电晕放电和沿面放电
高电压技术速记版专题1-6

高电压技术速记版专题1-6专题一:高电压下气体、液体、固体放电原理1、绝缘的概念:将不同电位的导体分开,使之在电气上不相连接。
具有绝缘作用的材料称为电介质或绝缘材料。
2、电介质的分类:按状态分为气体、液体和固体三类。
3、极化的概念:在外电场作用下,电介质的表面出现束缚电荷的现象叫做电介质极化。
4、极化的形式:电子式极化、离子式极化、偶极子式极化;夹层式极化。
(前三种极化均是在单一电介质中发生的。
但在高压设备中,常应用多种介质绝缘,如电缆、变压器、电机等)5、电子式极化:由于电子发生相对位移而发生的极化。
特点:时间短,弹性极化,无能量损耗。
[注]:存在于一切材料中。
6、离子式极化:离子式极化发生于离子结构的电介质中。
固体无机化合物(如云母、陶瓷、玻璃等)多属于离子结构。
特点:时间短,弹性极化,无能量损耗。
[注]:存在于离子结构物质中。
7、偶极子极化:有些电介质具有固有的电矩,这种分子称为极性分子,这种电介质称为极性电介质(如胶木、橡胶、纤维素、蓖麻油、氯化联苯等)。
特点:时间较长,非弹性极化,有能量损耗。
[注]:存在于极性材料中。
8、夹层式极化特点:时间很长,非弹性极化,有能量损耗。
[注]:存在于多种材料的交界面;当绝缘受潮时,由于电导增大,极化完成时间将大大下降;对使用过的大电容设备,应将两电极短接并彻底放电,以免有吸收电荷释放出来危及人身安全。
9、为便于比较,将上述各种极化列为下表:10、介电常数:[注]:用作电容器的绝缘介质时,希望些好。
大些好。
用作其它设备的绝缘介质时,希望小11、电介质电导:电介质内部带点质点在电场作用下形成电流。
金属导体:温度升高,电阻增大,电导减小。
绝缘介质:温度升高,电阻减小,电导增大。
12、绝缘电阻:在直流电压作用下,经过一定时间,当极化过程结束后,流过介质的电流为稳定电流称为泄漏电流,与其对应的电阻称为绝缘电阻。
(1)介质绝缘电阻的大小决定了介质中泄漏电流的大小。
(完整word版)高电压技术考试重点名词解释及简答

1绝缘强度:电解质保证绝缘性能所能蒙受的最高电场强度。
2自由行程:电子发生相邻两次碰撞经过的行程。
3汤逊电子崩理论:特别是电子在电场力作用下产生碰撞电离,使电荷快速增添的现象。
4自持放电:去掉外界电离要素,仅有电场自己即可保持的放电现象。
5非自持放电:去掉外界电离要素放电立刻停止的放电现象。
6 汤逊第一电离系数:一个电子逆着电场方向前进1cm 均匀发生的电离次数。
7汤逊第三电离系数:一个正离子碰撞阴极表面产生的有效电子数。
8电晕放电:不均匀电场中曲率大的电极四周发生的一种局部放电现象。
9伏秒特征:作用在气隙上的击穿电压最大值与击穿时间的关系。
10U%50击穿电压:冲击电压作用下负气隙击穿的概率为50%的击穿电压。
11爬电比距:电气设施外绝缘的爬电距离与最高工作线电压有效值之比。
12检查性试验:检查绝缘介质某一方面特征,据此间接判隔离缘情况。
13耐压试验:模拟电气设施在运转中收到的各样电压,以此判断耐压能力。
14汲取比:加压后 60s 与 15s 丈量的电阻之比。
15容升效应(电容效应)回路为容性,电容电压在变压器漏抗上的压降使电容电压高于电源电压的现象。
16耦合系数:互波阻与正波阻之比。
17地面落雷密度 ; 每一雷暴日每平方公里地面上受雷击的次数。
18落雷次数:每一百公里线路每年落雷次数。
19工频续流:过电压消逝后,工作电压作用下避雷器空隙持续流过的工频电流。
20残压:雷电流过阀片电阻时在其上产生的最大压降。
21灭弧电压:灭弧前提下润徐加在避雷器上的最高工频电压。
22保护比:残压与灭弧电压之比。
23耐雷水平:雷击线路,绝缘不发生闪络的最大雷电流幅值。
24雷击跳闸率:每一百公里线路每年由雷击惹起的跳闸次数。
25击杆率:雷击杆塔的次数与雷击线路总次数的比。
(山区大)26绕击率:雷绕击导线的次数与雷击导线总次数的比。
27保护角:避雷线与边相导线的夹角。
28工频过电压:系统运转方式因为操作或故障发生改变时,产生的频次为工频的过电压。
高电压技术复习题

8、输电线路防雷的具体措施主要有哪些?
