2019北师大版必修一《简单的幂函数》word教案

合集下载

高中数学新北师大版精品教案《北师大版高中数学必修1 简单的幂函数》25

高中数学新北师大版精品教案《北师大版高中数学必修1 简单的幂函数》25

《简单的幂函数》教学设计红旗中学 常丽一、教学目标:1了解指数是整数的简单幂函数的概念,能够通过观察总结简单幂函数的一些性质,会利用定义证明简单函数的奇偶性。

2了解利用奇偶性画函数图象和研究函数的方法。

3培养学生从特殊到一般的意识,培养学生利用图象研究函数奇偶性的能力,引导学生发现数学中的对称美,让学生在识图与画图中获得学习的快乐。

二、教学重点与难点:1重点:幂函数的概念,奇偶函数的概念。

2难点:简单的幂函数的图象、性质;正确判断函数的奇偶性。

课时安排:1课时 三、教学过程(一)幂函数的概念情境引入,提出问题:我们已经熟悉以下3种函数解析式: 请同学们观察这3个函数解析式,说出他们有哪些异同点? 总结:幂函数的概念如果一个函数,底数是自变量,指数是常量 ,即形如这样的函数称为幂函数 理解应用1判断下列函数是否为幂函数2幂函数的图像过点(4,2),求函数解析式。

(二)幂函数的图像(学生活动)αx y =α2)1(-=x y 32)2(x y =21)3(x x y +=-1)4(3+=x y 21)()3()()2()()1(x x f x x f x x f ===-学生分组画下列函数的图像,并借助图像研究幂函数简单的性质(三)函数的奇偶性 问题1:观察=3的图像,说出它有哪些特征?图像关于原点对称的函数叫做奇函数满足:f-=-f问题2:观察=2的图像,说出它有哪些特征?图像关于轴对称的函数叫做偶函数满足:f-=f反之:满足f-=-f 的函数一定是奇函数;满足f-=f 的函数一定是偶函数。

当函数是奇函数或偶函数时,称函数具有奇偶性巩固运用1画出下列函数的图象,判断其奇偶性=-25和f=42的奇偶性变式:判断函数f=42(≥0)的奇偶性注:判断函数奇偶性的方法:(1)图象关于原点对称是奇函数图象关于 轴对称是偶函数 32,xy x y ==211,x y x y ==-1)1(2)3(,1)2(2)1(22--=+=-=x y x y x y(2)注:函数定义域关于原点对称,是函数具有奇偶性的前提条件。

北师大版高中数学必修一教案简单幂函数的图象和性质 Word版含解析 (1)

北师大版高中数学必修一教案简单幂函数的图象和性质 Word版含解析 (1)

第二章函数第4.2节简单幂函数的图像和性质教学设计y=及其他们的图像《简单的幂函数》是对学生学习了正、反比例函数和二次函数2x和性质的基础上来研究的,是这些特殊函数等在解析式的形式上共有特征的推广,本节突出幂函数从特殊到一般的推广,同时要研究函数的另外一个重要的性质奇偶性,是继函数单调性之后的又一重要的性质,是函数性质的延续和深化,通过本节课的学习,学生将建立幂函数这一函数模型,并能用系统的眼光看待以前已经接触过的函数,因而本节课更是一个对学生研究函数的方法和能力的综合提升,为后续学习做了铺垫。

一.教学目标:1.了解指数是整数的幂函数的概念;2.学会利用定义证明简单函数的奇偶性,了解用函数的奇偶性画函数图象和研究函数的方法;3.培养学生从特殊归纳出一般的意识,培养学生利用图像研究函数奇偶性的能力。

二. 核心素养1.数学抽象:幂函数概念的理解y=及其他们的图像和性质的基础上2. 逻辑推理:通过对正、反比例函数和二次函数2x来研究的,我把这些特殊函数等在解析式的形式上共有特征推理到一般的形式上。

3. 数学运算:求简单的幂函数解析式;4. 直观想象:通过幂函数的图像,可以直观的分析函数性质5. 数学建模:在具体情境问题中,运用数形结合思想,利用幂函数的性质,图像,解决实际问题教学重点幂函数的概念、奇偶函数的概念,突出待定系数法教学难点简单幂函数的概念;定义法判断函数的奇偶性PPT1.知识引入我们已经熟悉,y=x是正比例函数,1yx=是反比例函数,y=x2是一元二次函数,还有y x=,y=x3,它们都是简单的幂函数.2.幂函数的概念概述:一般地,形如y=x a(a为常数)的函数,即底数是自变量,指数是常数的函数称为幂函数。

这里的1yx=和y x=在今后的学习中可以分别写成y=x-1和y=x-2【知识点扩充】具体特点:①底数是自变量②指数是常量③xα的系数是13.动手实践1.将y=x;1yx=;y=x2,y x=,y=x3这五个函数的图象画在同一平面直角坐标系中,并填写表2-3.2 在图2-16中,只画出了函数在y轴某一侧的图象,请你画出函数在y轴另一侧的图象,并说出画法的依据.【知识扩充】1、常见幂函数图像2、总结幂函数性质()0,+∞都有定义,⑴所有的幂函数在并且图象都过点(1 , 1)(原因:1x =1);⑵a>0时,幂函数的图象都通过原点,且在)0,+∞⎡⎣上,是增函数(从左往右看,函数图象逐渐上升).⑶a<0时,幂函数的图象在区间)0,+∞⎡⎣上是减函数.在第一家限内,当x 向原点靠近时,图象在y 轴的右方无限逼近x 轴正半轴,当x 慢慢地变大时,图象在x 轴上方并无限逼近x 轴的正半轴.题型一:判断下列那些是幂函数判一判:判断下列函数是否为幂函数. (1)m y ax = 2(2)y x x =+ 3n y x =() 5(4)(2)y x =- 2(5)2y x = 21(6)y x =【答案】:(3),(6)题型二:幂函数图像问题2.如图所示,曲线是幂函数y=x a在第一象限内的图象,已知a分别取11,1,,22四个值,则相应图象依次为:答案:C4,C2,C3,C1题型三:根据幂函数性质,求解参数值3.幂函数在(0,+∞)时是减函数,则实数m的值为()A.2或﹣1 B.﹣1 C.2 D.﹣2或1【解析】解:由于幂函数在(0,+∞)时是减函数,故有,解得m=﹣1,故选:B.题型四:比较大小4.a=2,b=3,c=5则a,b,c的大小关系为()A.a<b<c B.b<a<c C.c<a<b D.b<c<a【解析】解:∵a=2,b=3,c=5,很明显,a、b、c都是正实数,∵b6﹣a6=9﹣8=1>0,∴b6>a6,∴b>a.∵a10﹣c10=32﹣25>0,a10>c10,∴a>c.综上可得:b>a>c,故选:C.5.已知a=0.24,b=0.32,c=0.43,则()A.b<a<c B.a<c<b C.c<a<b D.a<b<c【解析】解:∵a=0.24=0.042=0.0016,b=0.32=0.09,c=0.43=0.064,∴b>c>a,故选:B.1.掌握幂函数的概念2.会画5种幂函数的图像3.结合图像了解幂函数图像的变化情况和简单性质。

