小学数论基础知识

合集下载

小学数论基础知识教学内容

小学数论基础知识教学内容

小学数论基础知识数论基础知识一质数和合数(1)一个数除了1和它本身,不再有别的约数,这个数叫做质数(也叫做素数)。

一个数除了1和它本身,还有别的约数,这个数叫做合数。

(2)自然数除0和1外,按约数的个数分为质数和合数两类。

任何一个合数都可以写成几个质数相乘的形式。

要特别记住:0和1不是质数,也不是合数。

(3)最小的质数是2 ,2是唯一的偶质数,其他质数都为奇数;最小的合数是4。

(4)质数是一个数,是含有两个约数的自然数。

互质数是指两个数,是公约数只有一的两个数,组成互质数的两个数可能是两个质数(3和5),可能是一个质数和一个合数(3和4),可能是两个合数(4和9)或1与另一个自然数。

(5)如果一个质数是某个数的约数,那么就说这个质数是这个数的质因数。

把一个合数用质因数相乘的形式表示出来,叫做分解质因数。

(6)100以内的质数有25个:2、3、5、7、11、13、17、19、23、29、31、37、41、43、47、53、59、61、67、71、73、79、83、89、97二整除性(1)概念一般地,如a、b、c为整数,b≠0,且a÷b=c,即整数a除以整除b(b不等于0),除得的商c正好是整数而没有余数(或者说余数是0),我们就说,a能被b整除(或者说b能整除a)。

