5爆破破岩机理
爆破破岩机理

爆破破岩机理【转发】:一、爆生气体膨胀压力作用破坏论Kutter和Hagan从静力学的观点出发,提出了“气楔作用”(PneumaticWedgtng)这种假说,认为炸药爆炸后产生的高温高压的气体,由于膨胀而产生的推力作用在炸药周围的岩壁上,引起岩体质点的径向位移,从而在岩体中形成剪切应力。
当这种剪切应力超过岩体的极限抗剪强度时,就会引起岩体的破坏。
当爆生气体的膨胀推力足够大时,还会引起自由面附近的岩体隆起、鼓开并沿径向方向抛掷。
这种假说认为,动能仅占炸药总能量的5%~15%,绝大部分能量包含在爆生气体产物中,另一方面,岩体爆破时岩石发生破裂和破碎所需的时间小于爆生气体作用于岩体的时间。
二、应力波反射拉伸作用破坏论以Coates和Hin。
为代表的这种假说,从爆轰动力学的观点出发,认为炸药爆炸后,强大的冲击波冲击和压缩周围的岩体,在岩体中激发出强烈的压缩应力波。
当压缩应力波传播到自由面时,从自由面处反射而形成拉伸波。
当拉伸波的强度超过岩体的极限抗拉强度时,从自由面处开始向爆源方向产生拉伸片裂作用。
三、应力波和爆生气体联合作用破坏论以Fairhurst为代表的这种假说认为,爆破时岩体的破坏是应力波和爆生气体共同作用的结果。
但在解释破碎岩体的主导原因时存在不同观点。
一种观点认为,应力波在破碎岩体时不起主导作用,只是在形成初始径向裂隙时起先锋作用,岩体的破碎主要依靠爆生气体的膨胀推力和尖劈作用;另一种观点则认为,爆破时破碎岩体的主导作用取决于岩体的性质,即取决于岩体的波阻抗。
对于波阻抗为(10一15)× 10^5g/(cm^2.s)的高波阻抗的岩体,即极致密坚韧的岩体,爆炸应力波在其中的传播性能好,波速高。
爆破时岩体的破碎主要由应力波引起。
对于波阻抗为(2一5)× 10^5 g/(cm^2. s) 低波阻抗的松软而具有塑性的岩体,爆炸应力波在其中的传播性能较差,波速低,爆破时岩体的破碎主要依靠爆生气体的膨胀压力;对于波阻抗为(5~10)× 10 ^5g/〈cm^2.S )的中等波阻抗的中等坚硬的岩体,应力波和爆生气体同样起重要作用。
爆破作用原理

二.爆破作用
一)单个药包旳爆破作用
㈠自由面和最小抵抗线 假如将一种球形或立方体形炸药包(爆破上称之为集中 药包)埋入岩石中,岩石与空气接触旳表面称为自由面。 最小抵抗线:药包中心到自由面旳垂直距离W。
爆破旳内部作用
光面爆破机理 光爆炮眼同步起爆,在各炮眼旳眼壁上产生细微旳
径向裂隙,因为起爆器材旳起爆时间误差,各炮眼不 可能在同一时刻爆炸,先爆炮眼旳径向裂隙,因为相 邻后爆炮眼所起旳导向作用,成果沿相邻两炮眼旳连 心线旳那条裂隙得到优先发展,并在爆愤怒体旳作用 下扩展,形成贯穿裂缝。贯穿裂缝形成后,周围岩体 内旳应力因释放而下降,从而能够克制其他方向上有 裂隙发展,同步又隔断了从自由面反射旳应力波向围 岩传播,因而爆破形成旳壁面平整。
衡量爆破作用旳效果: 当n=1时,形成原则抛掷漏斗(c); 1<n<3时,形成加强抛掷漏斗(d); 0.75<n<1时,形成减弱抛掷漏斗(b); n=0.75时,岩石只形成松动而不形 成抛掷,叫做松动漏斗(a); n<0.75时,爆破漏斗不能形成。二)多种药包旳爆破作用
