2020考研数学线性代数六大重要知识点

合集下载

考研数学线性代数必考的知识点

考研数学线性代数必考的知识点

考研数学线性代数必考的知识点考研数学线性代数必考的知识点漫长的学习生涯中,大家最熟悉的就是知识点吧?知识点就是一些常考的内容,或者考试经常出题的地方。

还在苦恼没有知识点总结吗?以下是店铺帮大家整理的考研数学线性代数必考的知识点,供大家参考借鉴,希望可以帮助到有需要的朋友。

考研数学线性代数必考的知识点篇1考研数学线性代数必考的重点一、行列式与矩阵第一章《行列式》、第二章《矩阵》是线性代数中的基础章节,有必要熟练掌握。

行列式的核心内容是求行列式,包括具体行列式的计算和抽象行列式的计算二、向量与线性方程组向量与线性方程组是整个线性代数部分的核心内容。

相比之下,行列式和矩阵可视作是为了讨论向量和线性方程组部分的问题而做铺垫的基础性章节。

向量与线性方程组的内容联系很密切,很多知识点相互之间都有或明或暗的相关性。

复习这两部分内容最有效的方法就是彻底理顺诸多知识点之间的内在联系,因为这样做首先能够保证做到真正意义上的理解,同时也是熟练掌握和灵活运用的前提。

三、特征值与特征向量相对于前两章来说,本章不是线性代数这门课的理论重点,但却是一个考试重点。

其原因是解决相关题目要用到线代中的大量内容——既有行列式、矩阵又有线性方程组和线性相关,“牵一发而动全身”。

四、二次型本章所讲的内容从根本上讲是第五章《特征值和特征向量》的一个延伸,因为化二次型为标准型的核心知识为“对于实对称矩阵A存在正交矩阵Q使得A可以相似对角化”,其过程就是上一章相似对角化在为实对称矩阵时的应用。

