1000MW汽轮机系统介绍

合集下载

1000MW汽轮机介绍2007.08

1000MW汽轮机介绍2007.08
3。适应超超临界高参数、最具发展前途的独特结构 4。技术优势
SIEMENS的 技术优势-- 成熟的单轴、HMN组合机型
H- 高压单流缸 M- 中压双流缸 N- 低压双流缸
功率范围-300MW至1100MW 压力 30MPa,温度 600°C/620 °C
单轴“HMN”型四缸四排汽机型
同Niederaussem 1025MW-五缸六排汽2002
SIEMENS “HMN”型汽轮机的技术特点
双流中压缸特点 (1)无再热蒸汽管道, 再热门直接与汽缸相连 (2)损失小、对汽缸附 加作用力小 (3)小网眼永久滤网 (4)中压内外缸之间 有遮热板 (5)中压进口的旋涡 冷却
SIEMENS “HMN”型汽轮机的技术特点
(1)中压双流切向进汽
独特的中压进汽结构 (2)第一级斜置静叶,20%反动度 (3)大的轴向动静距离防冲蚀
(4)高中压缸效率达到世界91-94%的顶尖水平
N-S全三元气动计算技术

弯扭角(LEAN)
tan()=(r)/rx=const =r/rx=const
功率 MW 700 700 700 600 500 1000 1000 1000 700 1000 700 1050 700 1050 600 700 1000 700 1000 600 900
周波 60 60 60 50 60 50 60 50 60 60 60 60 60 60 50 50 60 60 50 50 60
同外高桥四缸四排汽900MW-四缸四排汽2003 同Isogo的600C/610C 三缸两排汽2002
SIEMENS “HMN”组合机型业绩之一
1997年投运, 单轴、四缸 四排汽、供 热凝汽式 25.3/544/560 背压 5kPa

1000MW超超临界机组汽轮机设计介绍课件

1000MW超超临界机组汽轮机设计介绍课件
显著。日本对超超临界火电机组的研究始于八十年代初, 由于借鉴了欧美国家的成功经验及失败教训,走了一条 引进、消化、模仿、材料研究优先的路子,取得了巨大 的成功。 目前在日本,450MW以上的机组全部采用超临界参数; 从1993年以后已把蒸汽温度提高到566℃/593℃以上, 一次再热,即全部采用了所谓的超超临界技术(USC)。 2000年在橘湾电厂(2#)投运的容量为1050MW、蒸 汽参数为25.5MPa/600℃/610℃的超超临界机组是目 前日本蒸汽温度参数最高的机组。
随着玉环、邹县两个百万项目的投产,国产百万机组的
性能将得到进一步的验证和完善提高。
4、国内三大动力厂百万超超临界汽轮机的合作方式 (上汽-西门子)目前上海汽轮机有限公司(STC)为中
德合资企业,由中德双方共同参与经营管理。通过玉环 4×1000MW超超临界项目的技术转让及合作设计制造, STC的技术设计开发体系也将与SIEMENS同步接轨。 (东汽-日立)东方汽轮机厂通过邹县2×1000MW超 超临界项目的技术转让及合作设计制造引进了日本日立 公司的超超临界汽轮机技术。 (哈汽-东芝)哈尔滨汽轮机厂通过泰州2×1000MW 超超临界项目的技术转让及合作设计制造引进了日本东 芝公司的超超临界汽轮机技术。
5、哈汽、东汽原则性热力系统
5、上汽原则性热力系统
5、上汽疏水系统特点
1)末两级低加进入疏水冷却器 2)#6低加采用疏水泵
6、技术支持方相近机型情况
上述参数、容量的机型均处于世界已运行单轴机组的前沿,在与国内制 造厂合作之前,基本上没有相同投运机型,因而只能考虑接近机型。
东芝有8台1000MW机组业绩,单轴机组有碧南#4、#5机(60Hz), 其余6台为双轴机组;只有1台机组(橘湾#1机)主、再热蒸汽温度达 到600/610℃,其高、中压模块与泰州机型接近。东芝汽轮机48”末 级叶片2006年5月在意大利Torviscosa电厂投运。