北师大版高中数学必修第一册《函数的奇偶性与简单的幂函数》说课稿

北师大版高中数学必修第一册《函数的奇偶性与简单的幂函数》说课稿

北师大版高中数学必修第一册《函数的奇偶性与简单的幂函数》说课稿一、教材内容概述《函数的奇偶性与简单的幂函数》是北师大版高中数学必修第一册的一章内容。

该章主要介绍了函数的奇偶性及简单的幂函数的相关概念和性质。

通过学习本章内容,学生能够理解函数奇偶和幂函数的特点,并能够应用所学知识解决实际问题。

二、教学目标1.了解函数的奇偶性的概念和判断方法;2.掌握简单的幂函数及其图象的性质;3.能够应用函数的奇偶性及简单的幂函数解决实际问题。

三、教学重点1.函数的奇偶性的概念和判断方法;2.简单的幂函数的图象和性质。

四、教学难点1.如何准确地判断函数的奇偶性;2.理解和应用幂函数的图象和性质。

五、教学内容及方法5.1 函数的奇偶性函数的奇偶性是指函数图象关于坐标原点的对称性。

奇函数关于坐标原点对称,即f(−x)=−f(x);偶函数关于坐标原点对称,即f(−x)=f(x)。

如果函数既不是奇函数也不是偶函数,则称其为一般函数。

教学方法:通过举例、图表和实际问题引出函数奇偶性的概念,引导学生进行讨论和总结,然后讲解函数奇偶性的判断方法,并进行练习。

5.2 简单的幂函数幂函数是指以变量的某个整数次幂为自变量的函数。

本章主要讲解一次幂函数和二次幂函数的性质。

1.一次幂函数:y=ax+b。

其中a为常数,a eq0。

一次幂函数的图象是一条直线,斜率为a,在坐标平面上表现为直线的斜率性质。

教学方法:通过具体的实例和图象,引导学生理解一次幂函数的特点并进行练习。

2.二次幂函数:y=ax2+b。

其中a和b为常数,a eq0。

二次幂函数的图象是一个开口向上或向下的抛物线,通过分析二次函数的系数a和b的正负关系,引出图象和性质的讨论。

教学方法:通过图象、实例和推导,引导学生掌握二次幂函数的图象和性质。

5.3 函数应用问题教学方法:通过实际问题的引入,结合函数的奇偶性和幂函数的性质,引导学生分析问题,建立方程并解决问题。

六、教学过程1.导入:引出函数的奇偶性的概念,并让学生观察、分析一些函数的图象,引导学生发现函数奇偶性的特点。

北师大版高中数学必修1《二章 函数 5 简单的幂函数 简单的幂函数》优质课教案_29

北师大版高中数学必修1《二章 函数  5 简单的幂函数  简单的幂函数》优质课教案_29

简单的幂函数教学目标:一、知识与技能:1、幂函数的概念以及简单幂函数的图像和性质;2、奇函数与偶函数的概念及其判断。

二、过程与方法:通过常见的一次函数、二次函数、反比例函数的图像与性质,得出幂函数的概念,并总结出奇偶函数的概念与性质。

三、情感态度与价值观:通过本节学习,增强学生数形结合的思想。

教学重点:1、幂函数的理解与应用;2、函数奇偶性的判断。

教学难点:函数奇偶性的判断教学过程:一、 课题引入我们以前学习过这样几个函数:x x y y y x y x 211),(,====-下面画出它们的图像(1)y=x(2)x y 1-= (3)x y 2= 从它们解析式的形式上看,底数都是自变量x ,只是指数不同,而且指数都是常数。

这样的函数,就是本节课所要研究的幂函数。

二、 讲授新课1、幂函数的概念幂函数:如果一个函数,底数是自变量x ,指数是常数α,即x y α=,这样的函数称为幂函数。

注:(1)条件:指数是常数,底数是自变量x ,系数为1(2)幂函数x y α=中,α为任意实数。

在第三章将进一步讨论。

例1:指出下列哪些函数是幂函数答:(1)、(6)是幂函数例2:画出幂函数x y 3=的图象,并讨论其图象特征.23220)6()1()5(2)4()3()2()1(x y x y x y x y x y x y x =+==-===特点:(1)定义域为R,值域也为R ,且在R 上单调递增;(2)图像关于原点对称,且对于任意的R x ∈,都有f(-x)=-f(x). 再观察x y 2=的图像,说出它有哪些特征? 特点:(1)定义域为R,值域也为R ,且在(- ∞,0]上单调递减,[0,+ ∞) 上单调递增。

(2)其图像关于y 轴对称,且对任意的R x ∈,都有f(-x)=f(x) 可以得出幂函数的性质:(1)幂函数图像恒过点(1,1);(2)α<0时,在区间[0,+ ∞)上,y 随x 的增大而减小;(3)α=0时,是常函数,不具有单调性;(4)α>0时,在区间[0,+ ∞)上,y 随x 的增大而增大。

简单幂函数的图象和性质+课件——2023-2024学年高一上学期数学北师大版(2019)必修第一册

简单幂函数的图象和性质+课件——2023-2024学年高一上学期数学北师大版(2019)必修第一册


(3) = 2
不是
(4) = 2 + 1
不是
(5) = − 3
不是
(1) =
幂函数
【例8】利用幂函数的性质,比较下列各题中两个值的大小:
解:(1)可看作幂函数 = 1.4 的两个函数值。
(1)1.51.4 ,1.61.4
该函数在 0 , +∞ 上递增,
(2)1.50.4 ,1.60.4
0 , +∞ , 单调递增
(0,0)(1,1)
幂函数
解析式
当 < 0时
= −1
= −2
= −3
≠0
≠0
奇函数
≠0
>0
偶函数
≠0
≠0
奇函数
>0
>0
非奇非偶
减函数
减函数
=
1

