地球化学名词解释

合集下载

地化资料

地化资料

地球化学:是研究自然界,主要是地球及其各组成部分的化学演化及其机理的科学。

勘查地球化学:是以地质学,地球化学作为理论基础,通过系统测试周围三度空间与成矿有关系的化学元素的分布分配,组分分带,存在形式以及与成矿有关的物理化学参数等,并通过这些标志来找矿的一门科学.地球化学背景区:未受成矿作用影响的地区。

地球化学背景值:未受成矿作用影响的地区的元素含量值。

可分为,全球背景、地球化学省背景、区域背景、局域背景。

地球化学背景: 指某些地区的或天然物质中,元素属于正常含量的现场象地球化学异常:天然物质中,某种地化指标与其地化背景比较,出现显著差异的现象称为地球化学异常。

通常,人们把x+2σ称为异常。

(指某些地区的或天然物质中,一些元素的含量明显偏离正常含量或某些化学性质明显发生变化的现象)原生异常:在成岩,成矿作用下,在基岩中所形成的异常次生异常:由于岩石,矿石的表生破坏在现代疏松沉积物,水及生物中形成的异常矿异常,细分为矿体(矿床)异常,矿化异常非矿异常,就是与矿体或矿化无关的异常,如成岩作用或人为活动引起的异常。

指示元素:在化探工作中能够用来指示矿体的存在或能够用来指示找矿方向的化学元素。

克拉克值:指元素在地壳岩石圈中的平均含量.浓度克拉克值:地质体中某元素的平均含量与克拉克值的比值浓集系数:各种矿场的最低可采品位与其克拉克值的比值地球化学指标:指能够用来找矿或解决某些地质问题地球化学标志原生晕:在成岩,成矿作用影响下,在矿体附近围岩中所形成的局部地球化学原生异常次生晕:在表生作用下,由于矿床或其原生晕的表生破坏,元素的迁移,在矿体及其原生晕附近疏松覆盖物中形成的次生地球化学异常分散流:在表生作用下,由于矿体及其分散流的破坏,在其附近的地表水系沉积物中形成的次生异常地带,沿水系呈线状延伸原生环境:指从循环雨水的最低水平向下延伸至能够形成正常岩石的最深水平的环境次生环境:在地球表面风化,侵蚀,沉积的环境岩石地球化学找矿:是应用岩石地球化学测量了解岩石中元素的分布,总结元素分散与集中的规律,研究其与成岩、成矿作用的联系,并通过发现异常与解释评价异常来进行找矿的。

地球化学

地球化学

一.关于地球化学的定义:地球化学是研究地球(包括部分天体)的化学组成、化学作用和化学演化的科学。

二.地球化学的基本问题1、地球系统中元素的组成(质)2、元素的共生组合和赋存形式(量)3、元素的迁移和循环(动)4:地球的历史和演化(史)三.地球化学研究思路在地质作用过程中,在宏观地质体变化和形成的同时,亦伴有大量肉眼难以辨别的化学组成变化的微观踪迹,它们包含着重要的定性和定量的地质作用信息,应用现代化学分析测试手段,剖析这些微观踪迹,从而揭示宏观地质作用的奥秘。

(一句话那就是“见微而知著”)第一章地球和太阳系的化学组成第一节地球的结构和组成一.大陆地壳和大洋地壳的区别:1.大洋地壳较薄,10-5公里,平均厚8公里;大陆地壳较厚,最厚可达70公里,平均厚33公里。

(整个岩石圈也是大陆较厚,海洋较薄。

海洋为50—60公里,大陆为100—200公里或更深。

)2.在元素的分配上,洋壳比陆壳贫硅和碱金属,但较富镁富铁。

正是这种原因,大洋沉积物中富含Fe、Mn、Co、Ni等亲铁元素,它们是现代海洋中巨大的潜在资源。

二. 固体地球各圈层的化学成分特点○1地壳:O、Si、Al、Fe、Ca○2地幔:O、Mg、Si、Fe、Ca○3地核:Fe-Ni○4地球:Fe、O、Mg、Si、Ni第二节元素和核素的地壳丰度一.概念1.地球化学体系:按照地球化学的观点,我们把所要研究的对象看作是一个地球化学体系,每个地球化学体系都有一定的空间,都处于特定的物理化学状态(C,T,P等)并且有一定的时间联系。