上汽1000MW汽轮机介绍

上汽1000MW汽轮机介绍

上汽1000MW汽轮机介绍
上汽1000MW汽轮机介绍
汽轮机概述
上汽1000MW汽轮机是一种大型的汽轮机系统,用于发电厂的发电操作。

它由上汽公司设计和制造,并且已经在许多国内外发电厂中得到广泛应用。

技术特点
上汽1000MW汽轮机具有以下技术特点:
1. 高效率:采用先进的热力循环技术和优化的设计,使汽轮机的发电效率达到最高水平。

2. 大功率:1000MW的发电功率使得汽轮机能够满足大型发电厂的需求,为国家电网稳定供电做出重要贡献。

3. 灵活性:汽轮机系统采用模块化设计,能够根据发电厂的需求进行灵活调整和扩展。

4. 高可靠性:采用先进的材料和制造工艺,保证汽轮机的可靠性和长期稳定运行。

主要组成部分
上汽1000MW汽轮机主要由以下组成部分构成:
1. 热力系统:包括锅炉、蒸汽加热器和蒸汽再加热器等设备,用于产生高温高压的蒸汽供给汽轮机。

2. 汽轮机组:包括高压汽轮机、中压汽轮机和低压汽轮机等部分,负责将蒸汽能量转化为机械能驱动发电机运转。

3. 发电机:将汽轮机传递过来的机械能转化为电能输出,供给国家电网。

4. 辅助系统:包括冷却水系统、燃气系统和除尘系统等,用于保证汽轮机系统的正常运行和安全性。

应用领域
上汽1000MW汽轮机广泛应用于大型发电厂,主要用于发电厂的基础电力供应。

它具有高效率、大功率和灵活性的优势,在电力行业中发挥着重要作用。

上汽1000MW汽轮机是一种高效、大功率的汽轮机系统,具有灵活性和高可靠性。

它在电力行业中得到广泛应用,为国家电网的稳定供电做出了重要贡献。

1000mw汽轮机特点介绍

1000mw汽轮机特点介绍

GPEC Page 11
二、汽轮机的设计和结构特点
低压汽缸
低压末级隔板由内环、外环、静叶片组成。静叶片的 吸力面及压力面均设有疏水缝隙,外环的内表面、内 环的外表面、与冷凝器相连接,因此也处于真空状态。 末级产生的水滴由疏水缝隙收集,通过空心静叶片、 空心内环、空心外环及在中分面处的连接管,由下半 的疏水管流入冷凝器。
高压汽缸
高压缸首级双列对称布局
GPEC Page 8
二、汽轮机的设计和结构特点
中压汽缸
中压汽缸为双流式、双层缸结构,结构和原理同高压缸相同。每个流向包括全三维设计的7个 冲动式压力级。中压缸转子也由具有良好的耐高温和抗疲劳强度的12Cr 合金钢制成的双分流 对称结构,并进行加工而形成轴、叶轮、支持轴径和联轴节法兰。
主汽阀和调节阀
GPEC Page 15
二、汽轮机的设计和结构特点
再热主汽调节联合阀
机组配有两套再热主汽调节联合阀,每根再 热蒸汽管上装有一套。中压主汽阀、调节阀 共壳体,由合金钢铸件制成。主汽阀碟与调 节阀碟共享一个阀座,主汽阀与调节阀可以 各自独立地,互不干扰地全行程移动,不受 对方位置的影响。中压阀门的第一个作用是 紧急情况的保护,在紧急跳闸系统的作用下, 它们同时关闭,防止积累在再热器的蒸汽进 入汽轮机;第二个作用是汽轮机进汽量的控 制。阀门结构紧凑,减少了管道损失。中压 联合阀上装有与高压主汽阀相同结构的精过 滤网,可防止再热器及管道中的固体粒子进 入中压阀门及中压缸。
GPEC Page 13
二、汽轮机的设计和结构特点
滑销系统
汽轮机绝对死点,分别在1号低压缸和2号低压缸及3号轴承箱的中心处,以键固定以防止轴 向移动,机组在运行工况下膨胀和收缩时,1号和2号轴承箱可沿轴向自由滑动。轴承箱和低 压缸也要加以固定防止横向移动。为了使汽缸和滑销及台板之间能更好的接触与滑动,在两 者之间装有油浸渍黄铜或铸铁,并保证足够的接触面积。