2
图象
定义域
值域
奇偶性
单调性
定点
减函数
−∞ , 0 , 单调递增
0 , +∞ , 单调递减
幂函数
365
1 =1
365
1 =1
如果你
原地踏步
365
1 =1
一年之后
你还是 那个 1
1.01
=37.8
365
365
1.01 =37.8
如果你
每天进步 一点点
365
1.01 =37.8
一年之后
你的进步 远远大于1
0.99
=0.03
365
365
0.99 =0.03
可是如果你
每天退步哪怕一丢丢
解:考察函数 f(x)=

高中数学 第二章 函数 2.5 简单的幂函数学案(含解析)北师大版必修1-北师大版高一必修1数学学案

高中数学 第二章 函数 2.5 简单的幂函数学案(含解析)北师大版必修1-北师大版高一必修1数学学案

§5简单的幂函数知识点一幂函数性质与图像[填一填]1.幂函数如果一个函数,底数是自变量x,指数是常数α,即y=xα,这样的函数称为幂函数.2.幂函数性质与图像所有的幂函数在(0,+∞)上有定义,并且图像都过点(1,1),如果α>0,则幂函数的图像还过(0,0),并在区间[0,+∞)上递增;如果α<0,则幂函数在区间(0,+∞)上递减,在第一象限内,当x从右边趋向于原点时,图像与y轴无限接近;当x趋向于+∞时,图像与x轴无限接近.[答一答]1.幂函数y=xα的图像在第一象限内有何特征?提示:幂函数y=xα的图像在第一象限内具有如下特征:直线x=1,y=1,y=x将直角坐标平面在第一象限的直线x=1的右侧分为三个区域(Ⅰ)、(Ⅱ)、(Ⅲ)如图:则α∈(1,+∞)⇔y=xα的图像经过区域(Ⅰ) ,如y=x2;α∈(0,1)⇔y=xα的图像经过区域(Ⅱ),如y=x;α∈(-∞,0)⇔y=xα的图像经过区域(Ⅲ),如y=1x.并且在直线x=1的右侧,从x轴起,幂函数y=xα的指数α由小到大递增,即“指大图高”、“指小图低”,在直线x=1的左侧,图像从下到上,相应的指数由大变小.知识点二奇函数与偶函数[填一填]3.奇函数与偶函数(1)一般地,图像关于原点对称的函数叫作奇函数.在奇函数f(x)中,f(x)与f(-x)绝对值相等,符号相反,即f(-x)=-f(x);反之,满足f(-x)=-f(x)的函数y=f(x)一定是奇函数.(2)一般地,图像关于y轴对称的函数叫作偶函数.在偶函数f(x)中,f(x)与f(-x)的值相等,即f(-x)=f(x);反之,满足f(-x)=f(x)的函数y=f(x)一定是偶函数.(3)当函数f(x)是奇函数或偶函数时,称函数f(x)具有奇偶性.[答一答]2.(1)若奇函数y=f(x)在x=0处有定义,则f(0)的值是否唯一确定?提示:若奇函数y=f(x)在x=0处有定义,由f(0)=-f(0)可知,f(0)=0,故f(0)的值是唯一确定的,即一定有f(0)=0.(2)偶函数在关于原点对称的区间上的单调性相反,最值相反吗?奇函数在关于原点对称的区间上的单调性相同,最值相同吗?提示:偶函数在关于原点对称的区间上的单调性相反,最值相同;奇函数在关于原点对称的区间上的单调性相同,最值不同.1.幂函数图像的分布特点和规律幂函数在第一象限内的图像,在经过点(1,1)且平行于y轴的直线的右侧,按幂指数由小到大的关系幂函数的图像从下到上的分布.2.幂函数y=xα(α∈R)的图像和性质(1)当α>0时,图像过点(1,1),(0,0)且在第一象限随x的增大而上升,函数在区间[0,+∞)上是单调增函数.(2)当α<0时,幂函数y=xα图像的基本特征:过点(1,1),且在第一象限随x的增大而下降,函数在区间(0,+∞)上是单调减函数,且向右无限接近x轴,向上无限接近y轴.(3)当α为奇数时,幂函数为奇函数;当α为偶数时,幂函数为偶函数.3.奇、偶函数图像对称性的缘由若函数f(x)是奇函数,对函数f(x)图像上任一点M(x,f(x)),则点M关于原点的对称点为M′(-x,-f(x)).又f(-x)=-f(x),则有M′(-x,f(-x)),所以点M′也在函数f(x)的图像上,所以奇函数的图像关于原点对称.同理可证偶函数的图像关于y轴对称.4.奇、偶函数图像的几点说明(1)一个函数为偶函数,其图像一定关于y轴对称,但是却不一定与y轴相交.(2)既是奇函数又是偶函数的函数图像在x轴上.如y=0,x∈[-1,1]既是奇函数又是偶函数.(3)从图像上看:函数的奇偶性体现的是对称性,单调性体现的是升降性.(4)根据以上奇、偶函数图像对称性的特点可以解决已知奇、偶函数在某区间的部分图像,画出其关于原点或y轴对称的另一部分的图像问题.类型一幂函数的概念【例1】已知函数y=(m2-m-5)x m+1是幂函数,求m的值,并写出函数解析式.【思路探究】幂函数的解析式形如y=xα(α∈R),幂值前面的系数为1,底数为x,α∈R为常数.【解】∵y=(m2-m-5)x m+1为幂函数,∴y可以写成y=xα(α为常数)的形式,∴m2-m-5=1,解得m=3或m=-2.当m=3时,m+1=4,此时y=x4;当m=-2时,m+1=-1,此时y=x-1.规律方法判断一个函数是否为幂函数,依据是该函数是否为y=xα(α为常数)的形式.幂函数的解析式为一个幂的形式,且满足:(1)指数为常数;(2)底数为自变量;(3)系数为1.反过来,若一个函数为幂函数,则该函数也必具有上述形式,这是我们解决某些问题的一个隐含条件.(1)以下四个函数:y =x 0;y =x -2;y =(x +1)2;y =2·x 13 中,是幂函数的有( B ) A .1个 B .2个 C .3个D .4个解析:形如y =x α(α为常数)的函数为幂函数,所以只有y =x 0,y =x -2为幂函数. (2)f (x )=(m 2-m -1)x m 2-2m -1是幂函数,则实数m =2或-1.解析:f (x )=(m 2-m -1)x m 2-2m -1是幂函数,所以m 2-m -1=1,解得m =-1或2. 类型二 幂函数的性质【例2】 幂函数y =x α中α的取值集合C 是{-1,0,12,1,2,3}的子集,当幂函数的值域与定义域相同时,集合C 为( )A .{-1,0,12}B .{12,1,2}C .{-1,12,1,3}D .{12,1,2,3}【思路探究】 根据常见的幂函数的图像与性质进行逐一判断.