曲线积分曲面积分的对称性
01-积分的奇偶对称性

积分的奇偶对称性----定积分、二重积分、三重积分、第一类曲线积分、第一类曲面积分.)(2)()()2(;0)()()1(],,[0⎰⎰⎰==-∈--aa a a a dx x f dx x f x f dx x f x f a a C f 为偶函数,则若为奇函数,则若设01 定积分的奇偶对称性.),(2),(),,(),(),()2(;0),(),,(),(),()1(,,,),(12121⎰⎰⎰⎰⎰⎰==-=-=-+=D D Ddxdy y x f dxdy y x f y x f y x f x y x f dxdy y x f y x f y x f x y x f y D D D D D D y x f 则为偶函数,即关于若则为奇函数,即关于若轴对称,关于上连续在有界闭区域设02 二重积分的奇偶对称性.),(2),(),,(),(),()4(;0),(),,(),(),()3(,,,),(12121⎰⎰⎰⎰⎰⎰==-=-=-+=D D Ddxdy y x f dxdy y x f y x f y x f y y x f dxdy y x f y x f y x f y y x f x D D D D D D y x f 则为偶函数,即关于若则为奇函数,即关于若轴对称,关于上连续在有界闭区域设02 二重积分的奇偶对称性03 三重积分的奇偶对称性;),,(2),,(),,,(),,(),,()2(;0),,(),,,(),,(),,()1(,,,),,(12121⎰⎰⎰⎰⎰⎰⎰⎰⎰ΩΩΩ==-=-=-ΩΩΩ+Ω=ΩΩdxdydz z y x f dxdydz z y x f z y x f z y x f z z y x f dxdydz z y x f z y x f z y x f z z y x f xoy z y x f 则为偶函数,即关于若则为奇函数,即关于若面对称,关于上连续在有界闭区域设;),,(2),,(),,,(),,(),,()4(;0),,(),,,(),,(),,()3(,,,),,(12121⎰⎰⎰⎰⎰⎰⎰⎰⎰ΩΩΩ==-=-=-ΩΩΩ+Ω=ΩΩdxdydz z y x f dxdydz z y x f z y x f z y x f x z y x f dxdydz z y x f z y x f z y x f x z y x f yoz z y x f 则为偶函数,即关于若则为奇函数,即关于若面对称,关于上连续在有界闭区域设03 三重积分的奇偶对称性;),,(2),,(),,,(),,(),,()6(;0),,(),,,(),,(),,()5(,,,),,(12121⎰⎰⎰⎰⎰⎰⎰⎰⎰ΩΩΩ==-=-=-ΩΩΩ+Ω=ΩΩdxdydz z y x f dxdydz z y x f z y x f z y x f y z y x f dxdydz z y x f z y x f z y x f y z y x f zox z y x f 则为偶函数,即关于若则为奇函数,即关于若面对称,关于上连续在有界闭区域设03 三重积分的奇偶对称性04 第一类曲线积分的奇偶对称性.⎰⎰⎰==-=-=-+=1),(2),(),,(),(),()2(;0),(),,(),(),()1(,,,),(2121L L Lds y x f ds y x f y x f y x f x y x f ds y x f y x f y x f x y x f y L L L L L L y x f 则为偶函数,即关于若则为奇函数,即关于若轴对称,关于上连续在平面曲线设04 第一类曲线积分的奇偶对称性.⎰⎰⎰==-=-=-+=1),(2),(),,(),(),()4(;0),(),,(),(),()3(,,,),(2121L L Lds y x f ds y x f y x f y x f y y x f ds y x f y x f y x f y y x f x L L L L L L y x f 则为偶函数,即关于若则为奇函数,即关于若轴对称,关于上连续在平面曲线设05 第一类曲面积分的奇偶对称性.