上汽1000MW汽轮机介绍

上汽1000MW汽轮机介绍
• 内缸为垂直纵向平分面 结构,中分面螺栓应力也 很小,安全可靠性高。
上海汽轮机有限公司
超超临界1000MW凝汽式汽轮机 高压缸剖视图
排汽缸
高压内缸 补汽阀进汽口
猫爪
现场动平衡
抽汽口 高排
上海汽轮机有限公司
进汽口
猫爪
高压转子
超超临界1000MW凝汽式汽轮机 高效率单流程高压缸通流
• 高压通流部分采用小直径多级数的设计原则。 • 单流程叶片级通流面积比双流程要增加一倍,叶片端损大幅度 下降。 • 高压切向进汽,斜置45度第一级静叶,结构紧凑、损失小。 • 全周进汽无汽隙激振问题;高温第一级叶片负荷仅为其他的1/3 • 全部采用‘T’型叶根、漏汽损失小。 • 高中低压叶片除末三级外全部采用全三维扭叶片。
• 阀门与汽缸间采用大型螺纹连接,有 利于大修拆装。
• 阀门直接支撑在基础弹性支架,对汽 缸附加作用力小。
• 阀门采取小网眼、大面积的不锈钢永 久性滤网。其特点是过滤网直径小,滤 网刚性好,不易损坏。
上海汽轮机有限公司
超超临界1000MW凝汽式汽轮机
独特的液压盘车设备
• 盘车设备安装于前轴承座前,采用液压马达进行驱动,油来源于顶轴油。
机组膨胀移动。
轴承座上固定。
• #2轴承座内装有径向推力联合轴承。•中压外缸与低压内缸以及低压内缸
机组的绝对死点和相对死点均在高中 与低压内缸之间以推拉杆形式连接,
压之间的#2轴承座上。
减少低压缸的相对膨胀。
高压
中压
低压1
低压2
上海汽轮机有限公司
转子绝对膨胀 相对膨胀 静子绝对膨胀
超超临界1000MW凝汽式汽轮机
上海汽轮机有限公司
超超临界1000MW凝汽式汽轮机 采用SIEMENS成熟的单轴、HMN组合机型

1000MW汽轮机介绍

1000MW汽轮机介绍
10
从2011年5月13日以后,该机组在2011年6月22日和2011年6月23日热态 启机的过程中,盘车时间都足够长,但是启机过程中转速低于600r/min时,偏 心度的值在70~91范围内,反映了转子在热态启动时有一定的弯曲;经过热工 人员的确认,偏心度的测点没有安装上的问题。说明#1机的高中压转子存在一 定的弯曲,弯曲量的具体值目前还无法确定。 造成转子弯曲的原因主要有转子材质不均匀、残余内应力释放、汽缸进冷 汽或冷水、严重动静碰摩、高中压缸出现积水等,从这若干次启停机过程高中 压缸上下内缸的温度曲线来看,高压缸和中压缸下半内缸的温度均高于上半内 缸的温度,证明了没有高中缸内缸的水积问题。 从主蒸汽温度的变化曲线、汽机轴封母管蒸汽温度曲线、一段抽汽管壁温 度、三 段抽汽管壁温度,没有发现这些温度测点出现异常,因此可以排除高 中压缸进冷汽和冷水的可能性。
4
该机组以前启机和停机过临界的振动特性如表1所示。 表1 #1机高中压转子振动数据表 通频:微米 基频:微米/度 工况 时间 10月2日 升速过程 10月2日 降速过程 冷态首次冲转 1550 r/min 1657 r/min 通频 基频 通频 基频 通频 基频 通频 基频 通频 基频 50 34/117 96 96/263 37 18/111 21 10/154 27 18/228 37 30/199 130 120/318 29 20/199 19 12/242 38 26/255 16 14/110 69 68/288 15 8/53 20 12/355 27 20/316 12 4/150 130 120/218 14 8/111 17 10/73 19 14/43 转速 #1X #1Y #2X #2Y
198MW滑参数停机(主 汽461℃) 11年4月16日 降速过程

