永磁材料基本知识

合集下载

一文看懂永磁材料

一文看懂永磁材料

一文瞧懂永磁材料永磁材料又称硬磁材料,其特点就是各向异性场高,矫顽力高,磁滞回线面积大,磁化到饱与需要的磁化场大,去掉外磁场后它仍能长期保持很强的磁性。

实用中,永磁材料工作于深度磁饱与及充磁后磁滞回线的第二象限退磁部分。

永磁材料作为一种重要的基础性磁性功能材料,应用领域非常广阔。

我国的永磁材料产业在世界上举足轻重,不仅从事生产、应用的企业众多,研究工作也一直方兴未艾。

下面介绍永磁材料的种类、主要性能、应用注意事项、选择原则。

永磁材料的种类一、铁氧体1、铁氧体就是一种非金属磁性材料,又称磁性陶瓷。

我们拆开传统收音机,里面的那个喇叭磁铁,就就是铁氧体的。

2、铁氧体的磁性能不高,目前磁能积(衡量磁铁性能高低的参数之一)只能做到4MGOe稍微高一些。

这种材料有个最大的优点,就就是价格低廉。

目前,仍然广泛应用在很多领域。

3、铁氧体就是陶瓷,因此,加工性能也与陶瓷类似,铁氧体磁铁,都就是模具成形,烧结出来的,若需加工,也只有进行简单的磨削。

由于很难进行机械加工,因此铁氧体产品,大多形状简单,而且尺寸公差比较大。

方块形状产品还好,可以进行磨削。

圆环形的,一般只磨削两个平面。

其她尺寸公差,都就是按照名义尺寸的百分比给定的。

4、由于铁氧体应用广泛价格低廉,因此,很多厂家会有现成的常规形状与尺寸的圆环,方块等产品可供选择。

由于铁氧体就是陶瓷材质,因此基本不存在腐蚀问题。

成品不需要进行电镀等表面处理或者涂装。

二、橡胶磁1、橡胶磁就是铁氧体磁材系列中的一种,由粘结铁氧体磁粉与合成橡胶复合,经挤出成型、压延成型、注射成型等工艺而制成的具有柔软性、弹性及可扭曲的磁体。

可加工成条状、卷状、片状、块状、圆环及各种复杂形状。

2、它的磁能积为0、60~1、50 MGOe橡胶磁材的应用领域:冰箱、讯息告示架、将物件固定于金属体以用作广告等的紧固件,用于玩具、教学仪器、开关与感应器的磁片。

3、主要应用于微特电机、电冰箱、消毒柜、厨柜、玩具、文具、广告等行业。

永磁材料

永磁材料

1、磁性材料基础知识1)概述磁性材料可以有不同的分类方式:按其应用可以分为:硬(永)磁材料,软磁材料、磁信息材料、磁光材料等;按其电性能可分为:金属磁性材料和非金属磁性材料(主要是铁氧体);按原子排列状态可分为:多晶磁性材料、单晶磁性材料、非晶磁性材料和磁性液体四大类。

永磁材料人类最早发现和应用,同时也是目前种类繁多、进展迅速和应用广泛的磁性材料。

从二十世纪初,标志永磁材料性能的最大磁能积BHmax就随年代呈指数关系增长。

目前用的永磁材料,按最大磁能积大小可分为①高磁能积永磁材料,一般指BHmax大于160KJ/m3的材料,这包括SmCO5型、Sm2CO5型和NdFeB型稀土永磁材料。

