 种, 剩下的两个位置有 A32 种, 则由分布乘法计数原理,得到共有奇数 C21C31A32 36 种, 故答案为:36. 【对点精练 2】 用数字1, 2,3, 4,5 组成没有重复数字的五位数,其中奇数的个数为____ . 【解答】要组成无重复数字的五位奇数,则个位只能排1,3,5 中的一个数,共有 3 种排法,然后还剩 4 个数, 剩余的 4 个数可以在十位到万位 4 个位置上全排列,共有 A44 24 种排法, 由分步乘法计数原理得,由1, 2, 3, 4, 5 组成的无重复数字的五位数中奇数有 3 24 72 个.故答案为: 72 .
活动课程,甲、乙、丙 3 名同学从中各自任选一门活动课程参加,则这 3 名学生所选活动课程不全相
同的选法有______种
【解答】甲、乙、丙 3 名同学从中各自任选一门活动课程参加各有 6 种选法,共有 63 216 种选法,
其中甲、乙、丙 3 名同学所选活动课程完全相同的选法共 6 种,则这 3 名学生所选活动课程不全相同的选 法有 216 6 210 种,故答案为: 210
每人必选且只能选择 1 个学科参加竞赛,则不同的报名方法种数是_______________. 【解答】由已知第一位同学的报名方法有 5 种,第二名同学的报名方法有 5 种,第三名同学的报名方法有 5 种,第四名同学的报名方法有 5 种,由分步乘法计数原理可得 4 名同学的不同的报名方法种数是 5555 种,即 625 种,故答案为:625.
6.1 分类加法计数原理与分步乘法计数原理
1.熟练掌握两个计数原理,并能灵活应用两个计数原理解决数学与生活中的计数问题,理解 两个计数原理的区别与联系,掌握分类与分步的计数原则及分类标准. 解读:通过本节课的学习,要求理解与掌握两个计数原理的计数方法,能应用两个计数原理解 决一单的实际问题.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高考数学
分类加法计数原理与分步乘法计数原理
教学目的 1了解学习本章的意义,激发学生的兴趣.
2.理解分类计数原理与分步计数原理,培养学生的归纳概括能力.
3.会利用两个原理分析和解决一些简单的应用问题.
教学重点
分类计数原理(加法原理)与分步计数原理(乘法原理)
教学难点:
分类计数原理(加法原理)与分步计数原理(乘法原理)的准确理解
教 具
多媒体、实物投影仪
教学过程
一、引入课题
今天我们来学习两个计数原理:分类加法计数原理和分类乘法计数原理。
这两个原理不仅是我们解决计数问题的依据,也是我们学习排列组合和概率论的基础。
二、引出两个原理
问题1: 重庆的王先生欲回老家广州过年,从重庆到广州可以乘坐火车或者汽
车,一天中,火车有3班,汽车有2班,问从重庆到广州共有多少种不同的走法?
分析:因为一天中乘火车有3种走法,乘汽车有2种走法,每一种走法都可以从
重庆到广州,所以,共有3+2=5种不同的走法。
由问题1引出分类加法计数原理:
完成一件事情,有两类办法,在第1类办法中有m 种不同的方法,在第2类办法中有n 种不同的方法,那么完成这件事共N=m+n 种不同的方法.(也称加法原理)(板书)
追问:如果完成一件事情有 n 类不同方案,在第1类办法中有1m 种不同的方法,
在第2类办法中有2m 种不同的方法,…,在第n 类办法中有n m 种不同的
方法.那么完成这件事共多少种不同的方法?.(口述)
回答:有n m m m N +⋅⋅⋅++=21种方法。
问题2:王先生在广州过完年后要去北京拜访朋友.第一天他必须乘火车去天津
办一件事,然后次日再乘汽车到北京。
一天中,广州到天津的火车有3
班,天津到北京的汽车有2班,问王先生从广州到北京一共有多少种走
法?
分析:因为乘火车有3种走法,乘汽车有2种走法,所以,从广州到天津需乘一
次火车再接着乘一次汽车就可以了,共有错误!未找到引用源。
种不同走法
由问题2引出分步乘法计数原理:
完成一件事情,需要分成两个步骤,做第1步有m 种不同的方法,做第2步有n 种不同的方法.那么完成这件事共有N=m+n 种不同的方法.(也称乘法原理)(板书)
追问:如果完成一件事需要n 个步骤,做第1步有 错误!未找到引用源。
种不
同的方法,做第2步有 错误!未找到引用源。
种不同的方法,……做第n 步有n m 种不同的方法.那么完成这件事共有多少种不同的方法?
回答:共有
n m m m N ⨯⋅⋅⋅⨯⨯=21种不同的方法.(口述)
三、比较两个原理的异同
1、两个计数原理有什么异同?
相同点:都是涉及完成一件事的不同方法的种数的问题。
不同点:分类计数原理与“分类”有关,各种方法相互独立,用其中任何一种方
法都可以完成这件事;分步计数原理与“分步”有关,各个步骤相互依
存,只有各个步骤都完成了,这件事才算完成.
2、区别分类和分步的依据是什么?
分类时各类方法都能独立完成这件事;而分步时每一步都不能独立完成这件事。
四、课堂典例讲授
例1.书架的第1层放有4本不同的语文书,第2层放有3本不同的数学书,第3层放有2本不同的英语书;
(1)从书架上任取一本书,有多少种取法?
分析:取一本书;分三类
(2)从书架的第1、2、3层各取1本书,有多少种不同的取法?
分析:从3层中各取一本书;分三步
(3)从书架上取两本不同学科的书,有多少种不同的取法?
分析:取两本不同学科的书;先分类后分步
变式练习:1. 1至5这五个数字一共可以组成多少个三位数?
分析:给这个三位数的每一个数位配数;分三步完成
变式: 1至5这五个数字可组成多少数字不重复的三位数?
例2.要从甲、乙、丙、3幅不同的画中选出2幅,分别挂在左、右两边墙上的指定位置,问共有多少种不同的挂法?
分析:在左、右两边墙上的指定位置挂一幅画;分两步(法1:先选一幅画挂左墙,再选一幅画挂右墙。
法2:先选两幅画,再分别挂左右墙)
变式:要从甲、乙、丙、丁、戊4幅不同的画中选出2幅,分别挂在左、右两边墙上的指定位置,问共有多少种不同的挂法?
六、方法小结
在思考计数问题时可以这样分析:
1、完成的这件事是什么?
2、如何完成这件事?
3、它们属于分类还是分步?(是否独立完成)
4、运用哪个计数原理?
5、进行计算。
七、课后作业
1.教材第6页练习题2
2.第29届奥运会在中国北京举行,在乒乓球比赛中,中国队的马琳、王皓、王励勤包揽了男子单打的前三名。
有4位小朋友前去献花,请问可能出现多少种献花情况。