⎰⎰⎰⎰⎰⎰∑∑∑==-=-=-∑∑∑+∑=∑∑1),,(2),,(),,,(),,(),,()2(;0),,(),,,(),,(),,()1(,,,),,(2121dS z y x f dS z y x f z y x f z y x f z z y x f dS z y x f z y x f z y x f z z y x f xoy z y x f 则为偶函数,即关于若则为奇函数,即关于若面对称,关于上连续在曲面设05 第一类曲面积分的奇偶对称性.⎰⎰⎰⎰⎰⎰∑∑∑==-=-=-∑∑∑+∑=∑∑1),,(2),,(),,,(),,(),,()4(;0),,(),,,(),,(),,()3(,,,),,(2121dS z y x f dS z y x f z y x f z y x f x z y x f dS z y x f z y x f z y x f x z y x f yoz z y x f 则为偶函数,即关于若则为奇函数,即关于若面对称,关于上连续在曲面设05 第一类曲面积分的奇偶对称性.⎰⎰⎰⎰⎰⎰∑∑∑==-=-=-∑∑∑+∑=∑∑1),,(2),,(),,,(),,(),,()6(;0),,(),,,(),,(),,()5(,,,),,(2121dS z y x f dS z y x f z y x f z y x f y z y x f dS z y x f z y x f z y x f y z y x f zox z y x f 则为偶函数,即关于若则为奇函数,即关于若面对称,关于上连续在曲面设。
积分区域关于y=x对称就可以用轮换对称性吗

积分区域关于y=x对称就可以用轮换对称性吗坐标的轮换对称性,简单的说就是将坐标轴重新命名,如果积分区间的函数表达不变,则被积函数中的x,y,z也同样作变化后,积分值保持不变。
(1) 对于曲面积分,积分曲面为u(x,y,z)=0,如果将函数u(x,y,z)=0中的x,y,z换成y,z,x后,u(y,z,x)仍等于0,即u(y,z,x)=0,也就是积分曲面的方程没有变,那么在这个曲面上的积分∫∫f(x,y,z)dS=∫∫f(y,z,x)dS;如果将函数u(x,y,z)=0中的x,y,z换成y,x,z后,u(y,x,z)=0,那么在这个曲面上的积分∫∫f(x,y,z)dS=∫∫f(y,x,z)dS;如果将函数u(x,y,z)=0中的x,y,z换成z,x,y后,u(z,x,y)=0,那么在这个曲面上的积分∫∫f(x,y,z)dS=∫∫f(z,x,y)dS ,同样可以进行多种其它的变换。
(2) 对于第二类曲面积分只是将dxdy也同时变换即可。
比如:如果将函数u(x,y,z)=0中的x,y,z换成y,z,x后,u(y,z,x)=0,那么在这个曲面上的积分∫∫f(x,y,z)dxdy=∫∫f(y,z,x)dydz,∫∫f(x,y,z)dydz=∫∫f(y,z,x)d zdx, ∫∫f(x,y,z)dzdx=∫∫f(y,z,x)dxdy.(3) 将1中积分曲面中的z去掉,就变成了曲线积分满足的轮换对称性:积分曲线为u(x,y)=0,如果将函数u(x,y)=0中的x,y换成y,x后,仍满足u(y,x)= 0,那么在这个曲线上的积分∫∫f(x,y)ds=∫∫f(y,x)ds;实际上如果将函数u(x,y)=0中的x,y换成y,x后,仍满足u(y,x)=0,则意味着积分曲线关于直线y=x对称。
第二类和(2)总结相同。
(4) 二重积分和三重积分都和(1)的解释类似,也是看积分域函数将x,y,z更换顺序后,相当于将坐标轴重新命名,积分取间没有发生变化,则被积函数作相应变换后,积分值不变。
对称性在积分运算中的应用

人 们 经 常 利 用 函数 的奇 偶 性 来 简 化 定 积 分 计
算Ⅲ , 即若 厂 ( z )在 [ 一a , 。 ]上 连续 , 则 有
L f ( z , ) 如 = f I o i ( , ) 曲 一
划。 [ 厂 ( z , ) + ( . y , z ) ,
L f ( 一 矾,
其中D 表示 D 中直线 Y — z上 ( 或 下)方 的部 分.