三、微差爆破
利用毫秒雷管或其他设备控制放炮旳顺序,使每段 之间只有几十毫秒旳间隔,叫做毫秒爆破或微差爆破。
随即,爆轰气体产物继续压缩被冲击波压碎旳岩 石,爆轰气体“楔入”在应力波作用下产生旳裂隙中, 使之继续向前延伸和进一步张开。当爆轰气体旳压力 足够大时,爆轰气体将推动破碎岩块作径向抛掷运动。
对于不同性质旳岩石和炸药,应力波与爆轰气体 旳作用程度是不同旳。
在坚硬岩石、高猛度炸药、偶合装药或装药不偶 合系数较小旳条件下,应力波旳破坏作用是主要旳;
第六章 岩土中爆炸的基本理论

爆破工程
岩石爆破破碎机理
3、爆生气体和应力波共同作用理论 、
该理论认为岩石的破碎是冲击波和爆生气体压力综合 作用的结果。生产和试验研究证明,这种假说客观地、 作用的结果。生产和试验研究证明,这种假说客观地、 全面地反映了爆破破岩的机理。 全面地反映了爆破破岩的机理。 实质:最初裂隙由应力波造成, 实质:最初裂隙由应力波造成,随后爆生气体渗入裂 并在准静态作用下使裂隙扩展。 隙,并在准静态作用下使裂隙扩展。 岩石按波阻抗的大小分类
爆破工程
岩石爆破破碎机理
反射拉伸应力波作用理论 动作用理论) (动作用理论) 该理论单纯强调冲击 波的作用,认为岩石破 波的作用, 碎是由于爆炸产生的压 缩应力波从自由面反射 而形成的拉伸应力引起 的这种拉伸应力, 的这种拉伸应力,从自 由面朝向装药的位置将 岩石成片拉裂。 岩石成片拉裂。这种假 说忽视了爆生气体的作 用。 实验基础: 实验基础:杆件和板 件实验。 件实验。
e K ( ρc) F = ln 38.44v d 1.89 4.75 Kp Kx e
爆破工程
岩石中的爆炸应力波
• 冲击载荷在岩体内引起的应力--应变
爆破工程
岩石中的爆炸应力波
OA段为直线,变形模量为dσ/dε(常数) OA段为直线,变形模量为dσ/dε(常数),当σ在此区域 段为直线 dσ/dε(常数 在固体中传播弹性波, 时,在固体中传播弹性波,其速度为恒定的未扰动固体 中的声速; 中的声速; AB段为凹向下的曲线 dσ/dε不为常数且随应力增大 段为凹向下的曲线, AB段为凹向下的曲线,dσ/dε不为常数且随应力增大 而减小,若应力不超过此区域之值, 而减小,若应力不超过此区域之值,则固体中传播弹塑 性波,波速低于声速为亚音速; 性波,波速低于声速为亚音速; BC段为凹向上的曲线 dσ/dε不为常数且随应力增大 段为凹向上的曲线, BC段为凹向上的曲线,dσ/dε不为常数且随应力增大 而增加,若应力处于此区域,则因dσ/dε仍小于OA dσ/dε仍小于OA段 而增加,若应力处于此区域,则因dσ/dε仍小于OA段 dσ/dε值,波速仍低于声速, dσ/dε值 波速仍低于声速, 当应力超过C点后, dσ/dε值超过OA段的dσ/dε值 值超过OA段的dσ/dε 当应力超过C点后,因dσ/dε值超过OA段的dσ/dε值, 在固体中将传播冲击波,为超音速。 在固体中将传播冲击波,为超音速。
培训笔记-破岩机理