上汽1000MW汽轮机介绍

上汽1000MW汽轮机介绍

上汽1000MW汽轮机介绍上汽1000MW汽轮机介绍一、引言汽轮机是一种利用高温高压蒸汽驱动转子产生机械功的热能机械设备。

上汽1000MW汽轮机是上汽集团研发生产的一款大功率的汽轮机设备,具有出色的性能和稳定可靠的运行。

二、产品概述1·设备结构上汽1000MW汽轮机由高压缸、中压缸、低压缸等多级气缸组成。

其中,高压缸和中压缸由双缸结构,低压缸由双缸串接结构,旨在提高汽轮机的效率和转速。

2·技术特点a·高效率:通过采用先进的气流设计和热力系统优化,上汽1000MW汽轮机的综合效率达到全球领先水平。

b·稳定可靠:经过严格的设计和生产工艺控制,上汽1000MW汽轮机具备高可靠性和长寿命的特点。

c·灵活性:上汽1000MW汽轮机能够适应不同的负荷变化和运行方式,具备较强的灵活性和适应性。

d·低排放:上汽1000MW汽轮机采用先进的燃烧技术和排放处理装置,能够有效降低氮氧化物和颗粒物的排放。

三、技术参数1·输出功率·1000MW2·转速范围·3000-3600rpm3·蒸汽参数:主蒸汽温度600℃,主蒸汽压力23MPa四、应用领域上汽1000MW汽轮机广泛应用于发电厂、石化企业、钢铁工业等领域,为各个行业提供高效稳定的动力支持。

五、运维与维护1·运维管理:通过定期巡检、维修和保养,保证汽轮机的正常运行。

2·故障排除:配备完善的故障诊断系统,及时发现和排除故障。

3·预防维护:制定并执行科学的维护计划,避免设备因长期运行而产生的损耗和故障。

六、附件本文档附带的附件包括上汽1000MW汽轮机的详细技术参数表和产品图片。

七、法律名词及注释1·汽轮机:一种利用高温高压蒸汽驱动转子产生机械功的热能机械设备。

2·综合效率:指汽轮机在从燃烧能源到电能转换过程中的能源利用效率。

东汽(日立)1000MW、600MW等级汽轮机

东汽(日立)1000MW、600MW等级汽轮机

东汽(日立)1000MW、600MW等级汽轮机东汽(日立)1000MW、600MW等级汽轮机一、引言本文档旨在对东汽(日立)1000MW、600MW等级汽轮机进行详细的介绍和说明,主要包括技术参数、结构设计、系统配置、运行维护等方面内容。

二、技术参数1:发电机额定功率:1000MW、600MW2:蒸汽参数:- 进汽压力: MPa- 进汽温度:℃- 出汽压力: MPa- 出汽温度:℃3:热耗率: kJ/kWh4:高效率区域:-%5:排放标准:符合国家相关标准三、结构设计1:制动系统:- 轴式:水平型- 制动方法:水碟制动器- 制动直径: mm2:变速系统:- 变速箱类型:机械式变速箱- 变速范围:- RPM3:密封系统:- 主汽缸密封:活塞环式密封- 高温蒸汽密封:无泄漏式密封4:自动控制系统:- 控制方式:PLC控制- 控制精度:%5:其他结构设计细节详见附件一。

四、系统配置1:蒸汽系统:- 进汽系统:包括煤磨机、风机、锅炉等- 出汽系统:包括汽轮机、减温器、冷凝器等 2:油系统:- 润滑系统:包括主轴承润滑、齿轮润滑等 - 供油系统:包括油箱、油泵等3:冷却系统:- 制冷水系统:包括冷却塔、水泵等- 冷凝水系统:包括冷凝水泵、冷却器等4:其他系统配置细节详见附件二。

五、运行维护1:运行参数设定:- 负荷范围:- MW- 运行压力: MPa- 运行温度:℃2:日常维护:- 润滑油更换周期:小时/次- 冷却水清洗周期:天/次3:故障排除:- 常见故障类型及处理方法详见附件三。

六、附件本文档涉及附件:1:结构设计详图2:系统配置图3:故障排除手册七、法律名词及注释- 发电量:指发电机产生的电力量,通常以千瓦时(kWh)为单位。

- 蒸汽参数:指蒸汽的压力和温度,通常以兆帕(MPa)和摄氏度(℃)为单位。

- 热耗率:指单位发电量所消耗的热能,通常以千焦耳/千瓦时(kJ/kWh)为单位。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、1000MW汽轮机及其辅助系统设备介绍一、1000MW汽轮机系统介绍邹县电厂四期工程安装有两台1000MW燃煤汽轮发电机组,电力通过500KV输电线路送入山东电网。