1、电气设备接地分哪几类?其目的各是什么?
2、简答提高油间隙击穿电压的措施?
3、画出单相变压器绕组末端接地时的电位分布曲线。
4、采用高真空为什么能提高间隙的击穿电压?
5、简述内过电压的分类及特点?
6、哪些因素会影响变压器绕组的波过程?
7、有时可能会在三线导线上同时出现雷电过电压。
8、主变压器门型构架上可以安装避雷针。
9、变压器油一般为强极性液体介质。
10、光辐射频率越低,其光子能量越低。(√)
1、气压升高时,电气设备外绝缘电气强度下降。
2、感应雷过电压的极性与雷电流极性相同。
3、负离子形Βιβλιοθήκη 对气体放电发展起促进作用。4、在棒极间隙中,正极性时的击穿电压比负极性时高。
8、包在电极表面的薄固体绝缘层称为()。
9、由于避雷线对导线的屏蔽作用,会使导线上的感应电压()。
10、电气设备绝缘受潮时,其击穿电压将()。
1、空载线路的合闸过电压属于(操作)过电压。
2、切除空载变压器过电压产生的根本原因是()。
3、电气设备绝缘普遍受潮时,其介质损耗角正切值将()。
4、切除空载变压器过电压产生的根本原因是()。
4、在直流电压作用下,电介质损耗主要由()所引起。
5、电场均匀程度越高,间隙的击穿场越强越()。
6、雷电放电现象可用()放电理论加以解释。
7、光辐射的波长越短,其光子的能量越()。
8、雷电放电过程中,()阶段的破坏性最大。
9、50KV的雷电波传到线路末端开路处世哲学,电压变为()KV。
10、等值盐密是用来反映()的参数。
解:
臭氧的制取方法和技术

臭氧的制取方法和技术:光化学法、电化学法、电晕放电法一、光化学法–紫外线臭氧发生器此方法是光波中的紫外光会使氧气分子 O2分解并聚合成臭氧 O3,大气上空的臭氧层即是由此产生的。
波长λ = 185nm(10 -9 m) 的紫外光效率最高,此时,光量子被 O2 吸收率最大。
其反应基本过程为:O2+hr→ O+OO2+O+M→ O3 +Mhr -紫外光量子M -存在的任何惰性物体,如反应器器壁、氮、二氧化碳气体分子等。
使用 185nm 紫外光产生臭氧的光效率为 130gO3/kw·h ,是比较高的。
但目前低压汞紫外灯的电-光转换效率很低,只为 0.6 %~ 1.5 %,则紫外法产生臭氧的电耗高达600kwh/kgO3,即 1.5gO3 /kw. h ,工业应用价值不大。
紫外法产生臭氧的优点是对湿度、温度不敏感,具有很好的重复性;同时,可以通过灯功率线性控制臭氧浓度、产量。
这两个特性对于臭氧用于人体治疗与作为仪器的臭氧标准源是非常合适的。
二、电化学法–电解纯水臭氧发生器利用直流电源电解含氧电解质产生臭氧气体的方法,其历史同发现臭氧一样悠久。
八十年代以前,电解液多为水内填加酸、盐类电解质,电解面积比较小,臭氧产量很小,运行费用很高。
由于人们在电极材料、电解液与电解机理、过程方面作了大量的研究工作,电解法臭氧发生技术取得了很大进步。
近期发展的 SPE (固态聚合物电解质)电极与金属氧化催化技术,使用纯水电解得到 14 %以上的高浓度臭氧,使电化学法臭氧发生器技术向前迈进了一大步。
日本某公司向市场推出了 120gO3/h 的电解臭氧发生器,电耗150kw·h/kgO3,使这种类型产品达到了工业化应用规模。
我国武汉大学早期开展了电解臭氧技术的研究,上海唐锋电器公司研究开发了电解法臭氧发生器系列产品,臭氧浓度可达 20 %,最大臭氧产量为 100g/h 。
该产品使用纯水电解产生臭氧后在机内直接与水混合形成 4-20mg/L 高浓度臭氧水,其规格为高浓度臭氧水供水量由 60L/h 到 5000L/h 。
关于电晕放电