培训笔记(三)——破岩机理一、破岩过程一阶段:炸药爆炸阶段二阶段:冲击波反射阶段三阶段:气体膨胀阶段二、破岩理论1.爆炸气体产物膨胀压力破坏理论:岩石主要由于装药空间内爆炸气体产物的压力作用而破坏。
2.冲击波引起应力波反射破坏理论:岩石的破坏主要是由自由面上应力波反射转变成的拉应力波造成的。
3.爆炸气体膨胀压力和冲击波所引起的应力波共同作用理论:爆破时岩石的破坏是爆炸气体和冲击波共同作用的结果,它们各自在岩石破坏过程的不同阶段起重要作用。
三、波阻抗:即岩石密度与冲击波在岩石中传播速度的乘积。
岩石按波阻抗值分为三类:1、岩石波阻抗为10X105~25X105(g/cm2·s);2、岩石波阻抗为5X105~10X105(g/cm2·s);3、岩石波阻抗为2X105~5X105(g/cm2·s)。
四、爆破内部作用1.压缩区受到爆炸冲击波的强动作用,炮孔壁周围的介质被粉碎或强烈压缩,形成压缩区或粉碎区成压缩区或粉碎区。
2.破碎区爆炸冲击波在岩石中形成新鲜裂纹或激活原生裂纹,爆炸气体的高压气楔作用,对裂纹进行扩展,形成破碎区。
3.震动区在破坏区以外的岩体,只发生弹性震动。
五、爆破漏斗:当药包产生外部作用时,在地表会形成一个爆破坑,称为爆破漏斗。
1、爆破漏斗的构成要素(1)自由面;(2)最小抵抗线;(3)爆破漏斗底圆半径;(4)爆破作用半径;(5)爆破漏斗深度;(6)爆破漏斗可见深度;(7)爆破漏斗张开角。
图7-6 爆破漏斗2、爆破作用指数n=r/W在最小抵抗线相同的情况下,爆破作用愈强,爆破漏斗底圆半径愈大。
根据n的大小爆破漏斗分为:(1)标准抛掷(n=1);(2)加强抛掷(n>1);(3)减弱抛掷(0.75<n<1);(4)松动爆破(0<n<0.75)。
爆破工程-知识点

●爆破工程特点:对安全的高度重视和对爆破作业人员的素质有较高的要求.●爆破方法:(1)按药包形状:集中、平面、延长药包法,异性药包.(2)按装药方式和装药空间形状不同:药室、药壶、炮孔、裸露药包法。
(3)按爆破技术:定向,预裂、光面,微差爆破;其他特殊条件下爆破技术。
●浅孔:孔径<50mm,孔深≥3~5m ●深孔:孔径≥80mm,孔深>12~15mm ●钻孔方法:冲击式、旋转式、旋转冲击式、滚压式。
●潜孔钻机:工作方式属于风动冲击式凿岩,穿孔过程中风动冲击器跟钻头一起潜入孔内。
●潜孔钻机优点:(1)其冲击器活塞直接撞击在钻头上,能量损失少,穿孔速度受孔深影响少,因此能穿凿出直径较大和较深的炮孔。
(2)冲击器潜入孔内工作,噪声小. (3)冲击器排出的飞起可用来排碴,节省动力. (4)冲击力传递简单,钻杆使用寿命长. (5)与牙轮钻机相比,钻孔结果好,购置费用低。
●潜孔钻机缺点:(1)冲击器的气缸直径受钻孔直径限制,孔径愈小,穿孔速度愈低。
(2)当孔径在200mm以上时,穿孔速度没有牙轮款,而动力消耗更多.●工业炸药:指用于矿山、铁道、水利、建材等部门的民用炸药.●工业炸药的基本要求:(1)有足够的爆炸能量. (2)有合适的感度. (3)有一定的化学安定性。
(4)爆炸生成的有毒气体少。
(5)原料来源广,成本低廉,便于生产。
●工业炸药分类:(1)按主要化学成分:硝胺类、硝化甘油类、芳香族硝基化合物类炸药,液氧炸药。
