涡轮流量计

合集下载

涡轮流量计测量流量的原理是什么

涡轮流量计测量流量的原理是什么

涡轮流量计测量流量的原理是什么
涡轮流量计是一种常用的流量测量仪器,其工作原理是利用流体通过涡轮流量计时,涡轮被带动转动,通过计数转速来测量流体的流量。

涡轮流量计由涡轮、转子和传感器组成。

涡轮安装在管道中,当流体通过管道流过时,涡轮开始旋转。

转子与涡轮相连,涡轮的旋转也导致转子转动。

传感器安装在转子上,能够检测到转子的转速。

根据流体通过涡轮的速度和涡轮的转速之间的关系,可以计算出流体的体积流量。

通常,流体流过涡轮时,涡轮的转速与流体的速度成正比,即涡轮的转速越快,表示流体的流速越大,流体的流量也就越大。

通过测量涡轮的转速,就能够得到流体的流量信息。

为了提高测量的准确性,涡轮流量计通常还配备有一系列的补偿装置。

例如,温度传感器可以用来补偿流体温度对流量的影响,压力传感器可以用来补偿流体压力对流量的影响。

总而言之,涡轮流量计通过检测涡轮的转速来测量流体的流量,利用流体通过涡轮转动的原理来实现流量测量。

这种测量方法简便可靠,因此在工业和生活中广泛应用。

涡轮流量计

涡轮流量计

涡流流量计1、涡轮流量计类别:(1)插入式涡轮流量计(2)气体涡轮流量计(3)智能涡轮流量计(4)液体涡轮流量计(5)卡箍式液体涡轮流量计(6)防腐型涡轮流量计2、涡轮流量计用途:涡轮流量计是一种速度式仪表,它具有精度高,重复性好,结构简单,运动部件少,耐高压,测量范围宽,体积小,重量轻,压力损失小,维修方便等优点,用于封闭管道中测量低粘度气体的体积流量和总量。

在石油,化工,冶金,城市燃气管网等行业中具有广泛的使用价值。

3、涡轮流量计安装注意事项:(1)对直管段的要求:流量计必须水平安装在管道上(管道倾斜在5以内),安装时流量计轴线应与管道轴线同心,流向要一致。

流量计上游管道长度应有不小于2D的等径直管段,如果安装场所充许建议上游直管段为20D、下游为5D。

(2)对配管的要求:流量计安装点的上下游配管的内径与流量计内径相同。

(3)对旁通管的要求:为了保证流量计检修时不影响介质的正常使用,在流量计的前后管道上应安装切断阀门(截止阀),同时应设置旁通管道。

流量控制阀要安装在流量计的下游,流量计使用时上游所装的截止阀必须全开,避免上游部分的流体产生不稳流现象。

(4)对外部环境的要求:流量计最好安装在室内,必须要安装在室外时,一定要采用防晒、防雨.防雷措施,以免影响使用寿命。

(5)对介质中含有杂质的要求:为了保证流量计的使用寿命,应在流量计的直管段前安装过滤器。

(6)安装场所:流量计应安装在便于维修,无强电磁干扰与热辐射的场所。

(7)对安装焊接的要求:用户另配一对标准法兰焊在前后管道上。

不允许带流量计焊接!安装流量计前应严格清除管道中焊渣等脏物,最好用等径的管道(或旁通管)代替流量计进行吹扫管道。

以确保在使用过程中流量计不受损坏。

安装流量计时,法兰间的密封垫片不能凹入管道内。

(8)流量计接地的要求:流量计应可靠接地,不能与强电系统地线共用。

(9)对于防爆型产品的要求:为了仪表安全正常使用,应复核防爆型流量计的使用环境是否与用户防爆要求规定相符,且安装使用过程中,应严格遵守国家防爆型产品使用要求,用户不得自行更改防爆系统的连接方式,不得随意打开仪表。