证 明 取关 于直 线 Y— 对 称 的分 割 , 将 区域
某 种对 称 性. 当厂 ( P)在 力 中各对 称 点 处 的 函数 值 的绝对 值相 等且 符 号相反 , 即_ 厂 ( P) 为相 应 于 区域
l i m
当对 区域 力 及被 积 函数 ( P) 赋 以具 体 的含义
 ̄ f ( 8 一 j J 。 厂 ( ) d
=
所以, 式( 1 )成立 . 式( 2 ) 和式( 3 )易证 , 从 略. 性质 2 设 函数 f ( x, Y, 2 ) 在 闭 区域 上 连续 ,
…f ( z , z , ) d v .
证 明 与性质 1的证 明类 似 , 从 略.
类 似地 , 还 有 以下轮 换 性质 . 性质 3 设 函数 f ( x, Y, z )在 光滑 曲线 I 1 上 连
基金项 目: 南 京 邮 电大 学 教 改 项 目( J GO O T 1 1 J X4 0 ) 作者简介 : 宋洪雪( 1 9 7 7- -) , 女, 辽宁西丰人 , 硕士 , 讲师 , 从 事 非 线 性
动力系统研究. E ma i l : s o n g h x @n j u p t . e d u . c n
5 4
高 等 数 学 研 究
积分的对称性问题

例 1:求积分 ∫(∫ 2x + y)2dxdy x2 + y 2 ≤1
分析: ∫(∫ 2x + y)2dxdy = ∫∫ (4x2 + y2 + 4xy)dxdy = 4 ∫∫ x2 + ∫∫ y2 + 4 ∫∫ xy 。
x2 + y 2 ≤1
x2 + y 2 ≤1
x2 + y 2 ≤1
x2 + y2 ≤1
43
L
分析:xy 关于 x 为奇函数,曲线 L 关于 Oyz 面对称。
∫ ∫ ∫ ∴ 2xyds = 0 ,原积分 = 12 ( x2 + y2 )ds = 12 ds = 12a。
L
L4 3
L
上面的结论还可推广到第二型曲面积分,但第二型曲面积分的奇偶对称性定理与第一型积分及重积分的奇偶对称性定理
相反。
D1UD2
D3UD4
D
∫∫ 而在 D3∪D4 上, f (x, y) = sin ye−x2 −y2 是关于 y 的奇函数,所以 sin ye−x2−y2dxdy = 0 。
D3UD4
∫∫ ∫∫ 在 D1∪D2 上, f (x, y) = sin ye−x2 −y2 是关于 x 的偶函数,所以 sin ye−x2−y2 dxdy = 2 sin ye−x2−y2dxdy 。因此选 A。
x2+ y2≤1
x2 + y2≤1
(-1,1)
y
∫∫ ∫∫ ∫ ∫ 所以:原积分 = 5 y2dσ = 5 (x2 + y2)dσ = 5 2π dθ 1r3dr = 5π 。
D
2D
20
0
4
第一类曲线曲面积分中对称性的探讨

y, z)
f (x,
y,
z)
,
Γ1
为
Γ
0, f (x, y, z) f (x, y, z)
的上半部
分。
注: Γ1 关于 yoz 面及 zox 面对称有类似的结论。
eg
4、 L
xyds,
L
:
x y
2 cos 2 sin
3t 3t
,由点(2,
0)经(0,2)到(-2,
0)。
eg1、1 ( sin x
f ( y, z, x) f (z, x, y)ds。
三 重 积 分、第一 类曲线 积 分、第一 类曲面 积 分,若区域 关于某一 变 量
eg3、 x 12ds, L : x2 y2 1 L
L x2 2x 1 ds L x2ds 2L xds L ds L y2ds 0 2
其中 L1 为 L 在 y=x 左上方部分。
x4 y4 z4 dS
2x2 y2 2 y2 z2 2z2 x2 dS 94 R2