【解析】 根据幂函数y =x -1,y =x 0,y =x 12,y =x ,y =x 2,y =x 3的图像和解析式可知,当α=-1,12,1,3时,相应幂函数的值域与定义域相同.【答案】 C规律方法 1.画幂函数的图像时,可先画出其在第一象限内的图像,再由定义域、单调性、奇偶性得出在其他象限内的图像.2.幂函数图像的特征:(1)在第一象限内,直线x =1的右侧,y =x α的图像由上到下,指数α由大变小;在第一象限内,直线x =1的左侧,y =x α的图像由上到下,指数α由小变大.(2)当α>0时,幂函数的图像都经过(0,0)和(1,1)点,在第一象限内,当0<α≤1时,曲线上凸;当α≥1时,曲线下凸;当α<0时,幂函数的图像都经过(1,1)点,在第一象限内,曲线下凸.如图,图中曲线是幂函数y =x α在第一象限的大致图像.已知α取-2,-12,12,2四个值,则相应于曲线C 1,C 2,C 3,C 4的α的值依次为( B )A .-2,-12,12,2B .2,12,-12,-2C .-12,-2,2,12D .2,12,-2,-12解析:解法1:在第一象限内,在直线x =1的右侧,y =x α的图像由上到下,指数α由大变小,故选B.解法2:赋值法.令x =4,则4-2=116,4-12=12,412=2,42=16,易知选B.类型三 幂函数性质的应用【思路探究】 注意分情况讨论要做到不重不漏.先根据条件确定m 的值,再利用幂函数的增减性求实数a 的取值范围.【解】 因为函数在(0,+∞)上递减, 所以m 2-2m -3<0,解得-1<m <3. 又因为m ∈N +,所以m =1或2,由函数图像关于y 轴对称知,m 2-2m -3为偶数,所以m =1.把m =1代入不等式得(a +1)- 13<(3-2a )- 13.因为y =x - 13在(-∞,0)和(0,+∞)上均递减,所以有a +1>3-2a >0或0>a +1>3-2a 或a +1<0<3-2a ,解得23<a <32或a <-1.即a 的取值范围是(-∞,-1)∪(23,32).规律方法 作直线x =m (m >1),它与若干个幂函数的图像相交,交点从上到下的排列顺序正是幂指数的降序排列,故可利用其比较指数α的大小.(1)已知(0.71.3)m <(1.30.7)m ,则m 的取值范围是m >0.解析:根据幂函数y =x 1.3的图像,当0<x <1时,0<y <1,所以0<0.71.3<1,又根据幂函数y =x 0.7的图像,当x >1时y >1,所以1.30.7>1,于是有0.71.3<1.30.7,又(0.71.3)m <(1.30.7)m ,所以m >0. (2)已知幂函数y =f (x )的图像过点(2,22),试求出此函数的解析式,并作出图像,判断奇偶性、单调性.解:设幂函数解析式为y =x α,将点(2,22)的坐标代入,得2α=22,解得α=-12,所以函数的解析式y =x - 12.定义域为(0,+∞),它不关于原点对称,所以,y =f (x )是非奇非偶函数.当x >0时,f (x )是单调减函数,函数的图像如图.下面用定义证明y =x - 12 =1x 在(0,+∞)上为减函数:设x 1,x 2∈(0,+∞),且x 1<x 2,则Δx =x 2-x 1>0, Δy =y 2-y 1=1x 2-1x 1=x 1-x 2x 1x 2=(x 1-x 2)x 1x 2(x 1+x 2)=-Δxx 1x 2(x 1+x 2)<0,所以y =x - 12 =1x 在(0,+∞)上为减函数.类型四 函数奇偶性的判断 【例4】 判断下列函数的奇偶性. (1)f (x )=x 4+3x 2; (2)f (x )=x -1x ;(3)f (x )=0,x ∈(-1,1]; (4)f (x )=-2x +1.【思路探究】 先确定函数的定义域是否关于原点对称,再看f (-x )与f (x )之间的关系. 【解】 (1)函数f (x )的定义域为R ,关于原点对称. ∵f (-x )=(-x )4+3(-x )2=x 4+3x 2=f (x ), ∴函数f (x )为偶函数.(2)函数f (x )的定义域为{x |x ≠0},关于原点对称. ∵f (-x )=-x -1-x =-⎝⎛⎭⎫x -1x =-f (x ), ∴函数f (x )为奇函数.(3)函数f (x )的定义域为(-1,1],不关于原点对称,故函数f (x )既不是奇函数也不是偶函数. (4)函数f (x )的定义域为R ,关于原点对称. ∵f (-x )=-2(-x )+1=2x +1≠±f (x ), ∴函数f (x )既不是奇函数也不是偶函数. 规律方法 1.用定义判断函数奇偶性的步骤是:2.在客观题中,多个函数有公共定义域时也可以利用如下性质判断函数的奇偶性: (1)偶函数的和、差、积、商(分母不为零)仍为偶函数; (2)奇函数的和、差仍为奇函数;(3)两个奇函数的积为偶函数,两个奇函数的商(分母不为零)也为偶函数; (4)一个奇函数与一个偶函数的积为奇函数.判断下列函数的奇偶性: (1)f (x )=x 3+1x 3;(2)f (x )=x - 53; (3)f (x )=x 4+1x 2+1;(4)f (x )=2-x +x -2.解:(1)函数f (x )=x 3+1x 3的定义域是(-∞,0)∪(0,+∞),关于原点对称.又∵f (-x )=-x 3+1-x 3=-⎝⎛⎭⎫x 3+1x 3=-f (x ), ∴函数f (x )=x 3+1x3是奇函数.(2)函数f (x )=x - 53的定义域是(-∞,0)∪(0,+∞),关于原点对称. 又∵f (-x )=(-x ) - 53=13(-x )5=-13x 5=-x - 53=-f (x ),∴函数f (x )=x - 53是奇函数.(3)函数f (x )=x 4+1x 2+1的定义域是R ,关于原点对称.又∵f (-x )=(-x )4+1(-x )2+1=x 4+1x 2+1=f (x ),∴函数f (x )=x 4+1x 2+1是偶函数.(4)函数f (x )=2-x +x -2的定义域为{2},不关于原点对称,∴该函数既不是奇函数也不是偶函数.类型五 利用函数奇偶性求函数的解析式【例5】 若f (x )是定义在R 上的奇函数,当x <0时,f (x )=x (1-x ),求当x ≥0时,函数f (x )的解析式.