涡轮流量计的原理

涡轮流量计的原理

涡轮流量计的原理
涡轮流量计是一种常用的流量测量设备,基于涡轮的旋转来测量流体流量。

其原理是通过感应涡轮运动来计算流体的体积或质量流量。

涡轮流量计主要由涡轮、传感器和信号处理器组成。

涡轮位于管道中,当流体经过管道并通过涡轮时,涡轮受到流体的冲击力开始旋转。

涡轮的旋转速度与流体的流速成正比。

传感器通常安装在涡轮轴上,用于测量涡轮的旋转速度。

传感器可以使用磁性传感器或光学传感器。

磁性传感器是最常见的类型,它利用涡轮上的小磁片与传感器之间的磁性耦合,通过检测磁场变化来测量涡轮的旋转速度。

光学传感器则利用光电效应,通过涡轮上的反射物体与传感器之间的光线变化来测量涡轮的旋转速度。

信号处理器接收传感器的信号并将其转换为可读的流量数据。

通过测量涡轮的旋转速度,信号处理器能够计算出流体的体积或质量流量。

通常,信号处理器还可以提供其他功能,如温度和压力补偿、测量精度校正等。

涡轮流量计具有较高的测量精度和较宽的测量范围。

它适用于多种流体,包括液体和气体,并广泛应用于工业控制、流量计量和领域。

需要注意的是,在使用涡轮流量计时,应确保涡轮正常运转,无任何阻挡物或粘稠物质附着,以确保测量的准确性和可靠性。

此外,在安装和使用涡轮流量计时,应根据具体的操作要求和流体特性,进行适当的参数设置和校正。

涡轮流量计使用说明书

涡轮流量计使用说明书

涡轮流量计使用说明书涡轮流量计是一种常见的流量测量仪器,广泛应用于工业生产中的流体流量控制和监测。

本使用说明书将介绍涡轮流量计的结构、工作原理、安装方法和注意事项,帮助用户正确使用涡轮流量计,确保其正常工作和准确测量流量。

一、概述涡轮流量计由流体进口、流体出口、涡轮、传感器和显示仪表等组成。

其工作原理是通过测量涡轮受到的流体冲击力或旋转速度来计算流体的流量。

涡轮流量计适用于测量低粘度液体的流量,如水、燃油等。

二、工作原理涡轮流量计的涡轮由流体冲击力驱动旋转,在涡轮旋转的同时,传感器会检测涡轮旋转的频率,并将其转化为电信号。

根据涡轮旋转的频率,可以计算出通过涡轮流量计的流体流量。

三、安装方法1. 安装前请确认涡轮流量计的型号和规格是否符合要求,如与流体管道的直径相匹配。

2. 在安装涡轮流量计前,请确保流体管道内没有杂质和堵塞物,以免影响涡轮的旋转和准确测量流量。

3. 将涡轮流量计安装在垂直的流体管道上,以确保涡轮能够正常旋转并受到正确的流体冲击力。

4. 在涡轮流量计的进出口处安装阀门,以便在需要维修或更换时能够方便地切断流体。

四、注意事项1. 在使用涡轮流量计前,请参考产品说明书了解更多细节信息,并确保了解流量计的额定参数和使用限制。

2. 避免流体中的颗粒物或气泡进入涡轮流量计,这将影响流量计的准确性和工作稳定性。

如有需要,请在流体流入涡轮流量计前安装过滤器。

3. 定期清洗和维护涡轮流量计,以保持其正常工作。

请谨慎选择清洗液,避免对涡轮流量计造成腐蚀或损害。

4. 避免流体管道内有过多的弯曲和阻力,这可能会影响涡轮流量计的测量准确性。

请按照涡轮流量计说明书中的要求安装并布置流体管道。

5. 如需对涡轮流量计进行校准和维修,请联系专业技术人员或厂家提供支持和帮助。

结束语本使用说明书简要介绍了涡轮流量计的概述、工作原理、安装方法和注意事项。

通过准确理解和遵守涡轮流量计的使用说明,用户能够正确、稳定地使用该设备,并获得准确的流量测量结果。

涡轮流量计

涡轮流量计

涡轮流量计涡轮流量计(以下简称TUF)是叶轮式流量(流速)计的主要品种,叶轮式流量计还有风速计、水表等。

在各种流量计中,TUF、容积式流量计和科氏质量流量计是三类重复性、精确度最佳的产品,而TUF又具有自己的特点,如结构简单、加工零部件少、重量轻、维修方便、流通能力大(同样口径可通过的流量大)和可适应高参数(高温、高压和低温)等。