火花放电是电极间的气体被击穿,形成电流在气体中的通道,即明显的电火花称为火花放电。
电晕放电是电极间的气体还没有被击穿,电荷在高电压的作用下发生移动而进行的放电,放电的现象是:在黑暗中可以看到电极的尖端有蓝色的光晕,称为电晕放电。
火花放电的电流大多都很大,而电晕放电的电流比较小。
电晕放电的形成机制因尖端电极的极性不同而有区别,这主要是由于电晕放电时空间电荷的积累和分布状况不同所造成的。
在直流电压作用下,负极性电晕或正极性电晕均在尖端电极附近聚集起空间电荷。
在负极性电晕中,当电子引起碰撞电离后,电子被驱往远离尖端电极的空间,并形成负离子,在靠近电极表面则聚集起正离子。
电场继续加强时,正离子被吸进电极,此时出现一脉冲电晕电流,负离子则扩散到间隙空间。
此后又重复开始下一个电离及带电粒子运动过程。
如此循环,以致出现许多脉冲形式的电晕电流。
电晕电流这一现象是G.W. 特里切尔于1938年发现的,称为特里切尔脉冲。
若电压继续升高,电晕电流的脉冲频率增加、幅值增大,转变为负辉光放电。
电压再升高,出现负流注放电,因其形状又称羽状放电或称刷状放电。
当负流注放电得以继续发展到对面电极时,即导致火花放电,使整个间隙击穿。
正极性电晕在尖端电极附近也分布着正离子,但不断被推斥向间隙空间,而电子则被吸进电极,同样形成重复脉冲式电晕电流。
电压继续升高时,出现流注放电,并可导致间隙击穿。
电晕放电频电晕电流与电压同相,反映出电晕功率损耗。
工程应用中还常以外施电压与电晕电荷量的关系表示电晕特性,称为电晕的伏库特性。
架空输电线路导线电晕起始电场强度E s可由皮克公式计算:(千伏/厘米)式中δ为空气相对密度,m为绞线系数,R为导线半径(厘米)。
当δ=1、m=0.5、R=0.9厘米时,E s=19.7千伏/厘米。
实际上,导线表面状况如损伤、雨滴、附着物等,都会使电晕放电易于发生。
电晕放电在工程技术领域中有多种影响。
电力系统中的高压及超高压输电线路导线上发生电晕(见图),会引起电晕功率损失、无线电干扰、电视干扰以及噪声干扰。
高电压技术复习资料

击穿:当气体中的电场强度达到一定数值,气体中的电流剧增,在气体间隙中形成一条导电性很高的通道,气体丧失绝缘能力,气体这种由绝缘状态变成良导电状态的过程。
自持放电:只依靠电场就能维持下去的放电。
非自持放电:依靠外界游离因素支持的放电。
伏秒特性曲线:用气隙上出现电压最大值与放电时间关系来表征气隙在冲击电压下的击穿特性。
50%击穿电压:在该电压下进行多次试验,气隙击穿概率为50%。
沿面放电:在固体介质和空气的分界面上出现沿着固体介质表面的气体放电现象。
耐压试验:模拟设备在运行过程中实际可能碰到的危险的过电压状况对绝缘加上与之等价的高电压来进行试验,从而考核绝缘的耐电强度。
极化指数:对大电容量的设备,可采用10min和1min 时的绝缘电阻之比。
绝缘吸收比:加压60s时的绝缘电阻与15s时的绝缘电阻的比值。
局部放电:当外加电压在电气设备中产生的场强,足以使绝缘部分区域发生放电,但在放电区域内未形成固定放电通道的这种放电现象,称为局部放电。
彼得逊法则:计算节点的电流、电压,可把线路等值成一个电压源,其电动势是入射波的2倍,其波形不限,电源内阻是波阻抗Z1。
雷电日:一年中有雷电的日数(小时数)。
阀型避雷器残压:避雷器动作后雷电流流过阀片在阀片上形成的压降。
耐雷水平:雷击线路时线路绝缘布发生冲击闪络的最大雷电流幅值。
雷击跳闸率:每100km线路每年由雷击引起的跳闸次数。
反击:线路绝缘上电压的幅值随雷电流增大而增大,当这个幅值大于绝缘子串冲击闪络电压时,绝缘子串将发生闪络,由于此时杆塔电位较导线电位为高,此类闪络称为反击。