考研数学概率以大纲为本夯实基础从考试的角度,大家看看历年真题就发现比较明显的规律:概率的题型相对固定,哪考大题哪考小题非常清楚。

概率常考大题的地方是:随机变量函数的分布,多维分布(边缘分布和条件分布),矩估计和极大似然估计。

其它知识点考小题,如随机事件与概率,数字特征等。

从学科的角度,概率的知识结构与线性代数不同,不是网状知识结构,而是躺倒的树形结构。

第一章随机事件与概率是基础知识,在此基础上可以讨论随机变量,这就是第二章的内容。

数学考研必备知识点线性代数的重点章节解析

数学考研必备知识点线性代数的重点章节解析

数学考研必备知识点线性代数的重点章节解析一、引言线性代数是数学中的一个重要分支,广泛应用于各个领域的科学研究和工程实践中。

作为数学考研的一门必备知识,掌握线性代数的重点章节非常关键。

本文将对数学考研必备知识点线性代数的重点章节进行解析,帮助考生全面理解和掌握这些内容。

二、向量空间向量空间是线性代数的基础,包括向量的加法、数乘和向量空间的性质等。

重点章节有:1. 线性相关性与线性无关性:讨论向量组的线性相关性与线性无关性,以及线性相关性的判定方法。

2. 向量空间的维数:介绍向量空间的维数概念及其性质,以及维数的计算方法。

3. 基与坐标:介绍向量空间的一组基及其坐标表示方法,以及基的变换与坐标的变换关系。

三、线性映射与线性变换线性映射与线性变换是线性代数的重要内容,涉及到线性变换的性质、线性变换的表示矩阵和线性映射的核与像等。

重点章节有:1. 线性变换与矩阵:介绍线性变换的定义和性质,并探究线性变换的代数表示——矩阵。

2. 线性变换的核与像:讨论线性变换的核与像的概念,以及它们的性质和计算方法。

3. 线性变换的合成与逆变换:研究线性变换的合成和逆变换的概念与性质,以及相应的计算方法。

四、特征值与特征向量特征值与特征向量是线性代数中的重要概念,用于研究线性变换的本质特性。

重点章节有:1. 特征值与特征向量的定义:介绍特征值与特征向量的定义及其性质。

2. 特征值与特征向量的计算:探究特征值与特征向量的计算方法和求解步骤。

3. 对角化与相似矩阵:讨论矩阵的对角化概念及其条件,以及相似矩阵的性质和计算方法。

五、内积空间与正交变换内积空间与正交变换是线性代数的重要分支,包括内积空间的定义与性质、正交变换的概念与性质等。

重点章节有:1. 内积空间的定义与性质:介绍内积空间的定义和性质,包括内积的性质和内积空间的几何解释。

2. 正交向量与正交子空间:研究正交向量和正交子空间的概念、性质及其计算方法。

3. 正交变换与正交矩阵:探究正交变换的定义和性质,以及正交变换的矩阵表示——正交矩阵。

线性代数的重点知识点总结

线性代数的重点知识点总结

线性代数的重点知识点总结线性代数是数学中的一个重要分支,它研究向量空间和线性变换的性质。

在数学、物理、计算机科学等领域中,线性代数都有着广泛的应用。

本文将总结线性代数的一些重点知识点,帮助读者更好地理解和应用线性代数。

1. 向量和矩阵向量是线性代数中的基本概念,它表示空间中的一点或者一个方向。

向量可以表示为一个有序的数列,也可以表示为一个列矩阵。

矩阵是由多个向量按照一定规则排列而成的矩形阵列。

矩阵可以进行加法、减法和数乘等运算。

矩阵的转置、逆矩阵和行列式等概念也是线性代数中的重要内容。

2. 线性方程组线性方程组是线性代数中的一个重要问题,它可以表示为多个线性方程的组合。

线性方程组的求解可以通过消元法、矩阵的逆等方法进行。

当线性方程组有唯一解时,称为可逆方程组;当线性方程组无解或者有无穷多解时,称为不可逆方程组。

3. 向量空间和子空间向量空间是线性代数中的一个核心概念,它包含了所有满足线性组合和封闭性的向量的集合。

子空间是向量空间中的一个子集,它也满足线性组合和封闭性的性质。

子空间可以通过一组线性无关的向量来生成,这组向量称为子空间的基。

子空间的维度等于基向量的个数。

4. 线性变换线性变换是线性代数中的一个重要概念,它是指一个向量空间到另一个向量空间的映射,并且保持向量空间的线性性质。

线性变换可以用矩阵表示,矩阵的每一列表示线性变换后的基向量。

线性变换有很多重要的性质,比如保持向量的线性组合、保持向量的线性无关性等。

5. 特征值和特征向量特征值和特征向量是线性代数中的一个重要概念,它们描述了线性变换对向量的影响。

特征向量是指在线性变换下保持方向不变或者仅仅改变长度的向量,特征值是特征向量对应的标量。

特征值和特征向量可以通过求解线性方程组来得到。

6. 内积和正交性内积是线性代数中的一个重要概念,它表示两个向量之间的夹角和长度的关系。

内积可以用来判断向量是否相互垂直或者平行,还可以用来计算向量的长度和夹角。

考研数学线性代数重点整理

考研数学线性代数重点整理

考研数学线性代数重点整理一、矢量空间矢量空间是线性代数的基础概念,它描述了一组对象(称为矢量)的性质及其之间的运算规则。

以下是矢量空间的一些重要性质和定义:1. 定义:矢量空间是满足以下8个条件的集合V,其中两个运算(加法和乘法)满足特定的性质。

2. 加法:对于任意的矢量u和v,它们的和u+v也是V中的一个矢量。