2.丰度:表示元素在某地质体中(如地球,地壳,宇宙星体及某岩类,岩体等)的含量。

3.克拉克值:元素在地壳中的平均含量4.质量克拉克值:若计算元素在地壳中的平均含量时以质量计算,则称为质量克拉克值。

5.原子克拉克值:以原子数之比表示的元素相对含量(即指某元素在某地质体中全部元素的原子总数中所含原子个数的百分数)任意元素的原子克拉克值=某元素在某地质体中的相对原子数(用N表示)/所有元素相对原子数之和(用 N表示)6.浓度克拉克值:某元素在某地质体中的平均含量/元素克拉克值二.克拉克值的变化规律:①递减:元素的克拉克值大体上随原子序数的增加而减少(但锂,铍,硼以及惰性气体的含量并不符合上述规律,丰度值很低)②偶数规则:周期表中原子序数为偶数的元素总分布量(86%)大于奇数元素的总分布量(14%)。

地球化学

地球化学

地球化学一.名词解释1. 异戊二烯型化合物:由一个个异戊二烯单元头尾相连重复组合而成一类化合物,它广泛存在于生物体、近代沉积物、古代沉积岩以及原油中。

2. 萜类:环状的异戊二烯型化合物。

3.同位素效应:由于同位素不同,引起单质或化合物在物理、化学性质上发生微小变化的现象,称为同位素效应。

4.同位素分馏:在各种自然过程中,由于同位素的效应引起同位素相对含量在不同相之间的变化。

5.干酪根:沉积物和沉积岩中不溶于非氧化性的无机酸、碱和常用有机溶剂的一切有机质。

6.腐殖质:指土壤和现代沉积物中不能水解的、不溶于不溶于有机溶剂的有机质。

7.低熟油:指所有非干酪根晚期热降解成因的各类低温早熟的非常规石油。

8.生物标志物:是沉积物(岩)、原油、油页岩和煤中那些来源于生物体,在有机质演化过程中具有一定稳定性,没有或很少发生变化,基本保存了原始生化组分的碳骨架,记载了原始生物母质特殊分子结构信息的有机化合物。

9.质谱法:通过研究分子量和离子化的分子碎片来认识分子结构的一种现代分析技术(以高能电子将单个分子击碎,用碎片的质量组成特征,推测分子的结构组成和分子量,以达到分子鉴定的目的)。

10.质谱法(棒图):将每一次扫描的记录,应用质荷比对检测器响应值作图,就可以得到由色谱分离的某一种化合物的质谱图。

11.质量色谱图:12.总离子流图:13.生物成因气:14.热成因气:二.简答题1.生物有机质的化学组分碳水化合物脂类蛋白质和氨基酸木质素和丹宁2.异戊二烯单元的结构及简单组合、拆分3.富沉积有机质的沉积环境4.C 、O 同位素丰度的表示方法5.自然界中碳同位素分馏的几种方式和结果6.干酪根的光学显微组分分类主要(1)统计腐泥组和壳质组之和与镜质组的比例;采用(2)采用类型指数(T 值)来划分,具体方法是将鉴定的各组分相对百分含量代入下式,计算出T 值,再依据表中的分类标准划分类型。

两种 方法以透射光为基础的干酪根显微组分分类组 分 亚 组 分腐泥组 无定形—絮状,团粒状,薄膜状有机质藻质体孢粉体—孢子、花粉、菌孢树脂体壳质组 角质体木栓质体表皮体镜质组 结构镜质体无结构镜质体惰质组 丝质体7.干酪根研究的常用测试方法干酪根研究的常用方法直接方法:显微镜SEM ——scanning electronic microscope荧光显光镜IR 吸收光谱X-ray核磁共振(NMR ),顺磁共振(ESR)(不破坏干酪根,根据其物理特性来研究干酪根的性质、结构)间接方法:元素分析稳定同位素热解分析(热失重、热模拟、热解—-色谱)超临界抽提、氧化分解100)100()75()50()100(-⨯+-⨯+⨯+⨯=惰质组含量镜质组含量壳质组含量腐泥组含量T(这种方法的特点是彻底的破坏干酪根,看它由哪些单元组成。