机组运转层标高17m。

邹四工程为汽轮机组由东方汽轮机厂和日本株式会社日立制作所合作设计生产,性能保证由东汽厂和日立公司共同负责。

汽轮机为超超临界、一次中间再热、四缸四排汽、单轴、双背压、凝汽式、八级回热抽汽,机组运行方式为定-滑-定,采用高压缸启动方式,不设高排逆止门。

额定主汽门前压力25MPa,主、再汽温度600℃,设计额定功率(TRL)为1000MW,最大连续出力(TMCR)1044.1MW,阀门全开(VWO)下功率为1083.5 MW。

THA工况保证热耗为7354kJ/kwh。

汽机采用高压缸、中压缸和两个低压缸结构,中压缸、低压缸均为双流反向布置。

机组外形尺寸为37.9×9.9 × 6.8(米)。

主蒸汽通过布置在机头的4个主汽门和4个调门进入高压缸,做功后的蒸汽进入再热器。

再热蒸汽经2个中压联合汽门由两个进汽口进入中压缸做功后再进入两个双流反向布置的低压缸,乏汽排入凝汽器。

以下分系统设备分别介绍:1、汽缸和转子高中低压转子全部采用整锻实心转子,可在不揭缸的情况下进行动平衡调整。

其中高压转子重24.2吨,中压转子重28.8吨,低压A转子重78.5吨,低压B转子重78.8吨。

高、中压转子采用改良12Cr锻钢,低压转子采用Ni-Cr-Mo-V钢。

汽轮机由一个双调节级的单流高压缸、一个双流的中压缸和两个双流的低压缸串联组成。

高、中、低压汽缸全部采用双层缸,水平中分,便于检查和检修,通过精确的机加工来保证汽缸的接合面实现直接金属面对金属面密封。

低压缸上设有自动控制的喷水系统,在每个低压缸上半部设置的排汽隔膜阀(即大气阀),该阀有足够的排汽面积,排汽隔离阀的爆破压力值为34.3kPa(g)。

低压缸与凝汽器的连接采用不锈钢弹性膨胀节方式,凝汽器与基础采用刚性支撑,即在凝汽器中心点为绝对死点,在凝汽器底部四周采用聚四氟乙烯支撑台板,使凝汽器壳体能向四周顺利膨胀,并考虑了凝汽器抽真空吸力对低压缸的影响。

2、汽机轴承汽轮机四根转子由8只径向轴承支承,#1~#4轴承,即高中转子支持轴承采用可倾瓦、落地式轴承,#5~#8轴承,即两个低压转子支持轴承采用椭圆形轴承,轴承直接座落在低压外缸上。

轴承采用球面座水平中分自调心型。

推力轴承位于高压缸和中压缸之间#2轴承座内,型式也采用可倾瓦式轴承。

运行中各轴承设计金属温度不超过90℃,但乌金材料允许在112℃以下长期运行。

支撑轴承是水平中分面的,不需吊转子就能够在水平、垂直方向进行调整,同时也是自对中心型的。

各支持轴承(包括发电机组的轴承)均设不小于两点的轴承金属温度测点。

3、通流部分及汽封汽轮机通流部分由46个结构级组成,采用冲动级设计,其中高压部分有2×1+8级(含2个调节级8个冲动级),中压部分为2×6级级,两个双流低压缸共2×2×6级。

1)喷嘴和动叶:各级喷嘴(除调节级,调节级采用高效层流叶型)采用高效的可控涡(AVN-S)叶型,这种叶型使汽流切向进入,减小小二次流损失。

各级动叶片(除调节级)采用高效的高负荷叶片,该型叶片通过优化叶型设计,减小了叶型损失和二次流损失。

根据本机组的负荷性质要求(带基本负荷并有40%~100%的负荷调峰运行能力)采用了43″(1,092.2mm)末级长叶片。

2)隔板汽封:高中低压缸除第一级外的所有隔板汽封和部分轴封采用了保护齿汽封(Guardian Seal),该型汽封是美国一家公司(MDA)的专利产品,汽封进、出汽边各有一个保护齿(Guardian Posts),保护齿为16%~18%Cr合金材料,磨擦系数很低,比其它的汽封齿高出0.13mm。