T h 8:设 函数 (f x, y, z)在 空间曲线 Γ 上 连 续, Γ 关于 x, y, z 具
x2 y2 z2 2 dS 36 R2 R4 ds 36 R2
2
L1
f
( x,
y)ds,
f
(x, y)
f (x,
y) ,
L
0, f (x, y) f (x, y)
5 轮换对称性在第一类曲线积分中的应用 T h7:设函数 (f x, y)在平面曲线 L 上连续, L 关于 x, y 具有 轮换
(下转224页)
① 基 金项目:2 014 年度辽宁省普通高等 教育本 科 教学改革 研究 项目(项目编号:U P R P 2 014 0 5 81)。
积分中的对称性

积分中的对称性作者:刘建康【摘要】介绍几种常见对称性在重积分、曲线积分及曲面积分的计算过程中的几个结论。
【关键词】积分;轮换对称性;奇对称;偶对称在积分的计算过程中,当积分区域具有某种对称性时,如果被积函数具有某种特性,这时可以利用对称性简化积分的计算。
这里所讨论的对称性主要包括两个方面:积分区域关于坐标轴(或坐标面)的对称性和积分区域的轮换对称性。
设Dn为一积分区域,所谓积分区域的轮换对称性是指当任一点P(x1,x2,…,xn)∈Dn时,有Pi(xi, xi+1, … , xn,x1,x2,…,xi-1)∈Dn, i=1,2,…,n。
在一元函数积分学中,我们有下面所熟悉结论:若f(x)在闭区间[-a,a]上连续,则有∫a-af(x)dx= 0, f(-x)=-f(x)2〖JF(Z〗a0f(x)dx〖JF)〗,f(-x)=f(x)利用这一性质,可以简化较复杂的定积分的计算。
对重积分、曲线积分及曲面积分也有类似的结论。
下面我们根据积分范围的不同来介绍对称性在各类积分计算中的几点应用。
1 对称性在重积分计算中的应用对称性在计算二重积分Df(x,y)dσ方面的应用。
结论1 若f(x,y)在区域D内可积,且区域D关于y轴(或x轴)对称,则有①Df(x,y)dσ=0, f(x)为关于x(或y)的奇函数②Df(x,y)dσ=2D1f(x,y)dσ,f(x,y)为关于x(或y)的偶函数。
其中D1为区域D被y轴(或x轴)所分割的两个对称区域之一。
结论2 若f(x,y)在区域D内可积,且区域D关于原点成中心对称,则有:①Df(x,y)dσ=0,f(-x,-y)=-f(x,y),即f(x,y)关于原点成奇对称;②Df(x,y)dσ=2D1f(x,y)dσ=2D2f(x,y)dσ,f(-x,-y)=f(x,y),即f(x,y)关于原点成偶对称,其中D1、D2关于原点对称,且D1+D2=0。
结论3 若f(x,y)在区域D内可积,且区域D关于直线L对称,则有:①Df(x,y)dσ=0,f(x,y)关于直线L奇对称;②Df(x,y)dσ=2D1f(x,y)dσ,f(x,y) 关于偶对称。
积分对称性定理

关于积分对称性定理1、定积分:设 f ( x) 在 a,a 上连续,则2、 二重积分:若函数f(x,y)在平面闭区域D 上连续,则(1) 如果积分区域D 关于x 轴对称,f(x,y)为y 的奇(或偶)函数, 即 f(x, y) f(x, y)(或 f(x, y) f (x, y)),则二重积分0,f x,y 为y 的奇函数f x, y dxdy2 f x, y dxdy, f x,y 为y 的偶函数DD 1其中:D i 为D 满足y 0上半平面区域。
(2) 如果积分区域D 关于y 轴对称,f(x,y)为x 的奇(或偶)函数, 即 f x, y f x, y (或 f x, y f x, y ),则二重积分0, f x, y 为x 的奇函数,fx,ydxdy 2 f x,ydxdy, f x, y 为)的偶函数.DD 2其中:D 2为D 满足x 0的右半平面区域。