绕击:雷绕过避雷线而直接击中导线。
绕击率:发生绕击的概率。
进线段保护:在临近变电所1~2km的一段线路上加强防雷保护措施。
绝缘配合:根据电气设备在系统中可能承受的各种电压,并考虑过电压的限制措施和设备的绝缘性能后来确定的绝缘水平,以便把作用于电气设备上的各种电压所引起的绝缘损坏降低到经济上和运行上所能接受的水平。
高电压工程-第二章 气体放电的基本理论【】

第6节 沿面放电与污秽闪络
1)定义—当绝缘承受的电压超过一定值时,在固体介 质和空气交界面上出现的放电现象,叫沿面放电。
当沿面放电发展成为贯穿性的空气击穿时,叫沿面闪络。 沿面放电是气体放电,由于交界面上电压分布不均匀,
沿面闪络电压比气体单独存在时的击穿电压低 输电线路遭受雷击时绝缘子的闪络,处于大气脏污地区
的瓷瓶在雷雾天发生闪络,均属沿面放电。 为避免绝缘子发生不可恢复的击穿,在设计中让其击穿
电压高出闪络电压约50% 2)影响因素—绝缘表面状态、污秽程度、气候条件等
因素影响很大。
沿面闪络的几种形式
工频电压作用下
沿平板玻璃表面 滑闪放电照片
辽沈地区2001年2月22日遭遇最严重大面积停电事故,沈阳市区 停电面积超过70%。辽沈停电事故是从输电线路污闪开始的。 辽沈为重工业区,含盐的空气污染物附着在绝缘瓷瓶上,大雾 湿气使瓷瓶绝缘能力降低,电弧沿着瓷瓶表面爬升,出现闪烙
➢电晕造成的损耗可削弱输电线上的雷电冲击电压 波的幅值和陡度;
➢利用电晕制造除尘器、消毒柜和对废气、废水进 行处理及对水果、蔬菜进行保鲜等。
极不均匀电场中气隙放电的极性效应
对于“棒—板”间隙,将“棒”的极性定义为间隙的 极性
1)正极性--棒 起晕电压高 击穿电压低
2)负极性--棒 起晕电压低 击穿电压高
D54动车组山东出事撞死一人致车头裂开
2009年3月28日,青岛—北京南D54次动车 途经山东潍坊,列车撞上了一男性铁路工人 (当场死亡),导致车头部分裂开,留有暗 红色血迹。列车暂停约20分钟,最终晚点15 分到达北京。
当时D54路过潍坊站后,正处于加速阶段, 时速在200公里以上。
第三节 流注放电理论
沿面放电:气体介质与固体介质的交界面上沿着固体介质的表面 而发生在气体介质中的放电;当沿面放电发展到使整个极间发 生沿面击穿时称为沿面闪络。
沿面放电

3、悬式绝缘子的沿面放电
绝缘子串 (钢化玻璃)
均 压 环
四分裂导线
绝缘子串的电压分布很不均匀
图1-43 500kV线路的绝缘子串
使用均压环来改善绝缘子 串的电压分布
绝缘子的三种闪络方式
干闪: 表面干燥、洁净的绝缘子发生的闪络; 湿闪: 表面洁净的绝缘子在淋雨时的闪络; 污闪: 表面脏污的绝缘子在受潮情况下的闪络;
二、极不均匀电场中的沿面放电
2、支柱绝缘子的沿面放电 (电场具有弱垂直分量)
母线(电极) 固体介质
(电工陶瓷) 法兰(接地极)
(a)
电极
固体介 质
电极 (b)
支持绝缘子表面电场的垂直 分量小,沿固体介质表面没 有较大的电容电流流过,放 电过程中不会出现热游离现 象,故没有明显的滑闪放电。
因而垂直于放电发展方向的 介质厚度对放电电压实际上 没有影响。
工程中绝大多数是极不均匀电场的沿面放电。
❖2.5 沿面放电
二、极不均匀电场中的沿面放电
1、套管的沿面放电(电场具有强垂直分量)
导电杆 (电极)
固体介质 (电工陶瓷)
法兰 (接地极)
导电杆 固体介质 法兰
1、套管的沿面放电(电场具有强垂直分量) 放电发展过程可大致分为三个阶段 电晕放电 细线状辉光放电 滑闪放电
❖2.5 沿面放电 (一)均匀电场中的沿面放电
U闪<Ub纯空 原因?