【思路探究】 解决本题的关键是利用奇函数的关系式f (-x )=-f (x )将x <0时f (x )的解析式转化到x >0上.同时要注意f (0)=0.【解】 ∵f (x )是奇函数,∴当x >0时,f (x )=-f (-x )=-{(-x )[1-(-x )]}=x (1+x ), 当x =0时,f (0)=-f (0),即f (0)=0.∴当x ≥0时,f (x )=x (1+x ).规律方法 1.解答本题时,很容易遗漏x =0的情况,在区间转化时要细心.2.利用函数的奇偶性求解函数的解析式,主要利用函数奇偶性的定义.求解一般分以下三个步骤:(1)设所求函数解析式中所给的区间上任一个x ,即求哪个区间上的解析式,就设x 在哪个区间上.(2)把所求区间内的变量转化到已知区间内.(3)利用函数奇偶性的定义f (x )=-f (-x )或f (x )=f (-x )求解所求区间内的解析式.(1)已知f (x )=ax 2+bx +3a +b 为偶函数,其定义域为[a -1,2a ],则a =13,b =0.解析:因为f (x )=ax 2+bx +3a +b 是偶函数,且定义域为[a -1,2a ],所以a -1+2a =0,a =13,所以f (-x )=f (x )恒成立.所以-bx =bx ,所以b =0. (2)函数f (x )为R 上的奇函数,且当x <0时,f (x )=x (x -1),则当x >0时,f (x )=-x (x +1).解析:当x >0时,-x <0,所以f (-x )=-x (-x -1)=x (x +1), 又因为f (x )为R 上的奇函数,所以f (-x )=-f (x ),所以-f (x )=x (x +1), 所以f (x )=-x (x +1).——易错误区—— 函数奇偶性判断中的误区【例6】 以下说法中:(1)函数f (x )=5x 2,x ∈(-3,3]是偶函数.(2)f (x )=x 3+1x 是奇函数.(3)函数f (x )=|x -2|是偶函数.(4)函数f (x )=0,x ∈[-2,2]既是奇函数,又是偶函数.正确的有( )A .(1)(2)B .(1)(4)C .(2)(4)D .(3)(4)【错解】 选B 或选D【正解】 C 对于(1),函数f (x )=5x 2,x ∈(-3,3]的定义域不关于原点对称①,故该函数是非奇非偶函数,故(1)错误.对于(2),函数f(x)=x3+1的定义域为(-∞,0)∪(0,+∞),且能满足f(-x)=-f(x),x所以是奇函数,故(2)正确.对于(3),函数f(x)=|x-2|是由f(x)=|x|的图像向右平移了两个单位得到的②,图像不关于y轴对称,所以(3)错误.对于(4),函数f(x)=0,x∈[-2,2]图像既关于原点对称又关于y轴对称,所以(4)正确,因此正确的只有(2)(4).【错因分析】 1.忽视了①处函数的定义域x∈(-3,3]不关于原点对称,出现只是根据f(-x)=f(x)而判定为偶函数的错误;2.忽视了②处函数f(x)=|x-2|的图像不关于y轴对称,出现只看到绝对值,就认为是偶函数的错误.【防范措施】 1.定义域优先的原则由奇偶函数的定义,“对于函数定义域内任意一个x,都有f(-x)=-f(x)或f(-x)=f(x)”可知,具有奇偶性的函数的定义域必是关于原点对称.如本例中(1)函数f(x)=5x2,x∈(-3,3]的定义域不关于原点对称,所以不具有奇偶性.2.注意图像的变换一些常用的图像平移、变换要牢记,如本例中函数f(x)=|x-2|,就是要根据y=|x|的图像特征来平移得到,因为函数y=|x|的图像关于y轴对称,而向右平移2个单位后图像就不再关于y轴对称,故可得结论.函数f(x)=|x-2|-|x+1|是(C)A.偶函数B.奇函数C.非奇非偶函数D.既奇又偶函数解析:f(x)=|x-2|-|x+1|当x≥2时,f(x)=x-2-x-1=-3,当x≤-1时,f(x)=2-x+x+1=3,当-1<x<2时,f(x)=2-x-x-1=1-2x.画出图像如图.由图知f(x)为非奇非偶函数.一、选择题1.下列所给函数中,是幂函数的是(C)A.y=-x3B.y=3xC.y=x 12D.y=x2-1解析:幂函数的形式为y=xα,只有C符合.2.幂函数y=xα(α∈R)的图像一定不经过(A)A.第四象限B.第三象限C.第二象限D.第一象限解析:∵α∈R,x>0,∴y=xα>0,∴图像不可能经过第四象限,故选A.3.已知函数f(x)是奇函数,且当x≥0时,f(x)=x2+2x,则当x<0时,f(x)=(D) A.x2+2x B.x2-2xC.-x2-2x D.-x2+2x解析:令x<0,则-x>0,∴f(-x)=(-x)2+2(-x)=x2-2x,又∵f(x)为奇函数,∴f(x)=-f(-x)=-(x2-2x)=-x2+2x.二、填空题4.已知幂函数f (x )的图像经过点(2,2),则f (4)=2. 解析:设f (x )=x α,∴α=12,∴f (4)=4 12 =2.5.已知函数f (x )=a (x +1)-2|x |+1的图像关于原点对称,则实数a =2.解析:由题意可知f (x )为奇函数,且奇函数f (x )=a (x +1)-2|x |+1在x =0处有意义,∴f (0)=0,∴a -21=0,∴a =2. 三、解答题6.已知f (x )=(m 2-2m -2)x m -1是幂函数,且在(0,+∞)上单调递增.(1)求m 的值;(2)求函数g (x )=f (x )-2ax +1在区间[2,3]上的最小值h (a ). 解:(1)∵f (x )=(m 2-2m -2)x m -1是幂函数, ∴m 2-2m -2=1,解得m =3或m =-1;又f (x )在(0,+∞)上单调递增,∴m -1>0,∴m 的值为3.(2)函数g (x )=f (x )-2ax +1=x 2-2ax +1=(x -a )2+1-a 2,当a <2时,g (x )在区间[2,3]上单调递增,最小值为h (a )=g (2)=5-4a ;当2≤a ≤3时,g (x )在区间[2,3]上先减后增,最小值为h (a )=g (a )=1-a 2; 当a >3时,g (x )在区间[2,3]上单调递减,最小值为h (a )=g (3)=10-6a .。