记作b|a.否则,称为a不能被b整除,(或b不能整除a),记作b a。

如果整数a能被整数b整除,a就叫做b的倍数,b就叫做a的约数。

(2)性质性质1:(整除的加减性)如果a、b都能被c整除,那么它们的和与差也能被c整除。

即:如果c|a,c|b,那么c|(a±b)。

例如:如果2|10,2|6,那么2|(10+6),并且2|(10—6)。

也就是说,被除数加上或减去一些除数的倍数不影响除数对它的整除性。

性质2:如果b与c的积能整除a,那么b与c都能整除a.即:如果bc|a,那么b|a,c|a。

性质3:(整除的互质可积性)如果b、c都能整除a,且b和c互质,那么b 与c的积能整除a。

小学数学数论知识点总结

小学数学数论知识点总结

小学数学数论知识点总结数论是数学中的一门重要分支,主要研究整数的性质和整数之间的关系。

对于小学生来说,数论知识是他们数学学习中的基础,对培养逻辑思维和解决问题能力有着重要作用。

本文将对小学数学数论知识点进行总结,帮助学生在数论方面更好地掌握。

一、质数和合数1. 质数的定义:质数是指大于1且只能被1和自身整除的整数,如2、3、5等。

2. 合数的定义:合数是指大于1且可以被1、自身和其他整数整除的整数,如4、6、8等。

3. 任何一个大于1的整数,都只能是质数或者合数中的一种。

二、公约数和最大公约数1. 公约数的定义:公约数是指能同时整除两个或多个整数的整数。

2. 最大公约数的定义:最大公约数是指能够整除多个整数中的最大整数。

3. 求最大公约数的方法:可以通过列举法、质因数分解法、辗转相除法等方法来求解。

三、倍数和最小公倍数1. 倍数的定义:倍数是指某一个数乘以任意整数所得到的结果,如3的倍数有3、6、9等。

2. 最小公倍数的定义:最小公倍数是指能够被多个整数整除的最小整数。

3. 求最小公倍数的方法:可以通过列举法、质因数分解法、最大公约数与最小公倍数的关系等方法来求解。

四、质因数分解1. 质因数的定义:质因数是指能够整除一个数且是质数的因数,如12的质因数有2和3。

2. 质因数分解的定义:质因数分解是将一个数分解成为若干个质因数相乘的形式。

3. 质因数分解的方法:可以通过不断除以质数的方式,将一个数分解为质因数的乘积。

五、奇数和偶数1. 奇数的定义:奇数是指个位数是1、3、5、7和9的整数,如1、3、5等。

2. 偶数的定义:偶数是指个位数是0、2、4、6和8的整数,如2、4、6等。

3. 任何一个整数都只能是奇数或者偶数中的一种。

六、互质数1. 互质数的定义:互质数是指最大公约数为1的两个整数,也称为互素数。

2. 判断互质数的方法:可以通过求解最大公约数判断两个数是否互质。

七、进制转换1. 二进制:二进制是一种计数系统,由0和1两个数字组成,逢2进1。

六年级数论知识点

六年级数论知识点

六年级数论知识点数论是数学的一个分支,研究整数的性质和结构。

在六年级数学学习中,数论是一个重要的知识点,通过学习数论,学生可以加深对整数的理解,培养逻辑思维和解决问题的能力。

本文将介绍六年级数论的几个重要知识点。

一、质数和合数在数论中,最基本的概念就是质数和合数。

质数是指只能被1和自身整除的正整数,而合数是除了1和自身以外还能被其他数整除的正整数。

六年级学生需要掌握如何判断一个数是质数还是合数,并能灵活应用这个知识点解决实际问题。

二、素数的性质素数是指只有两个因数,1和它自身的数。

六年级学生需要了解素数的性质,如素数的个数是无限的、任意两个素数之间一定存在其他的合数等。

同时,学生还需要学会如何通过筛法找到一定范围内的素数,掌握筛法的基本思想和步骤。

三、公因数和最大公因数公因数是指能同时整除两个或多个数的因数。

最大公因数是指公因数中最大的一个数。

六年级学生需要学会求解两个或多个数的公因数和最大公因数,并能够应用最大公因数解决实际问题,如求解最简分数、最小公倍数等。

四、整除性质整除性质是指某个数被另一个数整除时,除数与被除数的关系。

六年级学生需要熟练掌握整除性质,如判断一个数能否被2、3、5、9整除等,通过整除性质解决数的分割和分类问题。

五、倍数和最小公倍数倍数是指某个数是另一个数的整数倍。

最小公倍数是指两个或多个数公有的倍数中最小的一个数。

六年级学生需要掌握倍数的概念,判断一个数是另一个数的倍数,并能够求解两个或多个数的最小公倍数。

六、奇偶性质奇数是指不能被2整除的数,偶数是指能被2整除的数。

六年级学生需要了解奇偶数的性质,如两个奇数相加是偶数、奇数与偶数相乘是偶数等。