我国是世界上稀土蕴藏量最丰富(占世界总蕴藏量的80%以上)的国家,稀土永磁材料的研究和生产水平居世界前列。

②中磁能积永磁材料,BHmax在32~80KJ/m3之间。

目前主要FeCrCo系等两类材料。

③低磁能积永磁材料, BHmax<32KJ/m3。

目主要有钡(锶)铁氧体和含Co量低的AlNiCo系和FeCrCo系材料。

其中铁氧体永磁材料因价格低、矫顽力高,在目前各国的永磁材料生产上,产值和产量都居首位。

我们生产的也正是此类磁性材料——锶永磁铁氧体材料。

永磁铁氧体材料的性能分类有多种分类,常见的标准有国家标准、国际标准和日本TDK公司标准,但各磁性材料生产企业常常都有自己的企业标准,我们也有自己的企业标准。

()2)磁学基本术语磁场:(国际电工委员会IEC的定义)电磁场的组成部分,采用磁场强度H和磁通密度B表示其特征。

(我国国家标准定义)磁场是一种场,其特征可在场内运动着的带电粒子所受的力来确定,这种力源于粒子的运动及其所带电荷。

磁场强度:指空间某处磁场的大小,用H表示,它的单位是安/米(A/m)。

在任何磁介质中,磁场中某点的磁感应强度B与同一点的磁导率μ的比值称为该点的磁场强度H ,即:H=B/μ。

方向与磁力线在该点处的切线方向一致,单位:安/米(A/m)注意事项:磁场强度H与磁感应强度B 的名称很相似,切忌混淆。

永磁铁的基础知识

永磁铁的基础知识

永磁铁的基础知识永磁铁是一种能够产生持久磁场的磁性材料。

它由一种特殊的合金制成,能够在没有外部电源的情况下持续产生磁场。

在现代科技中,永磁铁被广泛应用于各种领域,如电机、发电机、磁共振成像等。

永磁铁的基本结构是由许多微小的磁性颗粒组成,这些颗粒在制造过程中被定向排列,形成一个整体的磁场。

这种排列使得永磁铁具有很强的磁性,能够吸引或排斥其他磁性物体。

与其他磁性材料相比,永磁铁有更高的矫顽力和剩余磁感应强度,因此能够产生更强的磁场。

永磁铁的磁性来源于其中的磁畴。

磁畴是由大量的原子磁矩组成的,每个磁矩都有一个自旋。

在没有外界磁场作用时,磁矩的自旋是随机排列的,整个材料没有宏观磁场。

然而,当外界磁场作用于永磁铁时,磁矩开始重新排列,使得磁畴在整个材料中呈现出一个统一的方向,从而形成一个宏观磁场。

永磁铁的磁性可以通过多种方式来增强。

一种常见的方法是将永磁铁置于一个强磁场中,使得磁矩更容易重新排列。

另一种方法是在制造过程中控制合金的成分和热处理,以获得更高的矫顽力和剩余磁感应强度。

此外,通过改变永磁铁的形状和尺寸,也可以对其磁性进行调控。

永磁铁在电机和发电机中起着重要的作用。

在电机中,永磁铁可以产生磁场,与电流产生的磁场相互作用,从而产生力矩,驱动电机的转动。

在发电机中,外部力矩使得转子转动,而转子上的永磁铁产生的磁场则与线圈中的电流相互作用,从而产生电能。

除了电机和发电机,永磁铁还有其他广泛的应用。

在磁共振成像中,永磁铁可以用来产生强大的磁场,使得原子核在磁场中发生共振,从而产生图像。

此外,永磁铁还可以用于磁力夹持、磁力传感器、磁力制动等领域。

尽管永磁铁具有许多优点,但也存在一些限制。

首先,永磁铁的磁性在高温下会发生退磁,因此在高温环境中需要采取措施来保护永磁铁的磁性。

其次,永磁铁的磁性强度受到外界磁场的影响,如果受到强磁场的作用,可能会导致永磁铁的磁性发生变化。

永磁铁是一种能够产生持久磁场的磁性材料。

其磁性来源于磁畴的重新排列,可以通过控制合金成分和形状来增强其磁性。

永磁材料基本知识

永磁材料基本知识

永磁材料基本知识2006年08月26日星期六 08:561、什么是永磁材料的磁性能,它包括哪些指标?永磁材料的主要磁性能指标是:剩磁(Jr, Br)、矫顽力(bHc)、内禀矫顽力(jHc)、磁能积(BH)m。

我们通常所说的永磁材料的磁性能,指的就是这四项。

永磁材料的其它磁性能指标还有:居里温度(Tc)、可工作温度(Tw)、剩磁及内禀矫顽力的温度系数(Brθ, jHcθ)、回复导磁率(μrec.)、退磁曲线方形度( Hk/ jHc)、高温减磁性能以及磁性能的均一性等。