数学高一(北师大)必修1教案 2.5简单的幂函数

数学高一(北师大)必修1教案 2.5简单的幂函数

2.5简单的幂函数教案●三维目标1.知识与技能(1)了解简单幂函数的概念.(2)会用定义证明简单幂函数的奇偶性.(3)了解利用奇偶性画函数图像及研究函数的方法.2.过程与方法类比研究一般函数的方法研究幂函数的图像和方法.3.情感、态度与价值观在幂函数的研究过程中让学生体会数学的科学价值和应用价值,引导学生发现数学的对称美,培养学生善于观察、勇于探索的良好习惯和严谨的科学态度.●重点难点重点:幂函数的概念及函数奇偶性的概念.难点:简单幂函数的图像和性质,函数奇偶性的判断.幂函数的概念和性质的突破方法是通过教材中的实例,概括它们解析式的共性来获得幂函数的定义,再根据它们的图像概括出性质;函数的奇偶性的突破方法是让学生观察图像,归纳、猜想概括得出定义,从而也掌握了函数奇偶性的几何意义.●教学建议本节课可以采用直观式教学,启发学生,放手让学生去探索与研究,并在一旁适时地引导学生根据几个实例函数的公共特点归纳、总结幂函数的定义,对几个特殊幂函数的性质先进行初步探索,再根据研究的结果结合描点作图画出幂函数的图像,让学生观察和分析所作的图像,归纳得出图像特征,并由图像特征得到相应的函数性质及函数奇偶性的初步认识,让学生体会系统研究函数的方法.整个教学过程的绝大部分时间都留给学生,让学生动脑动手.通过对同类旧知识的回忆,引导学生利用数形结合,找出与新知识的连接点,并在对照、类比分析中找出规律.可以提高学生学习的积极性和自学能力,培养了他们的归纳演绎能力和创新思维习惯.●教学流程通过几何画板演示部分幂函数的图像,加深对定义的感性认识,为顺利引出幂函数定义作铺垫⇒利用图像,数形结合,理解幂函数的图像和性质⇒通过例1及其变式训练,加深对幂函数的概念及性质的理解⇒通过f(x)=x3的图像关于原点对称并且对任意的xf(-x)=(-x)3=-x 3即f (-x )=-f (x ),完成对定义的理解⇒通过例2及其变式训练,加深定义及证明步骤的理解和掌握⇒通过例3及其变式训练,加深对函数奇偶性的理解和应用⇒归纳整理,进行课堂小结,整体认识本节课所学知识⇒完成当堂双基达标,巩固所学知识并进行反馈矫正(见学生用书第29页)课标解读1.了解幂函数的概念.2.结合函数y =x ,y =x 2,y =x 3,y =x -1,y =x 12的图像,了解它们的变化情况.(难点、易混点)3.结合具体函数,了解函数奇偶性的含义.(重点)【问题导思】我们学习过几种基本初等函数如正比例函数y =x ,反比例函数y =x -1,二次函数y =x 2.看下面两个例子:(1)如果正方体的棱长为x ,正方体的体积为y ; (2)如果正方形场地面积为x ,其边长为y .1.在第一个例子中,y 关于x 的函数关系式怎样? 【提示】 y =x 3.2.在第二个例子中,y 关于x 的函数关系式怎样? 【提示】 y =x 2.3.这两个问题中的函数关系式与y =x ,y =x -1,y =x 2有什么共同特点. 【提示】 从形式上看,它们只是指数不同. 1.幂函数的定义如果一个函数,底数是自变量x ,指数是常量α,即y =x α,这样的函数称为幂函数. 2.简单的幂函数的图像和性质函数y =x ,y =x 2,y =x 3,y =x 12,y =x -1在同一平面直角坐标系中的图像如图所示.从图中可以观察得到:【问题导思】画出函数y =x ,y =x 2,y =1x 的图像.1.它们的图像具有怎样的对称性?【提示】 y =x ,y =1x的图像关于原点对称,y =x 2关于y 轴对称.2.在函数y =x 2中,x 取-1时和取1时的函数值相同吗?在函数y =1x 中呢?【提示】 在函数y =x 2中相同,在y =1x 中互为相反数.1.奇函数的定义一般地,图像关于原点对称的函数叫作奇函数.在奇函数f (x )中,f (x )和f (-x )的绝对值相等,符号相反,即f (-x )=-f (x ).反之,满足f (-x )=-f (x )的函数y =f (x )一定是奇函数.2.偶函数的定义一般地,图像关于y 轴对称,像这样的函数叫作偶函数.在偶函数 f (x )中,f (x )和f (-x )的值相等,即f (x )=f (-x );反之,满足f (x )=f (-x )的函数y =f (x )一定是偶函数.3.奇偶性当一个函数是奇函数或偶函数时,称该函数具有奇偶性.(见学生用书第30页)下列函数是幂函数的为()①y=1x2;②y=2x2;③y=x2+x;④y=(x-2)3;⑤y=1.A.①⑤B.②C.①D.①②④【思路探究】紧扣幂函数的概念,y=xα的形式是解题的关键.【自主解答】函数y=1x2可写成y=x-2的形式,是幂函数;y=2x2的系数不是1,y=x2+x等式右边是两个幂和的形式,y=(x-2)3底数不是自变量x,y=1与y=x0(x≠0)不是同一函数,所以它们都不是幂函数.【答案】 C若一个函数是幂函数,则该函数一定是形如y=xα(α为常数)的形式,即函数解析式的右边是一个幂的形式,其中指数为常数,底数为自变量,系数为1,这是我们解决某些问题的一个隐性条件.若函数y=(a2-3a-3)x2为幂函数,则a的值为________.【解析】根据幂函数的定义,若函数y=(a2-3a-3)·x2为幂函数,则x2的系数必为1,即a2-3a-3=1,所以a2-3a-4=0,解得a=-1或a=4.【答案】-1或4判断下列函数的奇偶性:(1)f(x)=x3+2x;(2)f(x)=x2-|x|+1;(3)f(x)=x2x-1x-1;(4)f(x)=0.【思路探究】首先判断定义域是否关于原点对称,若关于原点对称,再看是否满足f(-x)=±f(x)即可.【自主解答】(1)函数的定义域是R,又f(-x)=(-x)3+2(-x)=-(x3+2x)=-f(x).所以f(x)是奇函数.(2)f(x)的定义域是R,且f(-x)=(-x)2-|-x|+1=x2-|x|+1=f(x),所以f(x)是偶函数.(3)由于x-1≠0,所以x≠1,即函数的定义域是{x|x≠1},不关于原点对称,所以f(x)既不是奇函数,也不是偶函数.(4)由于f(x)=0的定义域为R,且f(-x)=f(x)=-f(x),所以f(x)既是奇函数,又是偶函数.1.判断函数的奇偶性时,首先考虑函数的定义域,并判断其是否关于原点对称.2.若定义域不关于原点对称,则函数f(x)不具有奇偶性,若定义域关于原点对称,可再利用定义验证f(-x)与f(x)的关系.判断下列函数的奇偶性:(1)f(x)=x2,x∈(-1,2);(2)f(x)=x3+x,x∈[0,1];(3)f(x)=x x-1x-1,x∈(-1,1).【解】(1)由于定义域不关于原点对称,所以f(x)既不是奇函数,也不是偶函数.(2)因为定义域不关于原点对称,所以f(x)既不是奇函数,也不是偶函数.(3)由于x∈(-1,1),且关于原点对称,所以f(x)=x,且f(-x)=-x=-f(x),因此,f(x)为奇函数.图2-5-1已知函数f(x)是定义域为R的奇函数,当x>0时,f(x)=x2-2x.(1)求出函数f(x)在R上的解析式;(2)在图2-5-1中画出函数f(x)的图像.【思路点拨】根据题中条件,当x>0时的解析式已知,需求x≤0时的解析式,故需借助奇函数的性质求解,根据对称性即可画出图像.【自主解答】(1)①由于函数f(x)是定义域为R的奇函数,则f(0)=0;②当x<0时,-x>0,∵f(x)是奇函数,∴f(-x)=-f(x),∴f (x )=-f (-x )=-[(-x )2-2(-x )]=-x 2-2x , 综上:f (x )=⎩⎪⎨⎪⎧x 2-2x , x >0,0, x =0,-x 2-2x , x <0.(2)图像如图:1.奇、偶函数的图像有以下特征:若f (x )为奇函数,则它的图像关于原点对称,反之也成立;若f (x )为偶函数,则它的图像关于y 轴对称,反之也成立.这个结论提供了结合图像处理函数奇偶性问题的依据,也是数形结合思想的体现.2.已知函数f (x )在区间[a ,b ]上的表达式,求函数f (x )在区间[-b ,-a ]上的表达式的一般方法:设-b ≤x ≤-a ,则a ≤-x ≤b ;根据已知条件f (x )在区间[a ,b ]上的表达式可求得f (-x )的表达式;然后根据函数f (x )的奇偶性来实现函数的解析式在f (x )与f (-x )之间的相互转化(若函数f (x )为奇函数,则f (x )=-f (-x );若f (x )为偶函数,则f (x )=f (-x )).特别值得一提的是:设-b ≤x ≤-a ,转化为a ≤-x ≤b 是解决问题的关键.(1)已知函数是定义在R 上的偶函数,且x ≥0时,f (x )=-x +1,则f (x )的解析式为________.(2)若函数f (x )是定义在R 上的偶函数,在(-∞,0]上是减函数,且f (2)=0,则使得f (x )>0的x 的取值范围是( )A .(-∞,2)B .(2,+∞)C .(-2,2)D .(-∞,-2)∪(2,+∞) 【解析】 设x <0,则-x >0.∵当x ≥0时,f (x )=-x +1,∴f (-x )=-(-x )+1=x +1. ∵函数f (x )是定义在R 上的偶函数, ∴f (-x )=f (x ).∴当x <0时,f (x )=x +1.∴f (x )的解析式为f (x )=⎩⎪⎨⎪⎧-x +1,x ≥0,x +1,x <0.(2)由于函数f (x )是定义在R 上的偶函数,所以它的图像关于y 轴对称.又它在(-∞,0]上是减函数,所以可知该函数在(0,+∞)上为增函数.根据这些特征及f (2)=0,可作出它的图像(如下图).观察图像可得,使f (x )>0成立的x 的取值范围是(-∞,-2)∪(2,+∞).【答案】 (1)f (x )=⎩⎪⎨⎪⎧-x +1,x ≥0,x +1,x <0 (2) D。