通过奇偶性质,学生可以解决一些关于数的分类问题。

七、质因数分解质因数分解是指将一个合数分解成为几个质数的乘积。

学生需要学会如何进行质因数分解,并能够应用质因数分解解决问题,如求解最大公因数、最小公倍数等。

总结:六年级数论知识点的掌握对于学生的数学学习和思维能力的培养具有重要意义。

(完整版)数论知识点总结

(完整版)数论知识点总结

(完整版)数论知识点总结1. 整数与整除性质整数是数的基本单位,整除是整数相除所得到的商是整数的关系。

- 整数运算:加法、减法、乘法、除法。

- 整数性质:正整数、负整数、零。

- 整数除法:被除数、除数、商、余数。

2. 质数和合数质数是只能被1和自身整除的正整数,合数是除了1和本身外还能被其他正整数整除的正整数。

- 判断质数:试除法、素数筛法。

- 质因数分解:将一个合数分解成质因数的乘积。

3. 最大公约数和最小公倍数最大公约数是一组数的最大公因数,最小公倍数是一组数的最小公倍数。

- 欧几里得算法:用辗转相除法求最大公约数。

- 求最小公倍数:将数分解成质因数,再取每个质因数的最高次幂相乘。

4. 同余定理同余定理是描述整数之间关系的定理。

- 同余关系:如果两个整数对于同一个模数的除法所得的余数相等,则它们对于这个模数是同余的。

- 同余定理:如果a与b对于模数m同余,那么它们的和、差、积也对于模数m同余。

5. 欧拉函数欧拉函数是比给定正整数小且与它互质的正整数的个数。

- 欧拉函数公式:对于正整数n,欧拉函数的值等于n与所有小于n且与n互质的正整数的个数。

6. 莫比乌斯函数莫比乌斯函数是一个常用于数论的函数。

- 莫比乌斯函数的定义:对于任何正整数n,莫比乌斯函数的值分为三种情况,分别是μ(n) = 1,μ(n) = -1,μ(n) = 0。

7. 勒让德符号勒让德符号是用来判断一个整数是否是二次剩余的符号。

- 勒让德符号的定义:对于正整数a和奇素数p,勒让德符号的值是一个取值为-1、0或1的函数。

- 勒让德判别定理:如果勒让德符号等于1,则a是模p的二次剩余;如果勒让德符号等于-1,则a不是模p的二次剩余。

8. 素数定理和费马小定理素数定理和费马小定理是数论中的重要定理。

- 素数定理:对于足够大的正整数n,小于等于n的素数的个数约为n/(ln(n)-1)。

- 费马小定理:如果p是素数,a是不是p的倍数的正整数,则a^(p-1)与模p同余。

小学数论知识点

小学数论知识点

小学数论知识点数论是数学的一个重要分支,对于小学生来说,接触到的数论知识是数学学习中的基础和关键部分。

下面我们就来一起了解一下小学数论的一些主要知识点。

一、整数的认识1、自然数自然数是用来表示物体个数的数,如 0、1、2、3、4……最小的自然数是 0,没有最大的自然数。

2、整数整数包括正整数、0 和负整数。

正整数和 0 统称为自然数。

3、数位和计数单位不同的数位表示不同的计数单位。

例如,个位的计数单位是“一”,十位的计数单位是“十”,百位的计数单位是“百”。

二、整除1、整除的概念如果整数 a 除以整数 b(b≠0),商是整数且没有余数,我们就说 a 能被 b 整除,b 能整除 a。

2、常见的整除特征(1)能被 2 整除的数的特征:个位上是 0、2、4、6、8 的数。

(2)能被 3 整除的数的特征:各位上数字的和能被 3 整除。

(3)能被 5 整除的数的特征:个位上是 0 或 5 的数。

3、因数和倍数如果 a×b=c(a、b、c 都是非 0 整数),那么 a 和 b 就是 c 的因数,c 就是 a 和 b 的倍数。

一个数的因数的个数是有限的,其中最小的因数是 1,最大的因数是它本身;一个数的倍数的个数是无限的,其中最小的倍数是它本身,没有最大的倍数。

三、质数与合数1、质数一个数,如果只有 1 和它本身两个因数,这样的数叫做质数(或素数)。

最小的质数是 2。

2、合数一个数,如果除了 1 和它本身还有别的因数,这样的数叫做合数。

最小的合数是 4。

3、 1 既不是质数也不是合数。

四、公因数与公倍数1、公因数几个数公有的因数,叫做这几个数的公因数。

其中最大的一个叫做这几个数的最大公因数。

2、公倍数几个数公有的倍数,叫做这几个数的公倍数。

其中最小的一个叫做这几个数的最小公倍数。

3、求最大公因数和最小公倍数的方法(1)列举法分别列出两个数的因数(或倍数),从中找出最大公因数(或最小公倍数)。

(2)分解质因数法把两个数分别分解质因数,公有质因数的乘积就是最大公因数,公有质因数和各自独有的质因数的乘积就是最小公倍数。