地球化学复习概要

地球化学复习概要

1、地球化学:就是地球的化学,它是研究地球(广义的也包括部分天体)的化学组成、化学作用及化学演化的学科,它是地学和化学的边缘学科。

2、丰度:一种化学元素在某个自然体中的重量占这个自然体的全部化学元素总重量的相对份额,元素丰度是化学元素在一定自然体中的相对平均含量。

3、类质同象:某种物质在一定外界条件下结晶时,晶体中的部分构造位置被介质中的其他元素(如原子、离子、络离子、分子)所占据而只引起晶格常数的微小改变,晶格构造类型、化学键类型、离子正负电荷的平衡保持不变或相近,这种现象称为类质同象。

4、稀土元素:指原子序数从57到71的15个镧系元素,在周期表中属ⅢB族,同族中的39号元素钇一般也看做稀土元素。

5、分配系数:分为简单分配系数、复合分配系数、对数分配系数、总分配系数,总分配系数D又称岩石分配系数,是矿物的简单分配系数和岩石中矿物的百分含量乘积的代数和。

// 总分配系数:又称为岩石的分配系数,它是用来讨论微量元素在岩石(矿物集合体)和与之平衡的熔体之间的分配关系的。

6、地球化学亲和性:在自然体系中元素形成阳离子的能力和所显示出的有选择的与某种阴离子结合的特性;主要有亲氧性元素、亲硫性元素、亲铁性元素。

7、微量元素(?):又称痕量元素,指研究体系中元素含量小于0.1%的元素。

8、环境地球化学:是介于环境科学和地球化学之间的一门新兴边缘交叉学科,研究人类赖以生存的地球环境的化学组成、化学作用、化学演化与人类相互关系的科学。

9、不相容元素(ICE):D小于1的元素, 随着结晶程度的增长而逐步在残余岩浆中富集.如Rb、Cs、Ba、Sr、Zr、Nb、Th、REE、P等10、相容元素(CE):D大于1的元素,倾向在矿物晶体中富集,并随这些矿物的晶出而逐步在残余岩浆中贫化.如Fe、Co、Ni、Cr、Mg等11、生物标志化合物:指沉积有机质、原油、油页岩、煤中那些来源于活的生物体,在有机质演化过程中具有一定稳定性,没有或较少发生变化,基本保存了原始生化组分的碳骨架,记载了原始生物母质的特殊分子结构信息的有机化合物。

地球化学

地球化学

地球化学是研究地球(包括部分天体)的化学组成、化学作用和化学演化的科学研究内容:1.自然界中元素和同位素的组成与分布2.地质作用中元素迁移和共生组合规律3.地质运动过程中元素的演化和循环历史4.地球化学的基础理论研究5.应用地球化学研究认识论: 1.地球化学系统观点2.元素自然历史观点3.以元素分配观点认识事物: 地球上任何化学运动均表现为分配和再分配,所有这些不同相之间元素的分配导致了地球上元素的集中和分散方法论: (1)将现象转化为地球化学过程和体系(2)将地质现象转化为地球化学的条件和环境(3)将生物、环境、地质课题转化为地球化学的课题地球化学基本工作方法:野外工作方法1宏观地质现象的时空观察2野外地球化学问题研究 3地球化学样品采集(代表性、系统性、统计性)室内研究方法1.样品的元素含量分析2.元素结合形式和赋存状态的研究3.作用物理化学条件的测定和计算4.实验模拟(地质现象和理论的检验)丰度: 是指各种化学元素在一定自然体系中的相对平均含量。

重量丰度的表示方法:常量元素以%(10-2)、微量元素以10-6(ppm)、超微量元素以-9(ppb)或-12(ppt)表示丰度体系: 不同层次的元素丰度构成丰度体系克拉克值: 指地壳中元素重量百分数的丰度值区域克拉克值: 是指地壳以下不同构造单元中元素的丰度值丰度系数: 是指某一自然体的元素丰度与另一可作为背景的自然体的元素丰度的比值Si元素作为对比标准的理由:1.Si 元素在自然界中分布相当广泛,便于对比各种自然体系的丰度值 2. Si 是形成不挥发的稳定化合物的元素 3. Si 在化学分析和光谱分析中,都是较易精确测定的元素。