除磁性能外,永磁材料的物理性能还包括密度、电导率、热导率、热膨胀系数等;机械性能则包括维氏硬度、抗压(拉)强度、冲击韧性等。

此外,永磁材料的性能指标中还有重要的一项,就是表面状态及其耐腐蚀性能。

2、什么叫磁场强度(H)?1820年,丹麦科学家奥斯特(H. C. Oersted)发现通有电流的导线可以使其附近的磁针发生偏转,从而揭示了电与磁的基本关系,诞生了电磁学。

实践表明:通有电流的无限长导线在其周围所产生的磁场强弱与电流的大小成正比,与离开导线的距离成反比。

定义载有1安培电流的无限长导线在距离导线1/2π米远处的磁场强度为1A/m(安/米,国际单位制SI);在CGS单位制(厘米-克-秒)中,为纪念奥斯特对电磁学的贡献,定义载有1安培电流的无限长导线在距离导线0.2厘米远处磁场强度为1Oe(奥斯特),1Oe=1/(4π×10³) A/m。

磁场强度通常用H表示。

3、什么叫磁极化强度(J),什么叫磁化强度(M),二者有何区别?现代磁学研究表明:一切磁现象都起源于电流。

磁性材料也不例外,其铁磁现象是起源于材料内部原子的核外电子运动形成的微电流,亦称分子电流。

这些微电流的集合效应使得材料对外呈现各种各样的宏观磁特性。

因为每一个微电流都产生磁效应,所以把一个单位微电流称为一个磁偶极子。

定义在真空中每单位外磁场对一个磁偶极子产生的最大力矩为磁偶极矩pm,每单位材料体积内磁偶极矩的矢量和为磁极化强度J,其单位为T(特斯拉,在CGS单位制中,J的单位为Gs,1T=10000Gs)。

永磁材料

永磁材料

六.永磁材料种类 1.合金系永磁材料: Fe- Cr-Co、Al-Ni-Co、 Fe- N i -Al 、 Fe- N i -Cu、Fe- Co- V 等 2.永磁铁氧体 3.稀土永磁材料等
§2. 合金系永磁材料 一. Fe-Cr-Co合金 它是1971年Kaneko等研制的永磁材料,它具有 良好的延展性和可成型性,作为冲压件、薄带材 及线材,由于Fe-Cr-Co的冷加工变形性好,允许 高速室温成型成杯状,这是别的合金不能做到的。
最大矫顽力相应的晶粒尺寸是50nm。粒 子拉长并排列成直线,对于提高Hc和Br值 具有重要作用。磁场热处理和变形加工可 达到所要求的晶粒形状。 表3-1为性能。
成分,W/% 25Co-30Cr-3Mo-1Ni 15Co-23Cr-2Mo0.5Ti 15Co-22Cr-1.5Ti 15Co-24Cr-3Mo1.0Ti 4Co-30Cr-1.5Ti 23Co-33Cr-2Cu
矫顽力的影响因素: 影响因素包括内应力、缺陷、第二相、组织不 均匀性等. 畴壁移动时因位置不同其畴壁面积发生变化, 因而畴壁能发生变化. 如缺陷处畴壁面积小, 畴壁能降低.
畴壁能低的位置会对畴壁发生钉扎作用,形成 畴壁移动阻力, 使畴壁摆脱钉扎的磁场即矫顽 力。 简单讲,矫顽力就是克服阻碍畴壁移动的磁 场力。 内应力会使原来平行的磁矩失去部分平行, 磁化接近饱和时非平行磁矩对磁化旋转进行抵 抗,要恢复原来平行的磁矩需要更强的外磁场, 使矫顽力提高。
Bs, T 1.0 1.4 1.56 1.54 1.25 1.3
Hc, kA. m-1 86.4 56.0 50.9 66.9 45.4 86.0
(B H)max, kJ. m-3 36.0 59.2 66.1 75.3 39.8 78.0