1.表面吸潮
电极附近E
一层水膜
离子 在E作 向电极 电导 用下 运动
电极附近首先游离 电极间E
U闪
因此
与绝缘材料表面吸潮性有关 与离子移动累积电荷
导致沿面闪络电压 低于空气间隙的击 穿电压。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
§2.3 电晕放电 第六节 不均匀电场中的放电过程 一、稍不均匀电场和极不均匀电场中的放电过程
一、稍不均匀电场和极不均匀电场的放电特征
按照电场的不均匀程度分为 稍不均匀电场 和 极 不均匀电场。
稍不均匀电场:放电特性与均匀电场相似,一旦 出现自持放电便一定立即导致整个气隙击穿。例如: 高压实验中用来测高电压的球隙、全封闭组合电器中 的分相母线筒。
电晕放电和沿面放电 (10)
流柱发展阶段
(1)当棒具有正极性时 电子崩进入棒电极,正电荷留在棒尖加
强了前方的电场(曲线2),对形成流柱发展 有利。头部前方产生电子崩,吸引入流柱头部 正电荷区域,加强并延长流柱通道;
流柱及其头部的正电荷使强电场区更向前 推移(曲线3),促进流柱通道进一步发展, 逐渐向阴极推进,形成正流柱。
E (a)
Et
E En (b)
En
E Et (c) 电晕放电和沿面放电
(17)
(一)均匀和稍不均匀电场中的沿面放电。
界面与电力线平行,但沿面闪落电 压仍要比空气间隙的击穿电压低很 多?
E
Keywords:气隙,水膜,电阻不 均匀和粗糙不平。
提高沿面闪络电压的措施:在连接 处涂导电粉末或导电胶。
电晕放电和沿面放电 (6)
三、电晕的危害 (1)光、声、热等效应使空气发生化学反应,产生
腐蚀作用;(2)消耗能量,电晕损耗是超高压输电线 路设计是必须考虑的因素,坏天气电晕功率损耗会比 好天气时大得多;(3)电晕会对无线电和电视广播产 生干扰,还可能产生超过环保标准的噪声。
四、防止和减轻电晕的方法 根据产生的机理制定方法 采用扩径导线和空心导
1、非自持放电阶段 2、流柱发展阶段。
非自持放电阶段
(1)当棒具有正极性时 在棒极附近,积聚起正空间电荷,减 少了紧贴棒极附近的电场,而略微 加强了外部空间的电场,棒极附近难 以造成流柱,使得放电自持,即电晕 放电难以形成。
电晕放电和沿面放电 (9)
非自持放电阶段 (1)当棒具有负极性时 电子崩中电子离开强电场区后,不再 引起电离,正离子逐渐向棒极运动, 在棒极附近出现了比较集中的正空间 电荷,使电场畸变。棒极附近的电场 得到增强,因而自持放电条件易于满 足,易于转入流柱而形成电晕放电。
线,更加合适的措施是采用分裂导线(思考其他优点 ?)。
电晕放电和沿面放电 (7)
电晕的积极意义
分裂导线:每相都用若干根直径较小的平行分导线来 替换大直径导线。分裂数超过两根时,这些分导线通常 被布置在一个圆的内接正多边形顶点上。
分裂导线的电场强度与分导线的直径和分导线间的距
离 d 有关。330—750kv的超高压线路,分裂数一般取2—4
电晕放电和沿面放电 (12)
极性效应 曲率半径较小的电极的电位符号不同时,气隙的击穿电压
存在明显差异的现象。
极性效应的应用 在进行外绝缘的冲击高压试验时往往加正极性冲击电压;