(3) 如果积分区域D 关于原点对称,f(x,y)为x,y 的奇(或偶)函a -ax dx0,a2 f x dx,0 x 为X 的奇函数, X 为X 的偶数,即卩f ( x, y) f (x,y)(或 f ( x, y) f(x,y))则二重积分0, f x,y为x,y的奇函数f x,ydx:y2 f xydxy,f x,y 为Xy的偶函数DD2其中:D1为D在y 0上半平面的部分区域。
(4)如果积分区域D关于直线y x对称,则二重积分f x, ydxdy f y,x dxdy .(二重积分的轮换对称性)D D(5)如果积分区域D关于直线y x对称,则有0, 当f( y, x) f(x,y)时f(x,y)dxdy 2 f(x,y)dxdy 当仁y, x) f(x,y)时D D利用上述性质定理化简二重积分计算时,应注意的是(1)(2)(3)中应同时具有积分域D对称及被积函数fx,y具有奇偶性两个特性。
3、三重积分:(1)若f X, y,z为闭区域上的连续函数,空间有界闭区域关于xoy坐标面对称,1为位于xoy坐标面上侧z 0的部分区域,贝卩有0, f x, y, z为z的奇函数f儿y,zcXdydz 2 f x,y,zdxdydz, f x,y,z 为z的偶函数1注:f (x, y,z)是z的奇函数:f(x, y z) f (x,y,z)f (x, y,z)是z的偶函数:f(x,y z) f(x, y,z)同样,对于空间闭区域关于xoz, yoz坐标面对称也有类似的性质。
对称性在积分中应用

对称性在积分中的应用摘要:对称性是宇宙中许多事物都具有的性质,大到银河星系, 小到分子原子.根据对称性, 我们就可以把复杂的东西简单化,把整体的东西部分化. 本文介绍运用数学中的对称性来解决积分中的计算问题, 主要介绍了几种常见的对称性在积分计算过程中的一些结论及其应用,并通过实例讨论了利用积分区间、积分区域、被积函数的奇偶性, 从而简化定积分、重积分、曲线积分、曲面积分的计算方法. 另外对于曲面积分的计算,本文还给出了利用轮换对称性简化积分的计算. 积分的计算是高等数学教学的难点, 在积分计算时, 许多问题用“正规” 的方法解决,反而把计算复杂化, 而善于运用积分中的对称性,往往能使计算简捷, 达到事半功倍的效果.关键词:积分对称定积分重积分曲线积分曲面积分区域对称轮换对称目录一、引言二、相关对称的定义(一)区域对称的定义(二)函数对称性定义(三)轮换对称的定义三、重积分的对称性(一)定积分中的对称性定理及应用(二)二重积分中的对称性定理及应用(三)三重积分中的对称性定理及应用四、曲线积分的对称性(一)第一曲线积分的对称性定理及应用(二)第二曲线积分的对称性定理及应用五、曲线积分的对称性(一)第一曲面积分的对称性定理及应用(二)第二曲面积分的对称性定理及应用六、小结参考文献引言积分的对称性包括重积分、曲线积分、曲面积分的对称性•在积分计算中,根据题目的条件,充分利用积分区域的对称性及被积函数的奇偶性,往往可以达到事半功倍的效果•下面我将从积分对称性的定理及结论,再结合相关的实例进行具体探讨•本文从积分区域平行于坐标轴、对角线的直线的对称性,平行于坐标面的平面等的对称性定义•二、相关的定义定义1:设平面区域为D ,若点(x, y) • D= (2a-x,y),则D关于直线x = a对称,对称点(x,y)与(2a - x,y)是关于x = a的对称点•若点(x, y) € D = (x,2b-y)-D(x, y),则D关于直线y二b对称,称点(x, y)与(x,2b - y)是关于y = b的对称(显然当a =0,b = 0对D关于y , x轴对称).