3. 加法交换律:对于任意的矢量u和v,有u+v = v+u。

4. 加法结合律:对于任意的矢量u、v和w,有(u+v)+w = u+(v+w)。

5. 加法单位元:存在一个称为零矢量的特殊矢量0,对于任意的矢量v,有v+0 = 0+v = v。

6. 加法逆元:对于任意的矢量v,存在一个称为负矢量的特殊矢量-u,使得v+(-u) = (-u)+v = 0。

7. 乘法定义:对于任意的矢量v和实数c,cv也是V中的一个矢量。

8. 乘法分配律:对于任意的矢量v和实数c和d,有c(dv) = (cd)v。

9. 乘法单位元:对于任意的矢量v,有1v = v。

二、矩阵与线性方程组矩阵是线性代数中另一个重要的概念,它可以用来表示线性方程组和线性变换。

以下是与矩阵和线性方程组相关的一些重要内容:1. 矩阵定义:将数按矩形排列成的矩形数表称为矩阵,其中行数和列数分别称为矩阵的行数和列数。

2. 矩阵运算:矩阵之间可以进行加法和乘法的运算,具体规则如下:- 矩阵加法:对应位置元素相加。

- 矩阵乘法:设A是一个m×n矩阵,B是一个n×p矩阵,那么它们的乘积AB是一个m×p矩阵,乘法规则为A的行乘以B的列。

3. 线性方程组:线性方程组是一组线性方程的集合,矩阵可以用来表示和求解线性方程组。

对于一个m×n矩阵A、一个n×1矩阵X和一个m×1矩阵B,线性方程组可以表示为AX=B。

4. 线性方程组的解:根据矩阵的性质,可以通过高斯消元法、矩阵求逆等方法求解线性方程组。

线性代数考研知识点总结

线性代数考研知识点总结

线性代数考研知识点总结线性代数是数学的一个重要分支,它研究向量空间及其上的线性变换。

在计算机科学、物理学、工程学等领域中,线性代数都有着广泛的应用。

在考研中,线性代数是一个必考的科目,以下是线性代数考研的一些重要知识点总结。

1. 向量空间:向量空间是线性代数的基础概念,它包括一组向量和一些满足特定条件的运算规则。

向量空间中的向量可以进行加法和数乘运算,满足交换律、结合律和分配律。

2. 向量的线性相关性和线性无关性:如果向量可以通过线性组合表示为另一组向量的形式,那么这组向量就是线性相关的;如果向量不满足线性相关的条件,那么它们就是线性无关的。

3. 矩阵:矩阵是线性代数中的另一个重要概念,它是一个由数字排列成的矩形阵列。

矩阵可以用于表示线性变换、解线性方程组等。

常见的矩阵类型有方阵、对称矩阵、对角矩阵、单位矩阵等。

4. 行列式:行列式是一个用于刻画矩阵性质的重要工具。

行列式可以用来计算线性变换的缩放因子,判断矩阵是否可逆,以及计算矩阵的逆等。

5. 矩阵的相似和对角化:两个矩阵A和B,如果存在一个非奇异矩阵P,使得PAP^(-1)=B,那么矩阵A和B就是相似的。

相似的矩阵有着相同的特征值和特征向量。

对角化是指将一个矩阵通过相似变换变成对角矩阵的过程。

6. 线性变换:线性变换是指一个向量空间到另一个向量空间的映射,它满足线性性质。

线性变换可以用矩阵表示,相应的矩阵称为线性变换的矩阵表示。

线性变换可以进行合成、求逆等操作。

7. 内积空间:内积空间是一个带有内积运算的向量空间。

内积运算满足对称性、线性性、正定性等性质。

内积空间可以用来定义向量的长度、夹角、正交性等概念。

8. 特征值和特征向量:对于一个线性变换,如果存在一个非零向量使得线性变换作用在该向量上等于该向量的某个常数倍,那么这个常数就是该线性变换的特征值,而对应的非零向量就是特征向量。

特征值和特征向量可以用来分析矩阵的性质,求解线性方程组等。

9. 奇异值分解:奇异值分解是矩阵分解的一种常用方法,它将一个矩阵分解为三个矩阵的乘积,其中一个矩阵是正交矩阵,另两个矩阵是对角矩阵。

2020年考研数学线性代数知识点

2020年考研数学线性代数知识点

2020年考研数学线性代数知识点第一章行列式
1、行列式的定义
2、行列式的性质
3、特殊行列式的值
4、行列式展开定理
5、抽象行列式的计算
第二章矩阵
1、矩阵的定义及线性运算
2、乘法
3、矩阵方幂
4、转置
5、逆矩阵的概念和性质
6、伴随矩阵
7、分块矩阵及其运算
8、矩阵的初等变换与初等矩阵
9、矩阵的等价
10、矩阵的秩
第三章向量
1、向量的概念及其运算
2、向量的线性组合与线性表出
3、等价向量组
4、向量组的线性相关与线性无关
5、极大线性无关组与向量组的秩
6、内积与施密特正交化
7、n维向量空间(数学一)
第四章线性方程组
1、线性方程组的克莱姆法则
2、齐次线性方程组有非零解的判定条件
3、非齐次线性方程组有解的判定条件
4、线性方程组解的结构
第五章矩阵的特征值和特征向量
1、矩阵的特征值和特征向量的概念和性质
2、相似矩阵的概念及性质
3、矩阵的相似对角化
4、实对称矩阵的特征值、特征向量及其相似对角矩阵第六章二次型
1、二次型及其矩阵表示
2、合同变换与合同矩阵
3、二次型的秩
4、二次型的标准型和规范型
5、惯性定理
6、用正交变换和配方法化二次型为标准型
7、正定二次型及其判定
数学的学习是比较有难度的,大家平时的学习中,大家要积累跟多的解题思路,这样自己在考试时遇到难题就能迎刃而解。