钕铁硼永磁材料基本知识讲义

钕铁硼永磁材料基本知识讲义

钕铁硼永磁材料基本知识讲义钕铁硼(NdFeB)永磁材料是一种由钕(Nd)、铁(Fe)和硼(B)三种元素组成的合金材料。

它具有非常高的磁性能,被广泛应用于电机、发电机、计算机硬盘、声音设备等领域。

本讲义将从材料组成、磁性能、工艺制备和应用等方面介绍钕铁硼永磁材料的基本知识。

一、材料组成钕铁硼合金的化学成分主要由钕、铁和硼组成,其中钕的含量一般在25%~35%,铁的含量在64%~68%,硼的含量在1%~3%左右。

此外,还可以添加一些其他元素如铁、硅、铝等,以调整合金的磁性能和耐腐蚀性能。

二、磁性能钕铁硼永磁材料具有极高的磁能积(BHmax)、饱和磁化强度(Bs)和剩余磁化强度(Br)。

磁能积是指磁体能够储存和释放的磁能量的最大值,决定了材料的磁性能。

饱和磁化强度和剩余磁化强度则分别表示了材料在饱和磁场和零磁场下的磁性能。

钕铁硼永磁材料的磁性能远高于其他传统永磁材料,是目前已知的最强的永磁材料。

三、工艺制备钕铁硼永磁材料的制备过程一般包括熔炼、粉末冶金和烧结工艺。

首先,将合金元素按一定比例在真空或氩气保护下熔炼成块状合金。

然后,将熔炼的合金冷却后破碎成颗粒状的粉末。

最后,使用压力或注射成型等方式将粉末压制成所需形状的坯体,然后在高温下进行烧结。

烧结过程中,粉末颗粒之间发生扩散反应,形成致密的晶粒结构,提高磁性能。

四、应用钕铁硼永磁材料由于其优异的磁性能,被广泛应用于许多领域。

在电机行业中,钕铁硼磁体可以大大提高电机的功率密度和效率,使得电机更小巧轻便。

在声音设备上,钕铁硼磁体可以提供更高的音质和音量。

同时它也被应用在汽车、航天、国防、仪器仪表等领域。

此外,钕铁硼永磁材料还可以用于制备磁性材料、磁性制品、磁性玩具等。

总结:钕铁硼永磁材料是一种由钕、铁和硼组成的合金材料,具有非常高的磁性能和广泛的应用前景。

它的制备过程包括熔炼、粉末冶金和烧结工艺。

钕铁硼永磁材料被广泛应用于电机、声音设备、汽车、航天、国防等领域,提高了产品的性能和效率。

永磁体知识点

永磁体知识点

永磁体知识点
1、永磁体:永磁体是一类具有永久磁性的材料,普通的永磁体有铁氧体、钕铁硼合金和金属氧化物等。

2、可维持磁场:永磁体可以保持磁场,即不受外界磁场影响,可以靠外加电流来维持,可以使得永磁体存在长期磁场。

3、特性:永磁体具有磁饱和特性、低损耗、耐磨、磁导率高等特点,广泛应用于电力学、电子和机械等领域。

4、用途:永磁体的主要用途是电动机的励磁与驱动,例如在电动机和发电机当中使用永磁体来维持电机内部的磁场,从而达到驱动效果。

永磁体还可用于磁片电流检测、磁介质存储、感应搅拌器与分离器等。

永磁材料及磁路基础资料课件

永磁材料及磁路基础资料课件
永磁材料及磁路基础资料课件
目录
• 永磁材料概述 • 永磁材料的磁学基础 • 永磁材料的制造工艺 • 永磁材料的磁路设计 • 永磁材料的市场趋势与未来发展 • 永磁材料的应用案例分析
01
永磁材料概述
ቤተ መጻሕፍቲ ባይዱ
永磁材料的定义与特性
总结词
永磁材料是一种具有长期保持磁性的 特殊材料,其特性包括高磁导率、高 矫顽力、高剩磁等。
该方法可以制备出高性能的永磁材料,如铝镍钴永磁材料和铁铬钴永磁材 料等,但生产效率较低,成本较高。
熔炼法可以通过控制合金成分和热处理工艺等手段,进一步提高永磁材料 的磁性能和稳定性。
化学合成法
化学合成法是一种制备永磁 材料的较新工艺,通过化学 反应将原材料合成成为具有
优异磁性能的永磁材料。
该方法可以制备出高性能的 永磁材料,如铁氮化合物永 磁材料和铁基非晶态永磁材 料等,具有较高的生产效率
环保化
研发低能耗、低排放、低污染的 永磁材料制备技术,降低生产过 程中的环境影响。
永磁材料的未来发展前景
应用领域拓展
随着新能源、电动汽车、智能制造等领域的快速发展,永磁材料 的应用领域将进一步拓展。
技术创新推动
未来永磁材料的发展将更加依赖于技术创新,如纳米技术、生物技 术等,推动永磁材料向更高性能、更低成本的方向发展。
THANKS
感谢观看
02
永磁材料的磁学基础
磁学的基本概念
01
02
03
磁场
磁场是磁力作用的场,存 在于磁体和电流周围。
磁感应线
磁感应线是描述磁场分布 的假想曲线,类似于电场 中的电场线。
磁通量
磁通量是穿过某一面积的 磁力线的数量,表示磁场 的大小。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1、什么是永磁材料的磁性能,它包括哪些指标?永磁材料的主要磁性能指标是:剩磁(Jr, Br)、矫顽力(bHc)、内禀矫顽力(jHc)、磁能积(BH)m。