(2)按使用条件:准许在一切地下和露天爆破工程中使用的炸药,包括有瓦斯和矿尘爆炸危险的矿山;准许在(同上),但不包括(同上);只准许在露天爆破工程中使用的炸药。
●起爆药:雷汞(不铝),氮化铅(二氧化碳湿不铜),二硝基重氮酚(常用)。
●单质炸药(加强药):梯恩梯(TNT),黑索金(RDX),泰安(PETN)。
●混合炸药:(1)铵梯炸药:岩石、露天、煤矿、高威力硝铵炸药。
(2)铵油炸药。
(3)铵松蜡炸药。
爆破工程期末必考题

1.岩石爆破破坏原因的理论学说和破坏过程。
理论1“爆生气体膨胀作用理论:炸药爆炸引起岩石破坏,主要是高温高压气体产物对岩石膨胀做功的结果;2爆炸应力波反射拉伸作用理论:岩石的破坏主要是由于岩石中爆炸应力波在自由面反射后形成反射拉伸波的作用,岩石中的拉应力大于其抗拉强度二产生的,岩石是被拉断的;3爆生气体和应力波综合作用理论:实际爆破中,爆生气体膨胀和爆炸应力波都对岩石破坏起作用,不能绝对分开,而应该是两种作用综合的结果,因而加强了岩石破碎效果,比如冲击波对岩石的破碎,作用时间短,而爆生气体的作用时间长,爆生气体膨胀促进了裂隙的发展,同样,反射拉伸波也同样加强了径向裂隙的扩展。
过程1.炮孔周围岩石的压碎作用2.景象裂隙作用3。
卸载引起的岩石内部环状裂隙作用 4。
反射拉伸引起的“片落”和引起径向裂隙的延伸 5。
爆炸气体扩展应力波所产生的裂隙。
2。
巷道掘进爆破中炮眼形式:掏槽眼:用于爆出新自由面,为辅助眼/周边眼爆破创造有利条件,直接影响循环进尺,掘进效果;周边眼:控制爆破后的巷道断面形状、大小和轮廓,使之符合设计要求;(顶眼、底眼、周边眼)辅助眼:破碎岩石的主要炮眼,利用掏槽眼爆破后创造的平行于炮眼的自由面,爆破条件大大改善;3.中深孔爆破设计的基本内容:确定台阶高度,网孔参数,装药结构,装填长度,起爆方法,起爆顺序,炸药的单位消耗量4炸药爆炸与燃烧区别燃烧与爆炸传播速度截然不同,燃烧几毫米到几百米每秒,亚音速,爆炸通常几千米每秒1。
从传播连续进行的机理来看,燃烧的能量通过热传导,辐射和气体产物的扩散传到下一层炸药,激起未反应炸药产生化学反应,是燃烧连续进行,爆炸,能量以压缩波的形式提供给前沿冲击波,维持前沿冲击波的强度,然后前沿冲击波冲击压缩激起下一层炸药进行化学反应,是爆轰连续进行;2从反应产物的压力来看,燃烧产物压力很低,对外界显示不出力的作用,爆炸产物有强烈的力效应3从反应产物质点运动方向,燃烧产物质点运动方向与燃烧传播的方向相反,二爆炸产物质点运动方向与爆炸传播方向相同;4从炸药本身条件,燃烧随装药密度的增加,燃烧速度下降,而爆轰速度随密度增加而增加;5从外界条件,燃烧易受外界压力和初温影响,爆炸基本不受外界条件影响;5氧平衡:指炸药中所含的氧用以完全氧化其所含的可燃元素后氧的剩余情况的衡量指标。
爆破考试资料

第四章1、何谓岩石的波阻抗?其物理意义是什么?岩石的密度与纵波在该岩石中传播速度的乘积。
物理意义:使岩石介质产生单位质点运动速度所需的应力波的应力值。
2、何谓岩石可爆性?岩石可爆性分级的目的和意义是什么?岩石的可爆性是指岩石抵抗爆破破坏的能力或者岩石爆破破坏的难易程度。