北师大版(2019)数学必修第一册:2.4.2 简单幂函数的图象和性质 教案

北师大版(2019)数学必修第一册:2.4.2 简单幂函数的图象和性质  教案

简单幂函数的图象和性质【教材分析】传统教材中,幂函数内容是放在指数函数、对数函数之后学习,而新教材将其提前,在学习了函数基本概念和性质后,学习的第一个具体函数,这一安排有其合理性,一方面,幂函数是初中学习的正比例、反比例、一元二次函数的推广,有一定的知识基础,另一方面,将前面刚刚学习的函数知识,应用到具体函数中,使学生深刻体会探究函数性质的方法与步骤,为学习指数函数、对数函数做好准备。

【教学目标与核心素养】1.知识目标:掌握幂函数的概念和定义;学会使用函数的知识自主分析、研究幂函数的图象和性质;对于指数的不同情况,学会从函数的定义域、奇偶性、单调性等方面入手分析幂函数的性质,掌握探究函数性质的一般方法和步骤。

2.核心素养目标:通过自主探究幂函数的图象和性质,培养学生知识的应用能力,提高学生的数学运算和逻辑推理的核心素养。

【教学重难点】1.幂函数的概念和定义;2.使用函数的知识自主分析、研究幂函数的图象和性质;3.对于指数的不同情况,学会从函数的定义域、奇偶性、单调性等方面入手,分析幂函数的性质,掌握探究函数性质的一般方法和步骤。