我们通常所说的永磁材料的磁性能,指的就是这四项。

永磁材料的其它磁性能指标还有:居里温度(Tc)、可工作温度(Tw)、剩磁及内禀矫顽力的温度系数(Brθ, jHcθ)、回复导磁率(μrec.)、退磁曲线方形度( Hk/ jHc)、高温减磁性能以及磁性能的均一性等。

除磁性能外,永磁材料的物理性能还包括密度、电导率、热导率、热膨胀系数等;机械性能则包括维氏硬度、抗压(拉)强度、冲击韧性等。

此外,永磁材料的性能指标中还有重要的一项,就是表面状态及其耐腐蚀性能。

2、什么叫磁场强度(H)?1820年,丹麦科学家奥斯特(H. C. Oersted)发现通有电流的导线可以使其附近的磁针发生偏转,从而揭示了电与磁的基本关系,诞生了电磁学。

实践表明:通有电流的无限长导线在其周围所产生的磁场强弱与电流的大小成正比,与离开导线的距离成反比。

定义载有1安培电流的无限长导线在距离导线1/2π米远处的磁场强度为1A/m(安/米,国际单位制SI);在CGS单位制(厘米-克-秒)中,为纪念奥斯特对电磁学的贡献,定义载有1安培电流的无限长导线在距离导线0.2厘米远处磁场强度为1Oe(奥斯特),1Oe=1/(4π×10³) A/m。

磁场强度通常用H表示。

3、什么叫磁极化强度(J),什么叫磁化强度(M),二者有何区别?现代磁学研究表明:一切磁现象都起源于电流。

磁性材料也不例外,其铁磁现象是起源于材料内部原子的核外电子运动形成的微电流,亦称分子电流。

这些微电流的集合效应使得材料对外呈现各种各样的宏观磁特性。

因为每一个微电流都产生磁效应,所以把一个单位微电流称为一个磁偶极子。

定义在真空中每单位外磁场对一个磁偶极子产生的最大力矩为磁偶极矩pm,每单位材料体积内磁偶极矩的矢量和为磁极化强度J,其单位为T(特斯拉,在CGS单位制中,J的单位为Gs,1T=10000Gs)。

定义一个磁偶极子的磁矩为pm/μ0,μ0为真空磁导率,每单位材料体积内磁矩的矢量和为磁化强度M,其SI单位为A/m,CGS单位为Gs(高斯)。

M与J的关系为:J=μ0 M,在CGS单位制中,μ0=1,故磁极化强度与磁化强度的值相等;在SI单位制中,μ0=4π×10-7H/m (亨/米)。

4、什么叫磁感应强度(B),什么叫磁通密度(B),B与H,J,M之间存在什么样的关系?理论与实践均表明,对任何介质施加一磁场H时(该磁场可由外部电流或外部永磁体提供,亦可由永磁体对永磁介质本身提供,由永磁体对永磁介质本身提供的磁场又称退磁场---关于退磁场的概念,见9 Q),介质内部的磁场强度并不等于H,而是表现为H与介质的磁极化强度J之和。

由于介质内部的磁场强度是由磁场H通过介质的感应而表现出来的,为与H区别,称之为介质的磁感应强度,记为B:B=μ0 H+J (SI单位制)(1-1)B=H+4πM (CGS单位制)磁感应强度B的单位为T,CGS单位为Gs(1T=104Gs)。