取 Si 原子 =10 是由于大部分元素的相对原子数介于106~ 10-4之间,研究克拉克值的地球化学意义:克拉克值确定着地壳作为一个物理化学体系的总特征以及地壳中各种地球化学过程的总背景,它既是一种影响元素地球化学行为的重要因素,又为地球化学提供了衡量元素集中分散及其程度的尺度。

地球化学概述了解地球的元素组成和化学过程

地球化学概述了解地球的元素组成和化学过程

地球化学概述了解地球的元素组成和化学过程地球化学是研究地球中元素的分布、组成、循环和地球化学过程的学科。

通过地球化学的研究,可以深入了解地球内部的构造、岩石的形成和变化,以及地球表面的地球化学循环过程。

本文将对地球化学的概念、地球的元素组成和化学过程进行详细介绍。

一、地球化学的概念地球化学是研究地球内部、地壳以及地球表面物质的元素组成、构造、化学性质、分布和相互作用的学科。

它综合运用地质学、化学以及物理学等多学科的知识,通过对地球样品的分析和实验研究,揭示地球内外部物质的来源和演化过程,以及地球系统各部分之间的相互关系。

二、地球的元素组成地球是由各种元素组成的。

根据地球上物质的组成,可以将其分为地壳、地幔和核三部分。

1. 地壳地壳是地球最外层的岩石壳层,主要由氧、硅、铝、铁、钙、钠、钾等元素组成。

其中,氧的含量最多,占地壳质量的约46.6%,次为硅,占约27.7%。

2. 地幔地幔位于地壳之下,是地球的中间层,其元素主要有铁、镁、铝、钙等。

地幔的质量约占地球质量的68%,是地球上最大的岩石体。

地幔的主要成分是硅酸镁铁质岩石,这种岩石含有较多的镁和铁。

3. 核地球的核分为外核和内核两部分。

外核主要由铁和镍组成,内核则是主要由铁和镍合金组成的固体球体。

核部分含有大量的重元素,如黄金、铂等,但是在地壳和地幔中的含量相对较少。

三、地球的化学过程地球的化学过程主要包括物质的释放、迁移、转化和再结晶等过程。

1. 物质的释放地球化学过程首先是物质的释放。

通过火山喷发、岩浆的侵入、地壳的拆解和岩石的风化等方式,地球内部的物质被释放到地表。

2. 物质的迁移释放到地表的物质会通过水、空气、土壤等介质进行迁移。

例如,地下水中的溶解物质会随着地下水流动的迁移而分布到不同位置。

3. 物质的转化地球中的物质会在不同的环境条件下发生转化。

例如,地壳中的岩石可以在高温高压的条件下变质成为变质岩,而在地表的岩石则会受到风化作用而转化为沉积岩。

什么是地球化学?

什么是地球化学?