完整版线性代数知识点总结

完整版线性代数知识点总结

完整版线性代数知识点总结线性代数是数学的一个分支,研究向量空间及其上的线性变换。

它在各个领域中都有广泛的应用,包括物理学、计算机科学、工程学等。

以下是线性代数的一些重要知识点总结:1.向量和向量空间:向量是有方向和大小的量,可以用来表示力、速度、位移等。

向量空间是向量的集合,具有加法和标量乘法运算,同时满足一定的性质。

2.线性方程组和矩阵:线性方程组是一组线性方程的集合,研究其解的性质和求解方法。

矩阵是一个由数构成的矩形数组,可以用来表示线性方程组中的系数和常数。

3.矩阵的运算:包括矩阵的加法、减法和乘法运算。

矩阵乘法是一种重要的运算,可以用来表示线性变换和复合变换。

4.行列式和特征值:行列式是一个标量,表示矩阵的一些性质,如可逆性和面积/体积的变换。

特征值是矩阵对应的线性变换中特殊的值,表示该变换在一些方向上的伸缩程度。

5.向量的内积和正交性:向量的内积是一种二元运算,可以用来表示向量之间的夹角和长度。

正交向量是指内积为零的向量,可以用来表示正交补空间等概念。

6.向量的投影和正交分解:向量的投影是一个向量在另一个向量上的投影,可以用来表示向量的分解。

正交分解是将一个向量分解为与另一个向量正交和平行的两个向量之和。

7.线性变换和线性映射:线性变换是指保持向量加法和标量乘法运算的变换。

线性映射是向量空间之间的函数,具有保持线性运算的性质。

8.特征值和特征向量:特征值和特征向量是线性变换或矩阵中一个重要的概念,用于描述变换的性质和方向。

9.正交矩阵和对称矩阵:正交矩阵是一个方阵,其列向量组成的矩阵是正交的。

对称矩阵是一个方阵,其转置等于自身。

10.奇异值分解:奇异值分解(SVD)是一种矩阵的分解方法,用来将一个矩阵分解为三个矩阵的乘积。

SVD在数据压缩、图像处理和机器学习等领域有广泛的应用。

11.最小二乘法:最小二乘法是一种数学优化方法,用来找到一条曲线或超平面,使得这些数据点到该曲线或超平面的距离平方和最小。

2020考研考研线性代数知识点归类

2020考研考研线性代数知识点归类

2020考研考研线性代数知识点归类内容和微分方程有异曲同工之妙,记忆的内容比较多,但比较简单。

小编整理了相关内容,希望能帮助到您。

2020考研考研线性代数知识点归类01特点与难点1、特点前面是基础,后面是应用。

这句话有三层意思⑴、前面的内容学好,后面内容才看得懂。

⑵、前面内容不会单独考,70%会结合后面内容考查,所以题目综合性强。

⑶、前面内容需要记忆,类似于泰勒公式,类似于求导公式,但是不同于泰勒公式的是,可以通过理解记忆。

2、难点⑴、没有一本好的辅导书。

①刚刚说过,前面的内容可以通过理解记忆,但是辅导书不讲深层原因,而是直接罗列出来。

比如:行列式性质②大部分考研难度的题目都具有一定综合性,编者不好编辑例题。

比如:行列式内容中,抽象行列式涉及矩阵内容(此时矩阵还没有学习)矩阵内容中秩的相关概念需要用向量和方程组的知识理解(此时向量还没有学习)⑵、网课老师深浅把握不好张宇:线性代数讲得深!他可以把深层次原因讲出来,但是作为新手,你会质疑老师的能力!李永乐:讲的细致,风格恰好与张宇相反。

杨超:同李永乐⑶、某些概念理解有困难这部分原因是两部分造成的:①没有理解前面某些概念。

②由于题目综合性强,练的题目少。

把这三个难点联系在一起,你们有没有发现?线性代数复习进入了一个死循环前期复习没有涉及后面的知识点做题少、不能够通过做题加深概念后面知识点理解困难做题少、不能够通过做题加深概念。