至今,这类流量计产品可达技术参数:口径4-750mm,压力达250MPa,温度为-240-700℃,像这样的技术参数其他两类流量计则是难以达到的。

TUF广泛应用于以下一些测量对象:石油、有机液体、无机液、液化气、天然气、煤气和低温流体等。

在国外液化石油气、成品油和轻质原油等的转运及集输站,大型原油输送管线的首末站都大量采用它进行贸易结算。

在欧洲和美国TUF是仅次于孔板流量计的天然气计量仪表,仅荷兰在天然气管线上就采用了2600多台各种尺寸,压力从0.8MPa到6.5MPa的气体TUF,他们已成为优良的天然气流量计。

尽管TUF的优良计量特性受到人们的青睐,可是给人的印象是由活动部件,使用期短,在选用时不免踌躇,经过人们的不懈努力,应该说情况大有改观。

TUF作为最通用的流量计,其产品已发展为多品种、全系列、多规格批量生产的规模。

应该指出,TUF除前述工业部门大量应用外,在一些特殊部门亦得到广泛应用,如科研实验、国防科技、计量部门,这些领域的使用恰好避开了其弱点(不适于长期连续使用),充分发挥其特点(高精度,重复性好,可用于高压、高温、低温及微流量等条件)。

在这些领域,大多是根据被测对象的特殊要求进行专门的结构设计,它们是专用仪表不进行批量生产。

第二节工作原理图1所示为TUF传感器结构图,由图可见,当被测流体流过传感器时,在流体作用下,叶轮受力旋转,其转速与管道平均流速成正比,叶轮的转动周期地改变磁电转换器的磁阻值。

检测线圈中磁通随之发生周期性变化,产生周期性的感应电势,即电脉冲信号,经放大器放大后,送至显示仪表显示。

涡轮流量计原理

涡轮流量计原理

涡轮流量计原理气体涡轮流量计具有灵敏度高、重复性好、量程比宽、精度高等优点,已被广泛应用于天然气贸易结算计量,甚至还作为量值传递的标准仪表。

随着我国城镇燃气工程的全面展开以及对燃气商业贸易、交接计量要求的不断提高,气体涡轮流量计已逐步成为我国城镇燃气商业贸易和交接计量的仪表之一。

一、涡轮流量计的原理涡轮流量计是一种速度式流量计,利用气体推动流量计叶轮转动,叶轮旋转的速度与流体体积流量成正比,根据电磁感应原理,利用磁敏传感器从同步转动的叶轮上感应出与流体体积流量成正比的脉冲信号,经运算处理得出体积流量。

其测量精度较高,准确度等级可达到1.0级、1.5级;量程比宽,一般为1:20测量范围宽;结构紧凑轻巧,装维护方便前后直管段要求较低,可用于中、高压计量。

二、误差产生的原因涡轮流量计同样存在以下缺点:有可动部件,易于损坏,关键件轴承易磨损,抗脏污能力差,对介质的干净程度要求较高,难以长期保持校准特性,需要定期校验。

造成误差的原因有:计量表自身质量问题,设计选型不合理,安装不到位,运行中维护保养不当等。

三、如何控制误差(一)正确确定流量计使用的场所及规格。

由于涡轮流量计涡轮惯性的存在,在流量波动频繁的场合不宜使用,否则会降低计量精度。

要比较准确地估计用气量的峰谷值和介质的压力情况,正确确定流量计的规格。

从涡轮流量计误差特性曲线可以看出,应使流量计的工作流量范围20%Qmax-80%Qmax(Qmax为流量计的zui大流量)(二)涡轮流量计安装要求1.气体涡轮流量计前必须安装过滤器;应保持过滤器畅通,若发现过滤器堵塞(可凭过滤器进出压差来判断)时,应及时对过滤器进行清洗,若未配差压计的每月清洗一次。