掌握小学数学中的数论知识

掌握小学数学中的数论知识

掌握小学数学中的数论知识数论是数学中的一个重要分支,研究的是整数之间的关系和性质。

在小学数学教学中,数论知识的掌握对于学生的数学学习和思维发展具有重要意义。

本文将从数论的基本概念、性质和应用等方面,全面介绍小学数学中的数论知识。

一、素数与合数素数指只能被1和自身整除的自然数,而合数则是能够被大于1的自然数整除的数。

小学生应该能够通过简单的分解因式来判断一个数是素数还是合数。

例如,我们可以将一个数的因式逐一列举出来,如果只能分解为1和它本身,则该数为素数,否则为合数。

二、最大公约数与最小公倍数最大公约数是指两个数中最大的能同时整除它们的数,而最小公倍数则是指两个数的公倍数中最小的一个数。

在小学数学中,学生需要学会用辗转相除法求解最大公约数,以及应用倍数关系求解最小公倍数。

掌握最大公约数和最小公倍数的求解方法,有助于学生进行分数的约分和通分等运算。

三、质因数分解质因数分解是将一个数分解为若干个质数的乘积。

通过质因数分解,我们可以更好地理解一个数的因数结构,也为后续的运算提供了便利。

小学生应该学会对一个数进行质因数分解,并能够利用质因数分解进行最大公约数、最小公倍数等运算。

四、奇数与偶数奇数是指不能被2整除的自然数,而偶数则是能够被2整除的自然数。

小学数学中,学生需要了解奇偶数的基本概念,并能够进行奇偶数的判断。

奇偶数在数论中有着重要的应用,例如在解决一些整数问题时需要考虑奇偶数的性质。

五、约数与倍数约数指能整除某个数的数,而倍数则是某个数的整数倍。

小学生应该学会找出一个数的所有约数,以及利用倍数的概念判断两个数之间的倍数关系。

掌握约数和倍数的概念,有助于学生进行分数约简、分数的比较等运算。

六、数的整除性数的整除性是指一个数能否整除另一个数。

在小学数学中,学生需要判断和解决一些与整除性有关的问题。

例如,一个数能否整除另一个数可以通过观察它们的因式结构来判断,或者利用数的整除性的性质来求解。

七、证明数的性质数论中的一项重要技能是证明数的性质。

数论知识点归纳总结

数论知识点归纳总结

数论知识点归纳总结数论是数学的一个分支,研究整数及其性质的科学。

它是由数学中最古老的领域之一,也是最重要的领域之一。

数论大部分内容都集中在整数的性质和关系,包括数的性质、数的划分、数的因子、余数、等式、方程等。

数论在许多不同的领域有很多应用,如密码学、加密技术、算法设计、计算机科学等等。

下面将对数论的一些重要知识点进行归纳总结,以便更好地理解和掌握数论的基本概念和方法。

一、整数及其性质1. 整数的性质:整数是由自然数和其相反数构成的有理数。

整数的性质包括奇数和偶数的性质、质数和合数的性质、互质数和最大公约数的性质等等。

2. 除法定理:任意两个整数a和b中,存在唯一的一对整数q和r使得a=bq+r,其中0<=r<|b|。

3. 唯一分解定理:每一个大于1的自然数都可以写成一组素数的乘积。

而且,如果一个数有两种不同的素因数分解形式,那么这两种形式只差一个或若干个单位。

4. 有限整除原理:如果一个整数被另一个不等于0的整数整除,那么这两个整数中一定有一个是整数的最大公因子。

二、数的划分1. 除法和约数:一个整数能被另一个整数整除,那么这个整数就是另一个整数的约数。

2. 素数:只有1和它本身两个因子的自然数,称为素数。

3. 合数:大于1的除了1和它本身以外还有其他因子的数,称为合数。

4. 最大公因数和最小公倍数:两个整数a和b最大的公因数称为a和b的最大公因数,最小的公倍数称为a和b的最小公倍数。

5. 互质数:两个数的最大公因数是1,就称这两个数是互质数。

三、同余和模运算1. 同余性质:如果两个整数a和b除以正整数m所得的余数相等,就称a与b对模m同余。

2. 同余方程:形如ax≡b(mod m)的方程称为同余方程,其中a,b,m都是整数。

3. 欧拉函数:对于任意正整数n,欧拉函数φ(n)是小于或等于n且与n互质的正整数的个数。

4. 模反元素:在模n的情况下,如果一个数a与n互质,那么a关于模n的乘法逆元素x 就是属于[0, n-1]的一个整数,使得ax ≡ 1 (mod n)。

小学六年级数论知识点

小学六年级数论知识点

小学六年级数论知识点数论是数学的一个分支领域,主要研究整数之间的性质和关系。

在小学六年级数学学习中,数论是一个非常重要且需要掌握的知识点。

本文将介绍小学六年级数论的几个重要知识点。

一、素数和合数在小学六年级数论中,首先要了解的是素数和合数的概念。