什么是地球化学?地球化学是研究地球上各种元素的分布、循环、演化及其间的相互关系的学科。

地球化学家通过对地球上物质元素丰度、分布、运移、远景、转换和生物地球化学过程的研究,揭示了地球和太阳系的过去、现在和未来之间的相互作用及其对生物圈的影响。

地球化学在环境、资源、矿产、能源等领域中起着重要的作用,因此越来越受到人们的关注。

一、地球化学的起源与发展地球化学学科的源头最早可以追溯到19世纪中叶,当时一些科学家想要研究地球内部物质的成分以及它们是如何形成的。

20世纪早期,随着地球化学技术的逐渐发展,地球化学作为一门独立的学科开始逐渐形成。

现代地球化学是吸收了化学、物理、生物、地球科学等多个学科的研究成果并结合自身实践而形成的,目前为止已经成为了一个相对完整的学科体系。

二、地球化学的研究内容1. 地壳、地幔和核的物质成分研究地球分为地壳、地幔和核三部分,地壳是固体的外壳,地幔是固体的底部层,核则分为地核和外核。

地球化学家对这三部分物质的成分进行了分析研究,为地质学、矿物学和地球物理学的发展提供了重要的基础。

2. 环境污染的分析与治理地球化学家通过对环境样品进行组分测定,可以对污染源、传输途径和环境背景进行分析,从而为环境治理和保护提供科学依据。

例如,地下水、大气、土壤、净水等方面的环境保护等。

3. 土壤和植物的养分研究土壤是地球上生命活动所依赖的重要载体,而植物则是土壤中身份的代表。

地球化学家可以通过土壤、植物和水等生态系统元素分布的研究,了解土壤和植物的养分状况,为高产、优质和减少化肥的使用提供依据。

4. 能源和矿产资源的开发与利用地球化学在能源和矿产资源的开发与利用方面也发挥了重要作用。

例如,地球化学家可以通过对石油、天然气、金属矿物和非金属矿物等资源的地球气息研究,为这些资源的开发、利用和优化提供依据和指导。

三、结语地球化学在当今的环境保护、能源矿产开采和冶炼等方面都有着非常重要的作用。

地球化学家的研究能够让我们更好地了解地球上的物质元素,以及它们在自然界中的循环和演化,为构建可持续发展的地球环境做出积极贡献。

07-10年地球化学真题及答案---名词解释

07-10年地球化学真题及答案---名词解释

07-10年地球化学真题及答案---名词解释1、克拉克值:元素在地壳中的丰度(平均含量)称为克拉克值。

2、地壳的丰度:指元素在宇宙体或较大的地质体中整体(母体)的含量。

3、类质同像:某些物质在一定的外界条件下结晶时,晶体中的部分构造位置随机的被晶体中的其他质点(原子、离子、配离子、分子)所占据,结果只引起晶格常数的微小改变,晶体的构造类型、化学键类型等保持不变,这一现象称为类质同像。

4、同质多象:同一化学成分的物质,在不同的外界条件(温度、压力、介质)下,可以结晶成两种或两种以上的不同构造的晶体,构成结晶形态和物理性质不同的矿物,这种现象称同质多像。

5、常量元素:即主量元素,其是一个相对概念,通常将自然体系中含量高于0.1%的元素称为常量元素。

它们与氧结合形成的氧化物(或氧的化合物),是构成三大类岩石的主体,因此又常被称为造岩元素。

6、微量元素:微量(minor)或痕迹(trace)元素是一个相对概念,通常将自然体系中含量低于0.1%的元素称为微量元素。

7、不相容元素:在岩浆结晶作用过程中,那些不容易以类质同象的形式进入固相(造岩矿物)的微量元素,称为相容元素。

总分配系数D i<1的元素称为不相容元素,在熔体中富集。

8、相容元素:在岩浆结晶作用过程中,那些容易以类质同象的形式进入固相(造岩矿物)的微量元素,称为相容元素。

总分配系数D i>1的元素称为相容元素,在熔体中贫化。

9、分配系数:在温度、压力一定条件下,微量元素i(溶质)在两相平衡分配时其浓度比为一常数(K D), K D称为分配系数。

10、同位素:核内质子数相同而中子数不同的同一类原子。

11、稳定同位素:原子核稳定,其本身不会自发进行放射性衰变或核裂变的同位素。

12、同位素分馏:同位素以不同比例分配于不同物质或物相的现象。

13、分馏系数:达到同位素交换平衡时,共存相间同位素相对丰度比值为一常数,称分馏系数。

14、SMOW:标准平均大洋水,是氢和氧同位素的世界统一标准。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1、克拉克值:是指元素地壳中重量百分含量。

2、浓度克拉克值:浓度克拉克值=元素在某一地质体中平均含量/元素的克拉克值,它反映元素在地质体中集中和分散程度,大于1说明相对集中,小于1说明相对分散。

3、元素的地球化学迁移:元素从一种赋存状态转变为另一种赋存状态,并经常伴随元素组合和分布上的变化以及空间位移的作用称为地球化学迁移。

4、元素的丰度值:每种化学元素在自然体中的质量,占自然体总质量(或自然体全部化学元素总质量)的相对份额(如百分数),称为该元素在该自然体中的丰度值.
5、类质同象:某种物质在一定的外界条件下结晶时,晶体中的部分构造位置被介质的其它质点 (原子、离子、络离子、分子)所占据,结果只引起晶格常数的微小变化,而使晶体构造类型、化学键类型等保持不变的现象。

