2018年高中数学联赛(四川预赛)试题和参考答案及评分细则

合集下载

2018年全国高中数学联合竞赛试题及解答.(B卷)

2018年全国高中数学联合竞赛试题及解答.(B卷)

a 2018年全国高中数学联合竞赛一试(B 卷)一、填空题:本大题共8个小题,每小题8分,共64分。

2018B1、设集合{}8,1,0,2=A ,集合{}A a a B ∈=|2,则集合B A 的所有元素之和是 ◆答案: 31★解析:易知{}16,2,0,4=B ,所以{}16,8,4,2,1,0=B A ,元素之和为31.2018B 2、已知圆锥的顶点为P ,底面半径长为2,高为1.在圆锥底面上取一点Q ,使得直线PQ 与底面所成角不大于045,则满足条件的点Q 所构成的区域的面积为 ◆答案: π3★解析:记圆锥的顶点P 在底面的投影为O ,则O 为底面中心,且1tan ≤=∠OQOPOQP ,即1≥OQ ,故所以区域的面积为πππ31222=⨯-⨯。

2018B 3、将6,5,4,3,2,1随机排成一行,记为f e d c b a ,,,,,,则def abc +是奇数的概率为 ◆答案:101 ★解析:由def abc +为奇数时,abc ,def 一奇一偶,①若abc 为奇数,则c b a ,,为5,3,1的排列,进而f e d ,,为6,4,2的排列,这样共有3666=⨯种;②若abc 为偶数,由对称性得,也有3666=⨯种,从而def abc +为奇数的概率为101!672=。

2018B 4、在平面直角坐标系xOy 中,直线l 通过原点,)1,3(=n 是l 的一个法向量.已知数列{}n a 满足:对任意正整数n ,点),(1n n a a +均在l 上.若62=a ,则54321a a a a a 的值为 ◆答案: 32-★解析:易知直线l 的方程为x y 3-=,因此对任意正整数n ,有n n a a 311-=+,故{}n a 是以31-为a 公比的等比数列.于是23123-=-=a a ,由等比数列的性质知325354321-==a a a a a a2018B 5、设βα,满足3)3tan(-=+πα,5)6tan(=-πβ,则)tan(βα-的值为◆答案: 47-★解析:由两角差的正切公式可知7463tan =⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛+πβπα,即可得47)tan(-=-βα2018B 6、设抛物线x y C 2:2=的准线与x 轴交于点A ,过点)0,1(-B 作一直线l 与抛物线C 相切于点K ,过点A 作l 的平行线,与抛物线C 交于点N M ,,则KMN ∆的面积为为 ◆答案:21★解析:设直线l 与MN 的斜率为k ,:l 11-=y k x ,:MN 211-=y k x 分别联立抛物线方程得到:0222=+-y k y (*),和0122=+-y ky (**) 对(*)由0=∆得22±=k ;对(**)得2442=-=-k y y NM所以2121=-⋅⋅=-==∆∆∆∆N M KBAN BAM BMN KMN y y AB S S S S2018B 7、设)(x f 是定义在R 上的以2为周期的偶函数,在区间[]2,1上严格递减,且满足1)(=πf ,0)2(=πf ,则不等式组⎩⎨⎧≤≤≤≤1)(010x f x 的解集为◆答案:[]ππ--4,62★解析:由)(x f 为偶函数及在区间[]2,1上严格递减知,)(x f 在[]1,2--上递增,结合周期性知,)(x f 在[]1,0上递增,又1)()4(==-ππf f ,0)2()62(==-ππf f ,所以不等式等价于)4()()62(ππ-≤≤-f x f f ,又14620<-<-<ππ,即不等式的解集为a[]ππ--4,622018B 8、已知复数321,,z z z 满足1321===z z z ,r z z z =++321,其中r 是给定的实数,则133221z z z z z z ++的实部是 (用含有r 的式子表示) ◆答案: 232-r★解析:记133221z z z z z z w ++=,由复数的模的性质可知:111z z =,221z z =,331z z =,因此 133221z z z z z z w ++=。

导数与极限第二辑(解析版)-备战2022年高中数学联赛之历年真题分类汇编(2015-2021)

导数与极限第二辑(解析版)-备战2022年高中数学联赛之历年真题分类汇编(2015-2021)