所以,堂主下面写的内容对你们有三个帮助帮助1:知道哪些习题是综合性题目,哪些知识点是为后面做铺垫。

帮助2:让你们对线性代数有一个系统的了解。

帮助3:帮助你们梳理知识点,避免盲目的学习!02各章知识点总结【行列式】1、行列式本质就是一个数2、行列式概念、逆序数考研:小题,无法联系其他知识点,当场解决。

3、二阶、三阶行列式具体性计算考研:不会单独出题,常常结合伴随矩阵、可逆矩阵考察。

4、余子式和代数余子式考研:代数余子式的正负是一个易错点,了解代数余子式才能学习行列式展开定理。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2020考研数学线性代数六大重要知识点
出国留学考研网为大家提供2016考研数学线性代数六大重要知
识点,更多考研资讯请关注我们网站的更新!
2016考研数学线性代数六大重要知识点
一、行列式部分,强化概念性质,熟练行列式的求法
行列式对应的是一个数值,是一个实数,明确这一点可以帮助我们检查一些疏漏的低级错误;行列式的计算方法中常用的是定义法,
比较重要的是加边法,数学归纳法,降阶法,利用行列式的性质对
行列式进行恒等变形,化简之后再按行或列展开。

另外范德蒙行列
式也是需要掌握的;行列式的考查方式分为低阶的数字型矩阵和高阶
抽象行列式的计算、含参数的行列式的计算等。

二、矩阵部分,重视矩阵运算,掌握矩阵秩的应用
通过历年真题分类统计与考点分布,矩阵部分的重点考点集中在逆矩阵、伴随矩阵及矩阵方程,其内容包括伴随矩阵的定义、性质、行列式、逆矩阵、秩,在课堂辅导的时候会重点强调.此外,伴随矩
阵的矩阵方程以及矩阵与行列式的结合也是需要同学们熟练掌握的
细节。

涉及秩的应用,包含矩阵的秩与向量组的秩之间的关系,矩
阵等价与向量组等价,对矩阵的秩与方程组的解之间关系的分析,
备考需要在理解概念的基础上,系统地进行归纳总结,并做习题加
以巩固。

三、向量部分,理解相关无关概念,灵活进行判定
向量组的线性相关问题是向量部分的重中之重,也是考研线性代数每年必出的考点。

如何掌握这部分内容呢?首先在于对定义概念的
理解,然后就是分析判定的重点,即:看是否存在一组全为零的或
者有非零解的实数对。

基础线性相关问题也会涉及类似的题型:判
定向量组的线性相关性、向量组线性相关性的证明、判定一个向量
能否由一向量组线性表出、向量组的秩和极大无关组的求法、有关
秩的证明、有关矩阵与向量组等价的命题、与向量空间有关的命题。

四、线性方程组部分,判断解的个数,明确通解的求解思路
线性方程组解的情况,主要涵盖了齐次线性方程组有非零解、非齐次线性方程组解的判定及解的结构、齐次线性方程组基础解系的
求解与证明以及带参数的线性方程组的解的情况。

为了使考生牢固
掌握线性方程组的求解问题,博研堂专家对含参数的方程通解的求
解思路进行了整理,希望对考研同学有所帮助。

通解的求法有两种,若为齐次线性方程组,首先求解方程组的矩阵对应的行列式的值,
在特征值为零和不为零的情况下分别进行讨论,为零说明有解,带
入增广矩阵化简整理;不为零则有唯一解直接求出即可。

若为非齐次
方程组,则按照对增广矩阵的讨论进行求解。

五、矩阵的特征值与特征向量部分,理解概念方法,掌握矩阵
对角化的求解
矩阵的特征值、特征向量部分可划分为三给我板块:特征值和特征向量的概念及计算、方阵的相似对角化、实对称矩阵的正交相似
对角化。

相关题型有:数值矩阵的特征值和特征向量的求法、抽象
矩阵特征值和特征向量的求法、判定矩阵的相似对角化、有关实对
称矩阵的问题。

六、二次型部分,熟悉正定矩阵的判别,了解规范性和惯性定

二次型矩阵是二次型问题的一个基础,且大部分都可以转化为它的实对称矩阵的问题来处理。

另外二次型及其矩阵表示,二次型的
秩和标准形等概念、二次型的规范形和惯性定理也是填空选择题中
的不可或缺的部分,二次型的标准化与矩阵对角化紧密相连,要会
用配方法、正交变换化二次型为标准形;掌握二次型正定性的判别方
法等等。

相关文档
最新文档