6、载体矿物和富集矿物载体矿物:载体矿物和富集矿物载体矿物是指岩石中所研究元素的主要量分配于其中的那种矿物。

但有时该元素在载体矿物中的含量并不很高,往往接近该元素在有时总体中的含量。

富集矿物是指岩石中所研究元素在其中的含量大大超过它在岩石总体中的含量的那种矿物。

7、元素的共生组合:具有共同或相似迁移历史和分配规律的元素常在特定的地质体中形成有规律的组合,称为元素的共生组合。

8、元素的赋存状态:也称为元素的存在形式、结合方式、相态、迁移形式等,指元素在其迁移历史的某个阶段所处的物理化学状态与共生元素的结合性质。

9、亲氧元素:是指那些能与氧形成强烈离子键化合物的元素,如K、Na、Si、Al 等,通常以硅酸盐形式聚集于岩石圈。

10、八面体择位能:任意给定的过渡元素离子,在八面体场中的晶体场稳定能一般总是大于在四面体场中的晶体场稳定能.二者的差值称为该离子的八面体择位能(OSPE). 这是离子对八面体配位位置亲和势的量度。

八面体择位能愈大,则趋向于使离子进入八面体配位位置的趋势愈强,而且愈稳定。

11、相容元素和不相容元素:在液相和结晶相(固相)的共存体系,如在岩浆结晶作用过程中,一些微量元素易以类质同像的形式进入造岩矿物晶格,称为相容元素,如Ni2+、Co2+、V3+、Cr3+、Yb3+、Eu2+等。

另一些微量元素不易进入造岩矿物晶格,倾向于残留在熔浆或液相这中,称为不相容元素,如Rb、Cs、Sr、Ba等。

12、元素的地球化学亲和性:元素的地球化学亲和性,指阳离子在地球化学过程中趋向于同某种阴离子结合的性质。

分亲铁性(趋向于单质形式产出)、亲硫性(趋向于与硫形成强烈共价键的性质)和亲氧性(趋向于与氧形成强烈离子键的性质)
13、分配系数:从能斯特分配定律的表达式中可知:在温度、压力恒定的条件下,微量元素i (溶质)在两相分配达平衡时其浓度比为一常数(KD),此常数KD称为分配系数,或称能斯特分配系数。

分配系数只受温度、压力的限定,而与溶质的浓度无关(在一定浓度范围内)。

14、地球化学障:地球化学障指地壳中物理或化学梯度具有突变的地带,通常伴随着元素的聚集或堆积作用。

即在元素迁移过程中经过物理化学环境发生急剧变化的地带时,介质中原来稳定的元素迁移能力下降,形成大量化合物而沉淀,这种地带就称为地球化学障。

15、K不稳定常数:即络合离子的溶解平衡常数
16、 Eu:反映Eu与REE整体分离程度的参数,=2Eu N/(Sm N+Gd N)
17、同位素分馏系数:同位素分馏系数,反映同位素在同种或不同种化合物中分馏程度的参数,=同位素在A物质中的比值/同位素在B物质中的比值,
18、δO18值:δ值指样品同位素比值(Rsa)相对于标准样品的同位素比值(RSt)的千分差,表示式为:δO18‰=﹛( O18/ O16)样品/(O18/ O16)标准-1﹜×1000
19、衰变定律:单位时间内衰变的原子数与现存放射性母体的原子数成正比。

其数学表达式如下:-dN/dt = λN
式中:N为在 t 时刻存在的母体原子数;dN/dt为t时的衰变速率,负号表示N随时间减少;λ为衰变速率常数,表示单位时间内衰变的原子比例数,其单位为1/年或1/秒。

将前式由t=0到t求积分,整理后得:ln(N/N0)=-λt
N0为t=0时的衰变母体原子数。

由此得:N=N0e-λt 或N0 =Neλt
以上为放射性同位素衰变的基本公式,表明母核原子数为N0的放射性同位素,经时间t后残存的母体原子数N= N0e-λt,N与t为指数函数。

20、科尔任斯基相律:在一定的T、P及活性组分化学位μ的条件下,相互平衡的共存矿物数不超过惰性组分数。

Φ≤Kи。

就是柯尔仁斯基相律。

相关文档
最新文档