备战2022年高中数学联赛之历年真题分类汇编(2015-2021)专题13导数与极限第二辑1.【2018年广东预赛】设函数.f (x )=e x‒1‒x ⑴求在区间(n 为正整数)上的最大值;f (x )[0,1n ]b n ⑵令(n 、k 为正整数).求证:.a n =e 1n‒1‒b n ,p k =a 2a 4⋯a 2ka 1a 3⋯a 2k ‒1p 1+p 2+⋯+p n <2a n+1‒1【答案】(1)(2)见解析b n =e 1n‒1‒1n 【解析】⑴因为,所以当时,,即上是增函数,故上的最大值为f'(x )=e x‒1x ∈[0,1n ]f'(x )≥0f (x )在[0,1n ]f (x )在[0,1n ].b n =e 1n‒1‒1n ⑵由⑴知.因为,a n =e 1n‒1‒b n =1n (2k ‒1)(2k +1)(2k )2=4k 2‒14k 2<1所以.[1⋅3⋅5⋅⋯⋅(2k ‒1)2⋅4⋅⋯⋅(2k )]2=1⋅322⋅3⋅542⋅5⋅762⋅⋯⋅(2k ‒1)(2k +1)(2k )2⋅12k +1<12k +1又容易证明.12k +1<2k +1‒2k ‒1所以p k =a 2a 4⋯a 2ka 1a 3⋯a 2k ‒1=1⋅3⋅5⋅⋯⋅(2k ‒1)2⋅4⋅⋯⋅(2k )<12k +1<2k +1‒2k ‒1所以.p 1+p 2+⋯+p n <(3‒1)+(5‒3)+⋯+(2n +1‒2n ‒1) =2n +1‒1=2a n+1‒1即.p 1+p 2+⋯+p n <2a n+1‒12.【2018年甘肃预赛】设函数).f (x )=x ‒2x ‒a ln x (a ∈R ,a >0(1)讨论的单调性;f (x )(2)如果有两个极值点,我们记过点的直线斜率为.问:是否存在,f (x )x 1和x 2A (x 1,f (x 1)),B (x 2,f (x 2))k a 使得?若存在,求出的值,若不存在,请说明理由.k =2‒a a 【答案】(1)见解析(2)不存在【解析】(1)f(x)的定义域为,(0,+∞)。

2020年全国高中数学联赛(四川预赛)试题及参考答案

2020年全国高中数学联赛(四川预赛)试题及参考答案

a3 (b c)2
b3 (c a)2
c3 (a b)2
(a
b c) .
求 的最大值.
解:取 a 1 ,b 1 , c 2 ,其中 0 1 .
2
2
6
(1 +)3 则 2
(1 )3 2
(2 )3
(1 +)3 2
1 2
(1 3 )2 ( 1)2 (2 )2 (1 3 )2 2
2
2
2
对任意的(0 1)成立. 6
注意到当
0+
(1 +)3 时, 2
(1 3 )2
1 2
2
1,
2
所以, 1 .
......5 分
另一方面,下证: =1成立,即证
a3 (b c)2
b3 (c a)2
c3 (a b)2
(a b c)
.
不妨设 a b c ,则可令 a=c x,b c y ,其中 x y 0 .
设 A(x1 ,y1) , B(x2 ,y2 ) ,则 x1 x2 k , x1x2 1.
过点 A(x1 ,y1) 的抛物线 y x2 的切线方程是 y y1 2x1(x x1) ,
由 y1 x12 ,代入可得 y 2x1x x12 .
过点 B(x2 ,y2 ) 的抛物线 y x2 的切线方程是 y 2x2 x x22 ,
所以,问题得证.
......15 分 ......20 分
参考答案及评分标准 (第 4 页,共 4 页)

k2
1 t ( t ≥1 ),则 d
| t2 1 2|
2
t
3
≥2
3
3
t
2 2t

2018年全国高中数学联赛四川赛区预赛试题+答案

2018年全国高中数学联赛四川赛区预赛试题+答案

评阅,请严格按照评分标准规定的评分档次给分,不要再增加其它中间档次.
2、如果考生的解答题方法和本解答不同,只要思路合理,步骤正确,在评阅时可参
考本评分标准适当划分档次评分,5 分一个档次,不要再增加其它中间档次.
一、选择题(本大题共 6 个小题,每小题 5 分,共 30 分)
1、A
2、B
3、B
4、D
………………………………………………………密……………………封……………………线………………………………………………………
2018 年全国高中数学联合竞赛(四川预赛)
(5 月 20 日下午 14:30——16:30)
题目