2.要保证直管段的要求,尤其是表前有缩径或半开阀门的情况。

3.安装时,密封垫不得突入管道中,流量计与管路轴线目测不得有明显偏差,不得产生安装应力。

4.安装时一定要清扫干净管道内的所有杂质,以防轴承和涡轮卡死。

(三)涡轮流量计运行管理及维护要求1.涡轮流量计的通气和停气要求。

涡轮流量计原理

涡轮流量计原理

涡轮流量计原理涡轮流量计是一种常用的流量测量仪表,它利用涡轮的旋转来测量流体的流速,从而计算出流体的流量。

涡轮流量计主要由涡轮传感器、转速传感器、信号处理器和显示仪表等组成,它在工业领域中有着广泛的应用,下面将详细介绍涡轮流量计的原理。

涡轮流量计的原理是基于涡轮的旋转来测量流体的流速。

当流体通过涡轮流量计的测量管道时,流体的流速会使得涡轮叶片旋转。

涡轮叶片的旋转速度与流体的流速成正比,因此可以通过测量涡轮叶片的旋转速度来确定流体的流速。

在涡轮流量计中,通常会设置转速传感器来检测涡轮叶片的旋转速度,然后将这个信号传输给信号处理器进行处理。

信号处理器是涡轮流量计中的重要部件,它接收转速传感器传来的信号,并根据一定的算法将信号转换成流体的流量。

在信号处理器中,通常会根据涡轮流量计的结构参数和流体的物性参数来进行计算,从而得到流体的实时流量数据。

这些数据可以通过显示仪表展示出来,供操作人员进行实时监测和记录。

涡轮流量计的原理虽然简单,但是在实际应用中需要注意一些影响测量精度的因素。

首先,涡轮流量计的测量精度会受到流体的粘度、密度和温度等因素的影响。

其次,涡轮流量计在安装时需要保证流体的进出口流线型,避免出现流体的旋涡和湍流,从而影响涡轮叶片的旋转。

此外,涡轮流量计的测量精度还会受到管道内壁的磨损和腐蚀等因素的影响,因此在使用过程中需要定期进行维护和校准。

总的来说,涡轮流量计是一种基于涡轮旋转原理的流量测量仪表,它具有测量精度高、响应速度快、结构简单等优点,在工业领域中有着广泛的应用。

通过了解涡轮流量计的原理和影响测量精度的因素,可以更好地使用和维护涡轮流量计,确保其在工业生产中的准确性和稳定性。

涡轮流量计工作原理

涡轮流量计工作原理

涡轮流量计工作原理涡轮流量计是一种常用的流量计量仪表,广泛应用于工业过程中对液体和气体的流量测量。

它通过旋转涡轮叶片来实现流量的测量,具有精度高、稳定性好等优点。

本文将详细介绍涡轮流量计的工作原理。

一、涡轮流量计的结构和组成涡轮流量计由流量计主体、涡轮叶轮、传感器和信号转换器等组成。

流量计主体通常由金属材料制成,内部设有涡轮叶轮腔。

涡轮叶轮由多个叶片组成,可在流体流动的作用下旋转。

传感器用于检测叶轮的旋转速度,并将其转化为电信号。

信号转换器能够接收传感器的电信号,并进行放大、滤波和换算,最终输出流量信号。

二、涡轮流量计的工作原理涡轮流量计的工作原理基于叶轮在流体中旋转时所受到的转动力矩与流体流速成正比的原理。

当液体或气体通过流量计时,流体在叶轮叶片上产生一定的动压力,使叶轮开始旋转。

根据涡轮叶轮旋转的速度,可以推算出流体的流速和流量。

在涡轮流量计中,流体会通过流量计主体进入涡轮叶轮腔。

当流体通过腔室时,叶轮叶片会受到流体的冲击力,使叶轮开始旋转。

涡轮叶轮旋转的速度与流体流速成正比。

为了确保叶轮旋转平稳,涡轮叶轮通常采用轴承支撑,并在叶片上设置平衡锥。

流体流过叶轮后,再通过出口离开流量计主体。

在涡轮流量计中,涡轮叶轮旋转的速度需要通过传感器进行检测。

传感器通常采用磁感应原理,叶轮上固定有磁铁,并安装有线圈传感器。

当叶轮旋转时,磁铁的磁场会产生变化,线圈传感器能够感应到磁场的变化并产生相应的电信号。

涡轮流量计的信号转换器能够接收传感器的电信号,并进行放大、滤波和换算等处理。

放大和滤波可以提高信号的稳定性和精度,换算则可以将电信号转化为实际的流量值。

最终,信号转换器会输出流量信号,供用户进行监测和控制。

三、应用领域和注意事项涡轮流量计广泛应用于化工、制药、石油、电力等行业,在流体流量的测量和控制中发挥重要作用。

然而,在使用涡轮流量计时,也需要注意以下几点:1. 流体的物理性质:涡轮流量计适用于液体和气体的流量测量,但需要根据流体的密度、黏度和压力等物理性质选择合适的型号和规格。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