目的:岩石可爆性分级是岩石可爆性的定量指标,按爆破破坏的难易程度将岩石划分成不同的等级。
意义:岩石可爆性分级是选择爆破作业方案、确定爆破参数和定额编制爆破的重要依据。
3、岩石爆破破岩机理有哪几种假说?其主要内容1)爆生气体膨胀作用理论:该理论认为使岩石破碎和抛掷的推力是炸药爆炸过程中建立起来的巨大的气体膨胀压力,这一假说完全忽视冲击波的作用。
2)反射拉伸应力波作用理论:该理论单纯强调冲击波的作用,认为岩石破碎是由于爆炸产生的压缩应力波从自由面反射而形成的拉伸应力引起的这种拉伸应力,从自由面朝向装药的位置将岩石成片拉裂。
这种假说忽视了爆生气体的作用。
3)爆生气体和应力波共同作用理论:该理论认为岩石的破碎是冲击波和爆生气体压力综合作用的结果。
生产和试验研究证明,这种假说客观地、全面地反映了爆破破岩的机理。
其实质为最初裂隙由应力波造成,随后爆生气体渗入裂隙,并在准静态作用下使裂隙扩展。
4、试简述爆生气体和应力波综合作用破岩理论。
该理论认为岩石的破碎是冲击波和爆生气体压力综合作用的结果。
生产和试验研究证明,这种假说客观地、全面地反映了爆破破岩的机理。
其实质为最初裂隙由应力波造成,随后爆生气体渗入裂隙,并在准静态作用下使裂隙扩展。
5、什么叫爆破的内部作用和外部作用?1)爆破内部作用:当药包爆炸后,在自由面上不会看到爆破迹象。
也就是说,爆破作用只发生在岩石的内部,未能达到自由面,药包的这种作用叫做爆破的内部作用。
2)爆破外部作用:当最小抵抗线小于临界抵抗线时,即不是在无限岩石中,而是在半无限岩石中装药爆破时,炸药爆炸后除发生内部的破坏作用外,自由面附近也将发生破坏。
爆破工程复习资料

第二章2、起爆药与单质炸药有哪些特点:炸药:凡在外部施加一定的能量后,能发生化学爆炸的物质称为炸药。
按炸药的组成分类:单质炸药与混合炸药。
单质炸药:指成分为单一化合物的炸药,各组成元素以一定的化学结构存在于同一分子中。
混合炸药:爆炸性成分和非爆炸性成分按照一定配比混合制成的炸药。
(既可以含单质炸药,也可以不含单质炸药,但应含有氧化剂和可燃剂两部分,而且二者是以一定的比例均匀混合在一起的,当受到外界能量激发时,能发生爆炸反应。
)单质炸药按用途可以分为:起爆药、猛炸药、火药。
起爆药:起爆药主要用于起爆其他工业炸药。
特点:十分敏感,受到很小的外界作用就能发生爆炸反应,但威力不大,一般用来制作雷管、信管等起爆器材。
猛炸药:不十分敏感,需要有较强的外界作用才能爆炸,破环作用强烈,是制造工业和军事爆破器材的主要成分。
火药(发射药):能产生快速的燃烧反应,军事上用作发射药,工业上做导火索和延期雷管中的延期药。
分为有烟火药和无烟火药。
3、硝铵类炸药的主要成分有哪些?各在炸药中起什么作用?1、铵梯炸药:以硝酸铵为氧化剂、梯恩梯为敏化剂、木粉为可燃剂与松散剂组成的爆炸性混合物(主要原材料是硝酸铵、梯恩梯与木粉)。
硝酸铵:主要成分,氧化剂。
梯恩梯:敏化剂,提高炸药的敏感度和威力。
木粉:可燃剂和松散剂,一调节炸药的氧平衡和增加爆炸反应时的放热量和爆生气体量,提高炸药的做功能力二是防止硝酸铵结块。
沥青、石蜡、松香:憎水剂,使炸药有一定的防潮和抗水能力。