素数是指只能被1和自身整除的正整数,除了1以外没有其他的因数。

而合数则是可以被除了1和自身以外的其他正整数整除的数。

二、质因数分解质因数分解是指将一个合数分解为几个素数的乘积的过程。

对于一个合数,可以通过不断地除以素数,直到不能再分解为止,得到质因数分解的结果。

例如,12可以分解为2 × 2 × 3。

三、最大公因数和最小公倍数最大公因数是指两个或多个数中同时能够整除的最大的正整数,而最小公倍数则是指两个或多个数中能够被它们同时整除的最小的正整数。

在小学六年级,通常通过求质因数分解的方式来计算最大公因数和最小公倍数。

四、奇数和偶数奇数和偶数是数论中的另一个重要概念。

奇数是指不能被2整除的正整数,而偶数则是可以被2整除的正整数。

小学生在学习数论时需要熟练掌握奇数和偶数的特点及其性质。

五、整数的性质在数论中,还有一些关于整数的性质需要掌握。

例如,两个偶数的和或差仍为偶数,两个奇数的和为偶数、差为偶数,奇数与偶数相乘的结果为偶数等等。

这些性质在解题过程中经常会用到,小学生需要加以练习和记忆。

六、数字的尾数在数论中,数字的尾数是指该数字的个位数字。

小学六年级学生需要掌握尾数的特点以及不同尾数之间的规律。

例如,以0、2、4、6、8结尾的数字都是偶数,而以1、3、5、7、9结尾的数字都是奇数。

以上就是小学六年级数论的几个重要知识点。

通过对这些知识点的学习和掌握,学生可以更好地理解整数之间的性质和关系,提高数学解题的能力和思维能力。

希望本文对小学六年级学生在数论学习上有所帮助。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数论基础知识
一质数和合数
(1)一个数除了1和它本身,不再有别的约数,这个数叫做质数(也叫做素数)。

一个数除了1和它本身,还有别的约数,这个数叫做合数。

(2)自然数除0和1外,按约数的个数分为质数和合数两类。

任何一个合数都可以写成几个质数相乘的形式。

要特别记住:0和1不是质数,也不是合数。

(3)最小的质数是2 ,2是唯一的偶质数,其他质数都为奇数;
最小的合数是4。

(4)质数是一个数,是含有两个约数的自然数。

互质数是指两个数,是公约数只有一的两个数,组成互质数的两个数可能是两个质数(3和5),可能是一个质数和一个合数(3和4),可能是两个合数(4和9)或1与另一个自然数。

(5)如果一个质数是某个数的约数,那么就说这个质数是这个数的质因数。

把一个合数用质因数相乘的形式表示出来,叫做分解质因数。

(6)100以内的质数有25个:
2、3、5、7、
11、13、17、19、
23、29、31、37、
41、43、47、
53、59、
61、67、
71、73、79、
83、89、
97
二整除性
(1)概念
一般地,如a、b、c为整数,b≠0,且a÷b=c,即整数a除以整除b(b不等于0),除得的商c正好是整数而没有余数(或者说余数是0),我们就说,a 能被b整除(或者说b能整除a)。

记作b|a.否则,称为a不能被b整除,(或b 不能整除a),记作b a。

如果整数a能被整数b整除,a就叫做b的倍数,b就叫做a的约数。

(2)性质
性质1:(整除的加减性)如果a、b都能被c整除,那么它们的和与差也能被c 整除。

即:如果c|a,c|b,那么c|(a±b)。

例如:如果2|10,2|6,那么2|(10+6),并且2|(10—6)。

也就是说,被除数加上或减去一些除数的倍数不影响除数对它的整除性。

性质2:如果b与c的积能整除a,那么b与c都能整除a.
即:如果bc|a,那么b|a,c|a。

性质3:(整除的互质可积性)如果b、c都能整除a,且b和c互质,那么b与c的积能整除a。

即:如果b|a,c|a,且(b,c)=1,那么bc|a。

例如:如果2|28,7|28,且(2,7)=1,
那么(2×7)|28。

性质4:(整除的传递性)如果c能整除b,b能整除a,那么c能整除a。

即:如果c|b,b|a,那么c|a。

例如:如果3|9,9|27,那么3|27。

(3)数的整除特征
①能被2整除的数的特征:个位数字是0、2、4、6、8的整数.
②能被5整除的数的特征:个位是0或5。

突破口
③能被3(或9)整除的数的特征:各个数位数字之和能被3(或9)整除。

判断能被3(或9)整除的数还可以用“弃3(或9)法”:
例如:8351746能被9整除么?
解:8+1=9,3+6=9,5+4=9,在数字中只剩7,7不是9的倍数,所以8351746不能被9整除。