涡轮流量计资料来源:涡轮流量计(以下简称TUF)是叶轮式流量(流速)计的主要品种,叶轮式流量计还有风速计、水表等。

在各种流量计中TUF、容积式流量计和科氏质量流量计是三类重复性、精确度最佳的产品,而TUF又具有自己的特点,如结构简单、加工零部件少、重量轻、维修方便、流通能力大(同样口径可通过的流量大)和可适应高参数(高温、高压和低温)等。

至今,这类流量计产品可达技术参数:口径4-750mm,压力达250MPa,温度为-240-700℃,像这样的技术参数其他两类流量计则是难以达到的。

TUF广泛应用于以下一些测量对象:石油、有机液体、无机液、液化气、天然气、煤气和低温流体等。

在国外液化石油气、成品油和轻质原油等的转运及集输站,大型原油输送管线的首末站都大量采用它进行贸易结算。

在欧洲和美国TUF是仅次于孔板流量计的天然气计量仪表,仅荷兰在天然气管线上就采用了2600多台各种尺寸,压力从0.8MPa到6.5MPa的气体TUF,他们已成为优良的天然气流量计。

尽管TUF的优良计量特性受到人们的青睐,可是给人的印象是由活动部件,使用期短,在选用时不免踌躇,经过人们的不懈努力,应该说情况大有改观。

TUF作为最通用的流量计,其产品已发展为多品种、全系列、多规格批量生产的规模。

应该指出,TUF除前述工业部门大量应用外,在一些特殊部门亦得到广泛应用,如科研实验、国防科技、计量部门,这些领域的使用恰好避开了其弱点(不适于长期连续使用),充分发挥其特点(高精度,重复性好,可用于高压、高温、低温及微流量等条件)。

在这些领域,大多是根据被测对象的特殊要求进行专门的结构设计,它们是专用仪表不进行批量生产。

图1所示为TUF传感器结构图,由图可见,当被测流体流过传感器时,在流体作用下,叶轮受力旋转,其转速与管道平均流速成正比,叶轮的转动周期地改变磁电转换器的磁阻值。

检测线圈中磁通随之发生周期性变化,产生周期性的感应电势,即电脉冲信号,经放大器放大后,送至显示仪表显示。

TUF的实用流量方程为q v=f/K (7.1)q m=qvρ (7.2)式中q v,q m-分别为体积流量,m3/s,质量流量,kg/s;f-流量计输出信号的频率,Hz;K-流量计的仪表系数,P/m3。

流量计的仪表系数与流量(或管道雷诺数)的关系曲线如图2所示。

由图可见,仪表系数可分为二段,即线性段和非线性段。

线性段约为工作段的三分之二,其特性与传感器结构尺寸及流体粘性有关。

在非线性段,特性受轴承摩擦力,流体粘性阻力影响较大。

当流量低于传感器流量下限时,仪表系数随着流量迅速变化。

压力损失与流量近似为平方关系。

当流量超过流量上限时要注意防止空穴现象。

结构相似的TUF特性曲线的形状是相似的,他仅在系统误差水平方面有所不同。

传感器的仪表系数由流量校验装置校验得出,它完全不问传感器内部流体的流动机理,把传感器作为一个黑匣子,根据输入(流量)和输出(频率脉冲信号)确定其转换系数,它便于实际应用。

但要注意,此转换系数(仪表系数)是有条件的,其校验条件是参考条件,如果使用时偏离此条件,系数将发生变化,变化的情况视传感器类型,管道安装条件和流体物性参数的情况而定。