对于非铁磁性介质如空气、水、铜、铝等,其磁极化强度J、磁化强度M几乎等于0,故在这些介质中磁场强度H与磁感应强度B相等。

由于磁现象可以形象地用磁力线来表示,故磁感应强度B又可定义为磁力线通量的密度,磁感应强度B和磁通密度B在概念上可以通用。

5、什么叫剩磁(Jr,Br),为什么在永磁材料的退磁曲线上任意测量点的磁极化强度J值和磁感应强度B 值必然小于剩磁Jr和Br值?永磁材料在闭路状态下经外磁场磁化至饱和后,再撤消外磁场时,永磁材料的磁极化强度J和内部磁感应强度B并不会因外磁场H的消失而消失,而会保持一定大小的值,该值即称为该材料的剩余磁极化强度Jr和剩余磁感应强度Br,统称剩磁。

剩磁Jr和Br的单位与磁极化强度和磁感应强度单位相同。

根据关系式(1-1)可知,在永磁材料的退磁曲线上,磁场H为0时,Jr=Br,磁场H为负值时,J与B不相等,便分成了J-H和B-H二条曲线。

从关系式(1-1)还可以看到,随着反向磁场H的增大,B从最大值Br=Jr变化到0,最后为负值,对于现代永磁材料,B退磁曲线的变化规律往往为直线;J退磁曲线的变化规律则不同:随着反向磁场H的增大,B值线性减小,由于B值的减小量总是大于或等于反向磁场H的增大量,故在J退磁曲线上的一定区域内可以保持相对平直的直线,但其J值总是小于Jr。

6、什么叫矫顽力(bHc),什么叫内禀矫顽力(jHc)?在永磁材料的退磁曲线上,当反向磁场H增大到某一值bHc时,磁体的磁感应强度B为0,称该反向磁场H值为该材料的矫顽力bHc;在反向磁场H= bHc时,磁体对外不显示磁通,因此矫顽力bHc表征永磁材料抵抗外部反向磁场或其它退磁效应的能力。

矫顽力bHc是磁路设计中的一个重要参量之一。

值得注意的是:矫顽力bHc在数值上总是小于剩磁Jr。

因为从(1-1)式可以看到,在H= bHc处,B=0,则μ0 bHc =J,上面已经说明,在J退磁曲线上任意点的磁极化强度值总是小于剩磁Jr,故矫顽力bHc在数值上总是小于剩磁Jr。

例如:Jr =12.3kGs的磁体,其bHc不可能大于12.3kOe。

换句话说,剩磁Jr在数值上是矫顽力bHc的理论极限。

当反向磁场H= bHc时,虽然磁体的磁感应强度B为0,磁体对外不显示磁通,但磁体内部的微观磁偶极矩的矢量和往往并不为0,也就是说此时磁体的磁极化强度J在原来的方向往往仍保持一个较大的值。

因此,bHc还不足以表征磁体的内禀磁特性;当反向磁场H增大到某一值jHc时,磁体内部的微观磁偶极矩的矢量和为0,称该反向磁场H值为该材料的内禀矫顽力jHc。

内禀矫顽力jHc是永磁材料的一个非常重要的物理参量,对于jHc远大于bHc的磁体,当反向磁场H大于bHc但小于jHc时,虽然此时磁体已被退磁到磁感应强度B反向的程度,但在反向磁场H撤消后,磁体的磁感应强度B仍能因内部的微观磁偶极矩的矢量和处在原来方向而回到原来的方向。

也就是说,只要反向磁场H还未达到jHc,永磁材料便尚未被完全退磁。

因此,内禀矫顽力jHc是表征永磁材料抵抗外部反向磁场或其它退磁效应,以保持其原始磁化状态能力的一个主要指标。

矫顽力bHc和内禀矫顽力jHc的单位与磁场强度单位相同。

7、什么叫磁能积(BH)m?在永磁材料的B退磁曲线上(二象限),不同的点对应着磁体处在不同的工作状态,B退磁曲线上的某一点所对应的Bm和Hm(横坐标和纵坐标)分别代表磁体在该状态下,磁体内部的磁感应强度和磁场的大小,Bm和Hm的绝对值的乘积(BmHm)代表磁体在该状态下对外做功的能力,等同于磁体所贮存的磁能量,称为磁能积。