④能被4(或25)整除的数的特征:末两位数能被4(或25)整除。

⑤能被8(或125)整除的数的特征:末三位数能被8(或125)整除。

⑥能被11整除的数的特征:这个整数的奇数位上的数字之和与偶数位上的数字之和的差(大减小)是11的倍数。

⑦能被7(11或13)整除的数的特征:一个整数的末三位数与末三位以前的数字所组成的数之差(以大减小)能被7(11或13)整除,依此反复检验。

例如:判断3546725能否被13整除?
解:把3546725分为3546和725两个数.因为3546-725=2821.再把2821分为2和821两个数,因为821—2=819,又13|819,所以13|2821,进而13|3546725.
上述办法也可以用来判断余数和末位数;
对于其他的数,可以将其分解成上述几个互质的数的乘积,再逐个考虑。

三约数与倍数
(1)公约数和最大公约数
几个数公有的约数,叫做这几个数的公约数;其中最大的一个,叫做这几个数的最大公约数。

例如:4是12和16的最大公约数,可记做:(12,16)=4
(2)公倍数和最小公倍数
几个数公有的倍数,叫做这几个数的公倍数;其中最小的一个,叫做这几个数的最小公倍数。

例如:36是12和18的最小公倍数,记作[12,18]=36。

(3)最大公约数和最小公倍数的关系
如果用a和b表示两个自然数
1、那么这两个自然数的最大公约数与最小公倍数关系是:
(a,b)×[a,b]=a×b。

(多用于求最小公倍数)
2、(a,b)≤a,b≤[a,b]
3、[a,b]是(a,b)的倍数,(a,b)是[a,b]的约数
4、(a,b)是a+b和a-b的约数,也是(a,b)+[a,b]和(a,b)-[a,b]的约数
(4)求最大公约数的方法很多,主要推荐:短除法、分解质因数法、辗转相除法。

例如:1、(短除法)用一个数去除30、60、75,都能整除,这个数最大是多少?
解:∵
(30,60,75)=5×3=15
这个数最大是15。

2、(分解质因数法)求1001和308的最大公约数是多少?
解:1001=7×11×13(这个质分解常用到),308=7×11×4
所以最大公约数是7×11=77
在这种方法中,先将数进行质分解,而后取它们“所有共有的质因数之积”便是最大公约数。

3、(辗转相除法)用辗转相除法求4811和1981的最大公约数。

解:∵4811=2×1981+849,
1981=2×849+283,
849=3×283,
∴(4811,1981)=283。

补充说明:如果要求三个或更多的数的最大公约数,可以先求其中任意两个数的最大公约数,再求这个公约数与另外一个数的最大公约数,这样求下去,直至求得最后结果。

(5)约数个数公式
一个合数的约数个数,等于它的质因数分解式中每个质因数的个数(即指数)加1的连乘的积。

例如:求240的约数的个数。

解:∵240=24×31×51,
∴240的约数的个数是
(4+1)×(1+1)×(1+1)=20,
∴240有20个约数。

四奇偶性
(1)奇数和偶数
整数可以分成奇数和偶数两大类.能被2整除的数叫做偶数,不能被2整除的数叫做奇数。

偶数通常可以用2k(k为整数)表示,奇数则可以用2k+1(k为整数)表示。

特别注意,因为0能被2整除,所以0是偶数。

最小的奇数是1,最小的偶数是0.
(2)奇数与偶数的运算性质
性质1:偶数±偶数=偶数,
奇数±奇数=偶数。

性质2:偶数±奇数=奇数。

性质3:偶数个奇数相加得偶数。

性质4:奇数个奇数相加得奇数。

性质5:偶数×奇数=偶数,
奇数×奇数=奇数。

偶数×偶数=偶数
(3)反证法
例:桌上有9只杯子,全部口朝上,每次将其中6只同时“翻转”.请说明:无论经过多少次这样的“翻转”,都不能使9只杯子全部口朝下。

解:要使一只杯子口朝下,必须经过奇数次“翻转”.要使9只杯子口全朝下,必须经过9个奇数之和次“翻转”.即“翻转”的总次数为奇数.但是,按规定每次翻转6只杯子,无论经过多少次“翻转”,翻转的总次数只能是偶数次.因此无论经过多少次
“翻转”,都不能使9只杯子全部口朝下。

这个证明过程教给我们一种思考问题和解决问题的方法.先假设某种说法正确,再利用假设说法和其他性质进行分析推理,最后得到一个不可能成立的结论,从而说明假设的说法不成立.这种思考证明的方法在数学上叫“反证法”。

(注:文档可能无法思考全面,请浏览后下载,供参考。

可复制、编制,期待你的好评与关注)。

相关文档
最新文档