1)高精确度,对于液体一般为±0.25%R-±0.5%R,高精度型可达±0.15%R;而介质为气体,一般为±1%R-±1.5%R,特殊专用型为±0.5%R-±1%R。

在所有流量计中,它属于最精确的。

2)重复性好,短期重复性可达0.05%-0.2%,正是由于具有良好的重复性,如经常校准或在线校准可得极高的精确度,在贸易结算中是优先选用的流量计。

3)输出脉冲频率信号,适于总量计量及与计算机连接,无零点漂移,抗干扰能力强。

4)可获得很高的频率信号(3-4kHz),信号分辨力强。

5)范围度宽,中大口径可达40:1-10:1,小口径为6:1或5:1。

6)结构紧凑轻巧,安装维护方便,流通能力大。

7)适用高压测量,仪表表体上不必开孔,易制成高压型仪表。

8)专用型传感器类型多,可根据用户特殊需要设计为各类专用型传感器,例如低温型、双向型、井下型、混砂专用型等。

9)可制成插入型,适用于大口径测量,压力损失小,价格低,可不断流取出,安装维护方便。

10)难以长期保持校准特性,需要定期校验。

对于无润滑性的液体,液体中含有悬浮物或磨蚀性,造成轴承磨损及卡住等问题,限制了其适用范围,采用耐磨硬质合金轴和轴承后情况有所改进。

对于贸易储运和高精度测量要求的,最好配备现场校验设备,可定期校准以保持其特性。

11)一般液体TUF不适用于较高粘度介质(高粘度型除外),随着粘度的增大,流量计测量下线值提高,范围度缩小,线性度变差。

12)流体物性(密度、粘度)对仪表特性有较大影响。

气体流量计易受密度影响,而液体流量计对粘度变化反应敏感。

由于密度和粘度与温度、压力关系密切,在现场温度、压力波动是难免的,要根据它们对精确度影响的程度采取补偿措施,才能保持高的计量精度。

13)流量计受来流流速分布畸变和旋转流的影响较大,传感器上下游侧需设置较长的直管段,如安装空间有限制,可加装流动调整器(整流器)以缩短直管段长度。

14)不适于脉动流和混相流的测量。

15)对被测介质的清洁度要求较高,限制了其适用领域,虽可安装过滤器以适应脏污介质,但亦带来压损增大、维护量增加等副作用。

16)小口径(DN50以下)仪表的流量特性受物性影响严重,故小口径TUF的仪表性能难以提高。

4.1 分类(1)按传感器结构分类1)轴向型(普通型)叶轮轴中心与管道轴线重合,是TUF的主导产品,有全系列产品(DN10-DN600)。

2)切向型叶轮轴与管道轴线垂直,流体流向叶片平面的冲角约90度,适用于小口径微流量产品。

3)机械型叶轮的转动直接或经磁耦合带动机械计数机构,只是积算总量,测量精度比电信号检测的传感器稍低,其传感器与显示装置组成一体式,受到用户欢迎。

4)井下专用型适用于石油开采井下作业及采输用,测量介质有泥浆及油气流等,传感器体积受限制,需耐高压、高温及流体冲击等。

5)自校正双涡轮型可用于天然气等气体流量测量,传感器由主、辅双叶轮组成,可由二叶轮的转速差自动校正流量特性的变化。

6)广粘度型在波特型浮动转子压力平衡结构基础上扩大上锥体与下锥体的直径,增加粘度补偿翼及承压叶片等结构措施,使传感器适用于高粘度液体,如重油,粘度可达30mm2/s。

4.2 传感器结构TUF传感器由表体、导向体(导流器)、叶轮、轴、轴承及信号检测器组成(见图1)。

1)表体表体是传感器的主体部件,它起到承受被测流体的压力,固定安装检测部件,连接管道的作用。

表体采用不导磁不锈钢或硬铝合金制造。

对于大口径传感器已可用碳钢与不锈钢组合的镶嵌结构,表体外壁装信号检测器。

2)导向体在传感器进出口装有导向体,他对流体起导向整流以及支撑叶轮的作用,通常选用不导磁不锈钢或硬铝材料制作。

反推式涡轮流量传感器的后导流件还要求能产生足够的反推力,其结构形式很多。

前导流器有专利产品可以抗流体流动的严重干扰。

3)涡轮亦称叶轮,是传感器的检测元件,它由高导磁性材料制成。

叶轮有直板叶片、螺旋叶片和丁字形叶片等几种,也可用嵌有许多导磁体的多孔护罩环来增加一定数量叶片涡轮旋转的频率,叶轮由支架中轴承支撑,与表体同轴,其叶片数视口径大小而定。