食盐和路化钾:消焰剂,降低爆温和减少爆炸时的火焰以降低引起瓦斯和煤尘爆炸的危险性。
铵梯炸药的品种:1、岩石铵梯炸药:只允许在无瓦斯、矿尘爆炸危险的场合使用,且适用于在中硬及其以上矿岩爆破作业使用铵梯炸药,称为岩石铵梯炸药。
由于该类炸药允许在地下工程中使用,规定爆炸后生成的有毒气体量不超过80L/kg。
2、露天铵梯炸药。
3、煤矿许用铵梯炸药。
分为普通型和抗水型,增加食盐作为消焰剂。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
r
W W
r
θ
45
°
45
θ
°
(a)
(b)
r
r
W
θ
W
θ
(c)
图5-5 爆破漏斗分类
(d)
和进一步张开。当爆轰气体的压力足够大时,爆轰气体将推动破
碎岩块作径向抛掷运动。 对于不同性质的岩石和炸药,应力波与爆轰气体的作用程
度是不同的。
在坚硬岩石、高猛度炸药、偶合装药或装药不偶合系数较 小的条件下,应力波的破坏作用是主要的; 在松软岩石、低猛度炸药、装药不偶合系数较大的条件下, 爆轰气体的破坏作用是主要的。
研究成果还不很完善,但它们基本上反映了岩石爆破作用
中的某些客观规律,对爆破实践具有一定的指导意义和应 用价值。
5.1 岩石爆破破碎原因的几种学说
(1)爆轰气体压力作用学说(explosion gas failure
theory)
这种学说从静力学观点出发,认为岩石的破碎主要是由 于爆轰气体(explosion gas)的膨胀压力引起的。这种学说
` `
θ θ θ θ
`
`
区贯通的径向裂隙(crack)。
σr
`
θ θ
σ
σ (a)
σr (b)
`
随着径向裂隙的形成,作用在岩石上的压力
迅速下降,药室周围岩石随即释放出在压缩过程
θ θ θ
σr
σr
` `
σr
` `
中积蓄的弹性变形能 ,形成与压应力波作用方向 σr σr σr
θ
相反的拉应力,使岩石质点产生反方向的径向运 动。
r
h W θ
图5-4 爆破漏斗的几何要素
H
R
2)爆破作用指数(crater index)
爆破漏斗底圆半径与最小抵抗线的比值称为爆破作用指数,
用n表示,即:
r n W
(5-1)
爆破作用指数n在工程爆破中是一个极重要的参数。 爆破
作用指数n值的变化,直接影响到爆破漏斗的大小、岩石的破 碎程度和抛掷效果。 3)爆破漏斗的分类 根据爆破作用指数n值的不同,将爆破漏斗分为以下四种: ①标准抛掷爆破漏斗。如图5-5之(a)所示,当r=W,即n=1 时,爆破漏斗为标准抛掷爆破漏斗,漏斗的张开角θ=90°。 形成标准抛掷爆破漏斗的药包叫做标准抛掷爆破药包。
忽视了岩体中冲击波和应力波(stress wave)的破坏作用,
其基本观点如下: 药包爆炸时,产生大量的高温高压气体,这些爆炸气体 产物迅速膨胀并以极高的压力作用于药包周围的岩壁上,形 成压应力场。当岩石的抗拉强度低于压应力在切向衍生的拉
应力时,将产生径向裂隙。
作用于岩壁上的压力引起岩石质点的径向位
岩石分为三个区域(图5-2)。
R0
R1
R2
图5-2 爆破的内部作用 R0-药包半径;R1-粉碎区;R2-破裂区
1)粉碎区
当密闭在岩体中的药包爆炸时,爆轰压力在数微秒内急剧增