在B退磁曲线上的Br点和bHc点,磁体的(BmHm)=0,表示此时磁体对外做功的能力为0,即磁能积为0;磁体在某一状态下(BmHm)的值最大,表示此时磁体对外做功的能力最大,称为该磁体的最大磁能积,或简称磁能积,记为(BH)max或(BH)m。

因此,人们通常都希望磁路中的磁体能在其最大磁能积状态下工作。

磁能积的单位在SI制中为J/m3(焦耳/立方米),在CGS制中为MGOe(兆高奥斯特),100/4πJ/m3=1 MGOe。

8、什么叫居里温度(Tc),什么叫磁体的可工作温度Tw,二者有何关系?随着温度的升高,由于物质内部基本粒子的热振荡加剧,磁性材料内部的微观磁偶极矩的排列逐步紊乱,宏观上表现为材料的磁极化强度J随着温度的升高而减小,当温度升高至某一值时,材料的磁极化强度J降为0,此时磁性材料的磁特性变得同空气等非磁性物质一样,将此温度称为该材料的居里温度Tc。

居里温度Tc只与合金的成分有关,与材料的显微组织形貌及其分布无关。

在某一温度下永磁材料的磁性能指标与室温相比降低一规定的幅度,将该温度称为该磁体的可工作温度Tw。

由于磁性能的这一降低幅度需要视该磁体的应用条件及要求而定,因此,所谓的磁体的可工作温度Tw对于同一磁体来说是一个待定值,也就是说,同一永磁体在不同的应用场合可以有不同的可工作温度Tw。

显然,磁性材料的居里温度Tc代表着该材料的理论工作温度极限。

事实上,永磁材料的实际可工作Tw远低于Tc。

例如,纯三元的Nd-Fe-B磁体的Tc为312℃,而其实际可工作Tw通常不到100℃。

通过在Nd-Fe-B合金中添加重稀土金属以及Co、Ga等元素,可显著提高Nd-Fe-B磁体的Tc和可工作Tw。

值得注意的是,任何永磁体的可工作Tw不仅与磁体的Tc有关,还与磁体的jHc等磁性能指标、以及磁体在磁路中的工作状态有关。

9、什么叫永磁体的回复导磁率(μrec.),什么叫J退磁曲线方形度(Hk/jHc),它们有何意义?当磁体处在动态工作条件下时,外部反向磁场H或磁体内部的退磁场Hd呈周期性变化,此时如图2所示的工作点D亦呈周期性往复变化,定义在磁体的B退磁曲线上工作点D往复变化的轨迹为磁体的动态回复线,该线的斜率为回复导磁率μrec.。

显然,回复导磁率μrec.表征了磁体在动态工作条件下的稳定性,它也是永磁体的B退磁曲线方形度,因此它是永磁体的一个重要的磁特性指标之一。

对于Nd-Fe-B烧结磁体,B退磁曲线为直线且bHc约等于Br,其回复导磁率μrec.等于B退磁曲线的斜率且μrec.=1.03~1.10。

μrec越小,磁体在动态工作条件下的稳定性就越好。

值得注意的是,若磁体的B退磁曲线不是直线,则磁体的回复导磁率μrec.在不同工作点就有不同的值,此时如何把磁体设计在最稳定的工作状态,就显得非常重要。

定义磁体的J退磁曲线上,J=0.9Jr时的反向磁场大小为Hk,Hk/jHc可以直观地表示磁体的J退磁曲线方形度。

对于具有高jHc的Nd-Fe-B烧结磁体,jHc远远大于bHc,当反向磁场大于bHc但小于jHc时,相应的B退磁曲线已进入第三象限。

由(1-1)式可知,此时若磁体的J退磁曲线仍为直线,则相应第三象限的B退磁曲线亦保持直线,此时磁体的?rec仍保持较小值,在反向外磁场撤消后,磁体的工作点仍能恢复到原来的位置。

因此,Hk/jHc也是永磁体的一个重要的磁特性指标之一,它和μrec一样,表征了磁体在动态工作条件下的稳定性。

10、什么叫磁力线,它有何特点?人们将磁力线定义为处处与磁感应强度相切的线,磁感应强度的方向与磁力线方向相同,其大小与磁力线的密度成正比。

了解磁力线的基本特点是掌握和分析磁路的的基础。

相关文档
最新文档