叶轮几何形状及尺寸对传感器性能有较大影响,要根据流体性质、流量范围、使用要求等设计,叶轮的动平衡很重要,直接影响仪表性能和使用寿命。

4)轴与轴承它支撑叶轮旋转,需有足够的刚度、强度和硬度、耐磨性、耐腐蚀性等。

它决定着传感器的可靠性和使用期限。

传感器失效通常是由轴与轴承引起的,因此它的结构与材料的选用以及维护是很重要的。

5)信号检测器国内常用变磁阻式,如图1上半部分所示。

由永久磁钢、导磁棒(铁芯)、线圈等组成。

永久磁钢对叶片有吸引力,产生磁阻力矩,小口径传感器在小流量时,磁阻力矩在诸阻力矩中成为主要项,为此将永久磁钢分为大小两种规格,小口径配小规格以降低磁阻力矩。

输出信号有效值在10mV以上的可直接配用流量计算机,配上放大器则输出伏级频率信号。

传感器结构类型很多,这里介绍几种广泛应用的产品。

1)止推式涡轮流量传感器这类产品的结构简图于图3。

其中图(a)与图(b)为轴尖止推类,采用平面或球面点接触,接触点与传感器轴线重合,点接触的优点是摩擦力矩很小,可用于较低的下限流量,但是大流量时磨损严重。

图(c)为端面面接触止推型,端头呈球形,轴承为平面型。

此类结构仅用于小口径(DN≤15mm)传感器,发挥其灵敏度高的特点。

2)反推式涡轮流量传感器这类产品的结构简图如图4所示。

图4(a)中在输入端面处的压力pH降低,产生反推力;图4(b)是流体经前面孔引入产生反推力;图4(c)表示流体由后反向推。

反推式结构在一定流量范围内可使叶轮处于浮游状态,轴向不存在接触点,无端面摩擦和磨损,可延长使用期限。

3)切向式涡轮流量传感器图5所示为用于微流量测量的涡轮流量传感器。

流体由叶轮的切向流过,冲击其叶片旋转。

由于被测流量小,为加大流体对叶轮的冲力,入口处装有喷嘴,可以更换喷嘴孔径以调节流量范围。

叶轮的转速采用光电法检测,以避免如磁阻法产生磁阻力矩。

4)气体TUF 气体的密度远小于液体密度,流体推动力矩小,气体流量传感器与液体流量传感器在结构参数上有显著差别。

要加大轮毂半径,缩小流道截面积,使气流流速加大且集中经过叶片边缘。

因气流流速很高,要用较小冲角的叶片。

一般为降低摩擦阻力矩,采用滚动轴承,并对轴承系统注入润滑剂。

它能冲洗掉轴承表面的微粒,延长轴承寿命。

多孔状的储油室能在换加润滑剂期间向轴承持续供油。

典型的燃气TUF如图6所示。

图6(a)所示为气体TUF的剖面图。

图6(b)所示为传感器显示装置上附加气体体积补偿器,补偿器把传感器测量的实际体积流量经压力、温度换算为标准状态下的体积流量。

另外还有报警、自诊断、远传信号等多种功能,他是一台功能齐全的流量计算机。

(1)精确度一般说来,选用TUF主要是看中其高精确度。

目前TUF的精确度大致为液体:国际市场为±0.15%R,±0.2%R,±0.5%R和±1%R,国内定型产品为±0.5%R和±1%R;气体:国际市场为±0.5%R和±1%R,国内为±1%R和±1.5%R,以上精确度指范围度为6:1或10:1。

若干涡轮流量传感器典型参数如表1所示。

精确度除与本身产品质量有关外,还与使用条件密切相关。

若缩小范围度可提高精确度;特别是作为标准表法流量标准装置的标准流量计,若定点使用,精确度可大为提高。

相关文档
最新文档