【课前准备】多媒体课件【教学过程】一、知识引入初中学习了函数y=x、反比例函数y=1x、二次函数y=x2等,对它们的图象和性质已经很熟悉了。

后面将学习“1x ”可以记作“x−1”、“√x”可以记作“x12”,形如“y=x∝”的函数,在实际生活中经常会遇到。

思考讨论:(1)写出边长为x 的正方体体积y 的函数;提示:y =x 3.(2)写出面积为x 的正方形的边长y 的函数. 提示:y =√x 即y =x 12. 二、新知识一般地,形如y =x ∝(∝为常数)的函数,称为幂函数. 如:函数y =x 3、y =x 12、y =x −1等等 注意:①幂函数的指数∝是常数,底数是自变量,且指数式前面的系数是1;②幂函数的图象和性质,根据不同的指数∝,视其情况具体分析,一般从函数的定义域、奇偶性、单调性、经过的特殊点等方面入手,分析画出其图象.思考讨论(1)将函数y =x 、y =1x 、y =x 2、y =√x 、y =x 3的图象画在同一个坐标系中,并(2)下列各图,只画出了函数在y轴一侧的图象,请画出y轴另一侧的图象,并说出画法的依据.提示:前三个函数为奇函数,所以图象关于原点中心对称,后两个函数为偶函数,图象关于轴对称.思考讨论(综合练习)(1)若幂函数y=(m2−2m−2)x−m+2在(0,+∞)上为减函数,求实数m的值;(2)已知函数y=x a、y=x b、y=x c在第一象限的函数图象如图,试比较a,b,c的大小;(3)试利用函数的性质,比较a,b,c的大小:a=1.112,b=1.52,c=1.2−1.(4)已知幂函数y=x3m−9(m∈N∗)的图象关于y轴对称,且在(0,+∞)上为减函数,解关于a的不等式(a+1)−m<(3a−2)−m.提示:(1)函数为幂函数,则m2−2m−2=1,得m=−1或m=3,函数为y=x3或y=x−1,又函数在(0,+∞)上为减函数,所以m=3.(2)由y=x c的图象,函数单减,则c<0,再取特殊值x=2,则2a>2b>1,则a> b>0所以a>b>c.(3)由幂函数y=x−1,即y=1x的性质,1.2−1<1,即c<1再由幂函数y=x2、y=x 12的图象,可得1.52>1.12>1.112>1,即b>a>1所以b>a>c.(4)函数y=x3m−9(m∈N∗)在(0,+∞)上为减函数,则3m−9<0,即m<3,m∈N∗,故m=1或m=2.又图象关于y轴对称,函数为偶函数,则3m−9为偶数,所以m=1不等式即为(a+1)−1<(3a−2)−1,再由幂函数y=x−1的图象得3a−2<a+1<0或a+1>3a−2>0或{a+1<03a−2>0所以不等式的解集为{a|a<−1或23<a<32}.注意:①幂函数y=x∝的图象和性质,因不同的指数∝,差异是比较大的,一般通过分析函数的定义域、奇偶性、单调性和经过的特殊点等等得出图象和性质;②在区间(0,+∞)上,幂函数的图象均过定点(1,1),当∝>0时,幂函数单调递增,当∝<0时,单调递减,当∝=0时,幂函数为y=x0(x≠0),即y=1(x≠0);③特殊值法在幂函数问题中常常用到,这样可以省去很多不必要的分析过程.三、课堂练习教材P66,练习3.四、课后作业教材P67,习题2-4:B组第1题.【教学反思】分析函数的图象和性质,一般步骤是:首先考虑函数的定义域,然后考察函数的奇偶性,如果可能,再画出函数的图象,这样函数的其他性质,比如单调性、值域、最值等等,就很容易得到了。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019北师大版必修一《简单的幂函数》word 教案
学习目标:
1、 了解指数是整数的简单幂函数的概念,能够判断幂函数;
2、 会利用定义判定、证明简单函数的奇偶性;
3、 了解利用奇偶性画函数图像和研究函数的方法。

学习重点:
幂函数的概念;奇偶性的定义及简单函数奇偶性的判定与证明。

难点:
利用奇偶性画函数图像和研究函数 学习过程: 一、
引入:我们已经很熟悉y=x 是正比例函数,y=x 2是二次函数, y=
x
1
(即y=x -1)是反比例函数,它们有什么共同特点呢?根据这一特点它们有个怎样的共同名字? 二、 阅读导学 阅读P 481,2两段,
1、回答:一般的,函数 叫做幂函数,其中 是自变量, 是常数。

2、判断下列函数,其中那些是幂函数:
y=x 3,y=x 2
+x , y=2x 2
, y=(2x)4
幂函数的系数是 底数是 , 是任意实数。

例1画出函数f(x)= x 3的图像,讨论其单调性。

再用描点法画出图像: 从图像上可以看出f(x)= x 3
是R 上的 函数
阅读P 48
3、观察f(x)= x 3的图像,说出他有那些特征?什么是奇函数?奇函数满足关系式 ?
4、观察f(x)= x 2的图像说出他有那些特征?什么是偶函数?偶函数满足关系式 ?
例2判断f(x)= -2x 2和g(x)= x 4+2的奇偶性 方法小结:
三、 动手实践
在P 49图2-28中,只画出了函数图像的一半,请你画出它们的另一半,并说出画法的依据 结论:
四、 自我展示
1、下列函数中是幂函数的是( )
①y=21x
②y=ax m (a,m 为非零常数,且a ≠1)③y=x 31
+ x 2④y= x π
⑤y=(x-1)3
2、画出下列函数图像,判断奇偶性 f(x)= -x
3 y=x 2
,x ∈(]33-,
f(x)=3x 2-3 f(x)=2(x+1)2+1 五、
拓展练习
1.已知y=(m 2
+2m-2)x 1
1
2
-m
+2n-3是幂函数,求m,n 的值。

2.函数y=f(x)是奇函数,在[a,b]上是减少的,则它在[-b,-a]上是( ) A.增加的 B .减少的 C.先增后减 D.先减后增
3已知函数f(x)=(m-1)x2+2mx+3是偶函数 ,则f(x)在(-∞,0]上是( ) A.增加的 B .减少的 C.先增后减 D.先减后增 六、 课后小结
七、 作业
P 50A 组2,3(1)(3)。

相关文档
最新文档