高到数万兆帕,并在药包周围的岩石中激发起冲击波,其强度远 在此范围内受到粉碎性破坏,形成粉碎区;对于松软岩石(如页 岩、土壤等),则被压缩形成空腔,空腔表面形成较为坚实的压
(3)利文斯顿爆破理论
1956年利文斯顿(C.W.Livingston)在各种岩石、不同炸药 量、不同埋深的爆破漏斗试验的基础上,提出以能量平衡为准 则的岩石爆破破碎的爆破漏斗理论。该理论认为,爆破时炸药 传给岩石能量的多少、快慢,取决于岩石的性质、炸药性能、
药包总量、炸药的埋臵深度、位臵和起爆方法等因素。在岩石
③爆破漏斗半径(crater radius)是指形成倒锥形爆破
漏斗的底圆半径。常用r表示爆破漏斗半径。 ④爆破漏斗破裂半径,又叫破裂半径,是指从药包中心 到爆破漏斗底圆圆周上任一点的距离。图5-4中的R表示爆破 漏斗破裂半径。
⑤爆破漏斗深度。爆破漏斗顶点至自由面的最短距离叫
爆破漏斗深度。图5-4中的H表示爆破漏斗深度。 ⑥爆破漏斗可见深度。爆破漏斗中碴堆表面最低点到自 由面的最短距离叫爆破漏斗可见深度,如图5-4中h所示。 ⑦爆破漏斗张开角,即爆破漏斗的顶角,如图5-4中的θ 所示。
5.3 体积公式
目前,在岩土工程爆破中,精确计算装药量(charge quantity)的问题尚未得到十分圆满的解决。工程技术人员更多 体积公式是装药量计算中最为常用的一种经验公式。
的是在各种经验公式的基础上,结合实践经验确定装药量。其中,
(1)体积公式的计算原理
在一定的炸药和岩石条件下,爆落的土石方体积与所用的装 药量成正比。这就是体积公式的计算原理。体积公式的形式为:
5.2 单个药包的爆破作用
为了分析岩体的爆破破碎机理,通常假定岩石是均匀介质,
并将装药简化为在一个自由面条件下的球形药包。球形药包的爆
破作用原理是其它形状药包爆破作用原理的基础。 (1)爆破的内部作用 当药包在岩体中的埋臵深度很大,其爆破作用达不到自由面 时,这种情况下的爆破作用叫作爆破的内部作用,相当于单个药 包在无限介质中的爆破作用。岩石的破坏特征随离药包中心距离 的变化而发生明显的变化。 根据岩石的破坏特征,可将偶合装药条件下,受爆炸影响的
θ θ
σ 当径向拉应力大于岩石的抗拉强度时,该处 σ σr σr 岩石即被拉断,形成环向裂隙。 (a) (b) (c)
σr
`
θ
σr
`
在应力波和爆轰气体的共同作用下,随着径
向裂隙、环向裂隙和切向裂隙的形成、扩展和贯 通,在紧靠粉碎区处就形成了一个裂隙发育的区 域,称为破裂区。
θ
σ
σ
σ
σ
σ
σ
`
`
`
`
`
`
又是一个高温高压高速的变化过程,炸药对岩石破坏的整 个过程在几十微秒到几十毫秒内就完成了,因此研究岩石 爆破作用机理是一项非常复杂和困难的工作。 随着测试技术的进步,相关科学的发展和引入,以及 各类工程对爆破规模和质量要求的不断提高,岩石爆破作 用原理的研究取得了许多新的进展,建立了一些新的学说 和理论体系,提出了很多计算模型和计算公式,尽管这些
(5-4)
式中:r为爆破漏斗底圆半径,m;W为最小抵抗线;m。
r n 1 ,即r=W,所以 对于标准抛掷爆破漏斗, W (5-5) V W 2 W W 3 1047 . W3 W3 3 3