在工频高压作用下,击穿均发生在外加电压为正极性的半周 内。
电晕放电和沿面放电 (13)
二、长气隙的击穿 气隙较长时,流注往往不能一次贯穿整个气隙,而
电晕放电和沿面放电 (3)
第 电晕放电 电场不均匀系数
电场不均匀系数
f E max E av
式中 Emax 最大电场强度,Eav为平均电lt; 2 时为稍不均匀电场 f > 4 以上时明显地属于极不均匀电场
电晕放电和沿面放电 (4)
二、电晕放电 电晕放电可以是极不均匀电场气隙击穿过程的第
一阶段,也可以是长期存在的稳定放电形式。这种放 电是极不均匀电场所特有的一种放电形式。
电晕放电和沿面放电 (5)
(1)基本物理过程描述; (2)外观特征:电极附近空间发出蓝色的晕光; (3)外加电压增大,电晕区也随之扩大,放电电流也 增大(由微安级到毫安级),但气隙总的来看,还保 持着绝缘状态,还没有被击穿。
出现逐级推进的先导放电现象。 长间隙的放电过程:电晕放电——先导放电(热电
离)——主放电——整个气隙被击穿。
** 雷电放电是自然界的超长间隙放电,其先导过程和 主放电过程发展的最充分。
§2.6 沿面放电和污闪事故
一、沿面放电概念 沿面放电:沿气体和固体绝缘或气体和液体绝缘
表面发生的气体放电现象叫沿面放电。
电晕放电和沿面放电 (11)
流柱发展阶段
(1)当棒具有负极性时 电子崩由强场区向弱场区发展,对电子崩
发展不利。棒极前的正电荷区消弱了前方空间 的电场,使流柱发展不利(曲线2);
等离子体层前方电场足够强后,发展新电 子崩,形成了大量二次电子崩,汇集起来后使 得等离子体层向阳极推进,形成负流柱
U 放 棒 板 U 放 棒 板
极不均匀电场:电场强度沿气隙分布极不均匀, 当所加电压达到某一临界值时,曲率半径小的电极附
近空间电场强度首先达到起始场强值E0 ,在此区域先
出现碰撞电离和电子崩,甚至出现流柱。 电晕放电和沿面放电 (1)
110kV全封闭组合电器
分相母线筒
电晕放电和沿面放电 (2)
图 户外1000kV特高压GIS变电站实景图
沿固体介质表面的闪络电压不但比固体介质 本身的击穿电压低得多,而且比极间距离相同的 纯气隙的击穿电压低不少?
电晕放电和沿面放电 (16)
三、沿面放电的类型与特点
界面电场分布可分为三种典型 情况,分别为:
(a)均匀和稍不均匀电场; (b)极不均匀电场具有强垂 直分量; (c)极不均匀电场具有弱垂 直分量
气体中沿着固体绝缘表面放电的形式包括: 沿面滑闪:尚未发生击穿; 沿面闪络:沿面击穿;
电晕放电和沿面放电 (15)
二、研究沿面放电的意义
电力系统中绝缘子、套管等固体绝缘在机械 上对高压导体起固定作用,又在电气上起绝缘作 用,其绝缘状况(击穿和闪络)关系到整个电力 系统的可靠运行。输电线路和变电所外绝缘的实 际绝缘水平取决于它的沿面闪络电压(为什么)。
; 1000kv及以上的特高压线路分裂数就更多,例如取8或 更大。 五、电晕的积极意义
衰减雷电过电压幅值和降低其陡度;抑制操作过电压的幅 值;改善电场分布;广泛应用于工业设施(静电除尘器、静电 喷涂装置、臭氧发生器)。
电晕放电和沿面放电 (8)
§2.4 不均匀电场气隙的击穿
一、短间隙的击穿 击穿过程