定义2:设平面区域为D ,若点(x, y) • D = (y—a,x-a),则D y二x,a对称,称点(x, y)与(y - a, x - a)是关于y 二x • a 的对称点.若点(x, y) • D = (a - y,a - x)-D,贝U D关于直线y 对称.注释:空间区域关于平行于坐标面的平面对称;平面曲线关于平行于坐标轴的直线对称;平面曲面以平行于坐标面对称,也有以上类似的定义.空间对称区域.定义3: (1)若对-(x, y, z^ 1,点(x,y,-z)・1 ,则称空间区域门关于xoy面对称;利用相同的方法,可以定义关于另外两个坐标面的对称性.⑵ 若对P(x, y, z)匕0 ,二点(x, y,—z)匕O ,则称空间区域0关于z轴对称;利用相同的方法,可以定义关于另外两个坐标轴的对称性.(3)若对_(x, y, z^ 1 1, -J点(-x,-y,-z) • 11,则称空间区域门关于坐标原点对称.⑷ 若对一(x, y,z) •门,T点(y,乙x),(z, x, 1 1 ,则称空间区域门关于x, y, z具有轮换对称性.定义4:若函数f(x)在区间- a,a上连续且有f(x-a) = f(x • a),则f(x)关于x二a对称当且仅当a = 0时f (-x)二f (x),则f (x)为偶函数.若f (a - x) =-f (a x),则f(x)为关于a,0中心对称.当且仅当a=0时有f(_x)-_f(x)则f(x)为奇函数.若f (x -a) = f (x • a)且f (a -x) = - f (a x)则f (x)既关于x = a对称,又关于a,0 中心对称.定义5 若n元函数f(X i,X2,…,X n)三f (X i,X i 1,…,X n,X i,…,x:丄),(i =1,2,…,n ), 则称n元函数f (X i,X2,…,X n)关于X i,X2,…,X n具有轮换对称性•定义6:若- p(X i,X2, ,X n) D n R n( n N)有P i(X i,X i 1, ,X n,X i,厶J D n(i =1,2,…,n)成立,则称D n关于p(X i,X2,…,X n)具有轮换对称性.三、重积分的对称性(一)对称性在定积分中的应用利用函数图形的对称性可简化定积分的计算■在特殊情况下,甚至可以求出原函数不是初等函数的定积分■因此掌握对称性在积分中的方法是必要的■下面首先给出一个引理,由此得出一系列的结论,并通过实例说明这是结论的应用■引理设函数f (x)在a - h, a h上连续,则有f (x)dx = f (a x) f (a - x) dx (1)证令x二a t,有a h h hf(x)dx f(a t)dt f(a t)dta -h ' -h 0令t u,则0 0 hf (a t)dt = f (a -u)du = i f (a - u)du•山h 0将( 3)式带入(2)式,并将积分变量统一成x ,则(x)dx = ° f (a x) f (a - x)dx dx特别地,令a =0,就得公式:f(x)dx= :〔f(x) f (-x)d x由函数奇偶性的定义及上式,易知定理1设函数f (x)在[- h, h上连续,那么h h2)若 f(x)为偶函数,则f(x)dx=2 f(x)dx■_hoh3)若f(x)为奇函数,则 』f(x)dx=O次结论有广泛的应用,如能恰当地使用,对简化定积分的计算有很大的帮助,是奇函数,后一部分是偶函数,运用定理1的结论简化其计算.2一 : cosxdx 2_ cosxdx匕x 21 2 2cosxdx=2注:而对于任 意区间上的定积分问题,可以平移 到对称区间Lh,h 1上求解。