将(5-5)式代入(5-3)式,得
Qb=qb·W3
(5-6)
式(5-6)即集中药包的标准抛掷爆破装药量计算公式。
远超过岩石的动态抗压强度。在冲击波的作用下,对于坚硬岩石,
实层,这种情况下的粉碎区又称为压缩区。
虽然粉碎区的范围不大,但由于岩石遭到强烈粉碎,能量消 耗却很大。因此,爆破岩石时,应尽量避免形成压碎区。
2)破裂区
在粉碎区形成的同时,岩石中的冲击波衰减成应力
σr σr 波。在应力波的作用下,岩石在径向产生压应力和压缩 σ σ 变形,而切向方向将产生拉应力和拉伸变形。切向拉应 σ σ σr σr 力大于岩石的抗拉强度时,该处岩石被拉断,形成与粉碎
②加强抛掷爆破漏斗。如图5-5(b)所示,当r>W,即n>1
时,爆破漏斗为加强抛掷爆破漏斗,漏斗的张开角θ>90°。 形成加强抛掷爆破漏斗的药包,叫做加强抛掷爆破药包。 ③减弱抛掷爆破漏斗。如图5-5(c)所示,当0.75<n<1时, 爆破漏斗为减弱抛掷爆破漏斗,漏斗的张开角θ<90°。形成
减弱抛掷爆破漏斗的药包,叫做减弱抛掷爆破药包,减弱抛掷
性质一定的条件下,爆破能量的多少取决于炸药量的多少、炸 药能量释放的速度与炸药起爆的速度。 假设有一定数量的炸药埋臵于地下某一深度,它所释放的 能量刚好能使岩石爆破由内部爆破转化为松动爆破,即刚好使
岩石发生松动破坏,这一最大埋臵深度为临界深度hk :
hk E 3 Q
式中:hk 为炸药的临界深度,m;Q为药包总量,Kg;E岩石的 变形能系数,m/Kg1/3。
Q=q·V
kg/m ;V为被爆落的岩石体积,m 。
3 3
(5-2)
式中:Q 为装药量,kg ;q为单位体积岩石的炸药消耗量,
(2)集中药包的药量计算 1) 集中药包(concentrated charge )的标准抛掷爆破 1) 集中药包( concentrated charge )的标准抛掷爆破 2)集中药包的非标准抛掷爆破 根据体积公式的计算原理,对于采用单个集中药包进行
3)震动区 在破裂区外围的岩体中,应力波和爆轰气体的 能量已不足以对岩石造成破坏,应力波的能量只能
引起该区域内岩石质点发生弹性振动,这个区域称
为震动区。在震动区,由于地震波的作用,有可能
引起地面或地下建筑物、构筑物的破裂、倒塌,或
导致路堑边坡滑坡、隧道冒顶片帮等灾害。
(2)爆破漏斗(crater)(爆破的外部作用)
5 爆破破岩机理
在铁路建设、水利工程、 采矿工程以及其它土石方工 程中,爆破是目前应用最为 广泛、最为有效的一种破岩 手段。为了优化爆破参数, 必须了解岩石在爆破作用下 的破碎机理、装药量的计算 原理以及各种相关因素对爆 破效果的影响。
施工人员正在钻孔
由于岩石是一种非均质、各向异性的介质,爆炸本身
利文斯顿从能量的观点出发,阐明了岩石变形能系数E 的物理意义。他认为在一定炸药量条件下,岩石表面开始破 裂时,岩石可能吸收的最大能量为E,超过此能量,岩石表 面将由弹性变形变为破裂。 当爆破漏斗体积最大,炸药能力充分利用,最佳深度hi; 深度逐渐减小,漏斗体积减小,炸药用于破碎、抛掷岩 石和声音的能力逐渐增大,过渡深度hg ;