该型汽封通过减小汽封间隙而减小了漏汽量,提高了效率,但最主要的还是在变负荷工况时防止了汽封齿的碰磨,延长了汽封的使用寿命。

3)防固体颗粒冲蚀措施:为了减小固体颗粒冲蚀(Solid Particle Erosion),在高压第一级、中压第一级喷嘴上采取了防止SPE措施,即在喷嘴的表面高温喷涂Cr-C强化层,加大轴向间隙和采用防SPE叶型等。

4)防湿蒸汽侵蚀措施:在低压缸的湿汽区,防水蚀措施采用了在静叶片内弧开有两条去湿槽,在隔板的底部设有小孔与导叶相连,将去湿后收集的水排出低压缸。

末级叶片采取在出汽边堆焊司太立合金措施,水蚀程度可减轻90%以上。

4、盘车装置在汽轮机和发电机之间的#5轴承座内,设有低速电动盘车装置。

盘车装置是自动啮合型的,盘车装置的设计能做到在汽轮机冲转达到一定转速后自动退出,并能在停机时自动投入。

盘车装置与顶轴油系统、发电机密封油系统间设联锁,盘车转速为1.5 r/min。

盘车控制由DCS实现,在事故状态时就地操作。

5、配汽机构:机组采用喷嘴调节方式,配汽机构由四只主汽阀、四只调节汽阀及二只中压联合汽阀组成,四只高压主汽阀和四只高压调节汽阀整体组焊在一起,四只高压主汽阀的进汽侧相互连通,减少了进汽的压力和温度偏差,四只高压调节汽阀分别连接四根压导汽管,由高压缸上下各两根进入喷嘴室,由于在部分进汽情况下调节级的喷嘴和动静叶片遭遇严重的强度和振动问题,因此,高压缸采用了双流调节级。

阀体材料12Cr(KT5917)铸钢,在阀体上焊接F92短节以便给材质为P92的主蒸汽管道连接。

6、滑销系统:#3轴承座是整台汽轮机滑销系统的死点,高中压缸以#3轴承座为死点向机头方向膨胀,两个低压缸以各自的中心线为死点向两端膨胀。

推力轴承位于#2轴承座内,整个轴系以此为死点向两端膨胀。

7、高压缸通风阀(ventilator valve):1000MW汽轮机高压缸前几级的叶片长度相对较长,因此鼓风损失也就越大,为了防止在停机时造成叶片过热烧损,在#4高压导汽管至凝汽器之间设置了一只通风阀,在汽轮机停机时该阀门开启,利用高压缸的排汽(高压缸至再热器之间未设置逆止阀)来冷却高压缸的叶片。

8、中压转子冷却系统:中压转子为双流对称结构,比高压转子粗、第一级焓降比高压第一级焓降小,因此中压转子承受的应力水平与最高温度都比高压转子高。

为了防止中压转子老化弯曲,提高热疲劳强度及减轻热应力,采用了蒸汽冷却结构。

冷却蒸汽来自高压缸# 1段回热抽汽,温度低于400℃,通过专用管道从中压上缸正中部经中压外缸与内缸,正对着中压转子中部温度最高区段流入,再经过正反第一、二级轮缘叶根处的导流孔,达到冷却中压转子高温段表面的目的,同时也明显地降低了第一级叶片槽底的热应力9、汽轮机控制用抗燃油系统抗燃油系统包括油箱及附件、两台100%容量的交流柱塞供油泵、两台在线抗燃油再生装置、一套在线抗燃油滤油装置、两台100%容量的冷油器、蓄能器、油过滤器、油温调节装置等。

采用磷酸脂抗燃油。

抗燃油系统各部件及油箱均采用不锈钢材料。

抗燃油冷却器的冷却水采用闭式循环冷却水,冷却水温度按39℃设计。

抗燃油系统的设计不考虑给水泵汽轮机的用油需要。

10、汽轮机润滑油、顶轴油系统润滑油系统包括主油箱、主油泵、启动油泵、交流润滑油泵、直流事故油泵、油涡轮泵、顶轴油泵、2台100%容量的冷油器等。

给水泵汽轮机的润滑油系统和主汽轮机的润滑油系统分开,各自设有单独的润滑油系统,润滑油牌号为ISO VG32。

油系统中的附件不使用铸铁件。

所有的油管道焊缝全部采用氩弧焊。

润滑油系统使用套装油管。

套装油管路和供油管路(包括各管件)采用不锈钢材料。

主油箱为集装式,布置在汽机房0米层,容量为45m3,系统设置两台进口板式冷油器,每台冷油器根据汽轮发电机组在设计冷却水流量和冷却水温(36℃)时最大负荷并考虑5%的面积裕量设计。

由于冷油器冷却水含城市中水,为此选用不锈钢TP317L材质。

冷却水设计温度为36℃。

顶轴油站为集装式装置,系统为母管制系统,顶轴油泵为2台100%容量变量容积泵,所配电机为防爆型。

11、轴封供汽系统轴封汽系统的压力和温度是自动控制的(自密封系统),并符合防止汽轮机进水的措施的要求,该系统还能向给水泵汽轮机供轴封汽,轴封系统的备用汽源满足机组冷热态启动和停机的需要。

该系统设有轴封压力自动调整装置、溢流泄压装置和轴封抽气装置。

轴封用汽来源于二段抽汽(冷再热蒸汽),厂内辅助蒸汽及主蒸汽。

系统设一台100%容量的轴封蒸汽冷却器。

12、凝汽器凝汽器设计为双壳体、双背压、单流程,凝汽器的设计条件以TMCR工况为设计工况,循环倍率为55,循环水设计进水温度为21.5℃。

凝汽器能在TRL工况,以及循环水温36℃下连续运行并保证除氧要求。

凝汽器在TMCR工况(设计工况)双背压为4.5/5.7kPa(a),平均折合背压5.1kPa(a);在TRL工况时背压为11.3/12.3kPa(a),平均折合背压11.8kPa(a)。

本工程采用二次循环供水系统,循环水系统补充水源为深化处理后的城市中水。

凝汽器管选用TP317L。

循环水系统同时向开式循环冷却水系统提供冷却水。

三、主要辅机设备介绍1、给水泵给水系统设计有2×50%BMCR容量的汽动给水泵和一台25%BMCR容量的电动给水泵作为备用。

给水泵组是由日本日立公司设计供货的,其中两台汽动给水泵组头对头纵向布置在汽机房17m靠近运转层B排柱侧。

汽动给水泵组采用弹性基础。

主给水泵前置泵及电动给水泵组安装在汽机房除氧框架0m1.1 电动给水泵组:电动给水泵前置泵采用DV-CH型,双吸、单级离心式水泵,效率81%,必须汽蚀余量为6.8m,轴承采用滑动轴承,轴端密封采用机械密封,叶轮材质采用不锈钢。

电泵主泵采用BGM-GH型,筒形节段式、快装式离心泵,泵效率84%,必须汽蚀余量为28.3m,额定出水压力29.067 MPa(g)。

首级叶轮为单吸式,共计6级,平衡方式为平衡鼓和推力瓦(无平衡盘),轴端采用迷宫密封,需要暖泵系统,叶轮导叶材质为不锈钢。

汽泵设有中间抽头,其抽头压力为10 MPa(g)。

电泵与电机采用液力偶合器连接。

液力偶合器采用VOITH-R18K500M型(德国福伊特),滑差率2.73%,轴功率9298KW,最高输出转速5871,增速比3.92,工作油冷油器面积150m2、润滑油冷油器面积65m2。

工作、润滑油均统一使用VG32透平油。

泵轮窝轮材质为X5CrNi13.4,齿轮材质为18CrNiMo76。

2.2 汽动给水泵组:汽动给水泵前置泵采用DV-CH型,双吸、单级离心式水泵,效率86%,必须汽蚀余量为6.9m,采用滑动轴承,轴端密封采用机械密封,叶轮材质为12 Cr。

汽泵主泵采用BGM-GH型,筒形节段式、快装式离心泵,泵效率85.6%,必须汽蚀余量为39m, 额定出水压力31.309 MPa(g)。

相关文档
最新文档