13
得分
评卷人
复核人

14
15
总成绩 16
考生注意:1.本试卷共有三大题(16 个小题),全卷满分 140 分. 2.用黑(蓝)色圆珠笔或钢笔作答. 3.计算器、通讯工具不准带入考场. 4.解题书写不要超过密封线.
k 1
……5 分
若 m 2 ,注意到 n 时, (m 2)(n 1) ,
因此,存在充分大的 n ,使得1 (m 2)(n 1) 4 ,即 an 4 ,矛盾!
参考答案及评分标准 (第 3 页 共 5 页) 第7页
所以, m 2 . 又当 m 2 时,可证:对任意的正整数 n ,都有 0 an 4 .
……5 分
参考答案及评分标准 (第 4 页 共 5 页) 第8页
当 0<p<1 时,由 x[1,e],得 x 1 ≥0, x
故 f(x)p(x 1 )2lnx<x 1 2lnx<2,不合题意.
学校:
5. 已知方程1 x x2 x3 x4 x2018 0 的所有实数根都在区间[a, b] 内

谈谈赫尔德不等式

谈谈赫尔德不等式

6中等数学谈谈赫尔德不等式中图分类号:0122.3王永中(四川省绵阳中学,621000)文献标识码:A 文章编号:1005 - 6416(2019)08 - 0006 - 07(本讲适合高中)1知识介绍赫尔德(Holder )不等式 若5 0GR +(i = 1 ,2,…,n ) ,p >0,pMl , — + — = 1,则p q丄丄S 5® V创)(p > 1);①i = l' i = l ' \ i = 1 '\_ 丄空恥禺空引"(空汀(0<卩<1).②i\ i =1/' i =1'p p p当且仅当善=菩=…=詈时,以上两式等号成立.常见的资料中只介绍了不等式①,当P=g=2时,式①即为柯西不等式,可以认为它是柯西不等式的推广,故也称为柯西一赫尔德不等式.1. 1赫尔德不等式的证明取幕函数/(%)=%"(% G (0, +00)).因为r (x )=p (P -i )^-2,所以,当卩>1 时,r (%)>o,/(%)为下凸函数.对于任意的 Pi 、叫 W R + (i = 1,2,-",n ),由琴生不等式得Pl +P2 + …+P ”IPl X l +P2%2 + *■ +Pn X A'Pl +P2 + •-• +Pn)一 P i 琲 +p 2x^ +…+p X当且仅当衍=勺=…=%”时,上式等号成立. 显然,收稿日期:2019-01 -31式③1 = 1 ' I = 1 ' \ i = 1记q =』7,贝』+丄=1.令p -1 p qPi = b :,叫=a :b 訐(i = 1 ,2,…,zz ;5、®W R + ).故Pi 叫=bgb 户=a 屈(心)=ab,Pi 减=b :a :b 「q =af.将以上各式代入式④得丄丄i = l\ i = 1 / ' i = 1 /当且仅当a®芦=a 2b^ =…=a ”b 拦,即 訂訂…主时,上式等号成立,这样便证明了不等式①.又当o<p<i 时,r (x )<o,/(%)为上凸 函数,不等式③反向,从而,相应地有不等 式②.上述证明表明,赫尔德不等式本质上是幕函数的凸性;不等式③是加权的幕平均不 等式的一种特殊情况.当Pl =P2 =…=Pn = 1时,式③成为幕平均不等式勺+%2 +…+ 乂” 一/姊+舄+…+犹Vn )'当p=2时,上式即不等式A5)WQ5)(算2019年第8期7术平均值W 平方平均值).关于赫尔德不等式①,常见的证法是引 用如下不等式:几何不等式 若%、y 、a 、0 € R+,a +0=1,则x a )fi W ox + 0y ,当且仅当% =y 时,上式等号成立.事实上,因为对数函数/(%)=ln%是上 凸函数,所以,由琴生不等式得a +0=aln x + 01n y = In x a y^,当且仅当咒二y 时,上式等号成立.1? 1另证记4 = »?,B =工那.i=\i=\由几何不等式得丄上式取i = 1,2,…,ti 1 /笙I)7B后,对n 个不等式p q£qn 浜g 叽①引]宜计.i =1\ i =1 ' 'i=l >若记 a =-,/3 =-,WJp qa 〉O,0>O,a+0 = l.令 a> =%:,仇=於(咎、%W R+ ).易知,赫尔德不等式①可表示为y xi = lBS W i = l1.2赫尔德不等式①的推论及推广(1)权方和不等式若 a,A 6, 6 R + (/ = 1 ,2,---,n) ,m >0 或m < 一 1 ,则m +1nm + 1/ J im-**~i = lb i存J(SM m ,当且仅当#亡=••煜时,上式等号成立.证明 当m>0时,由赫尔德不等式①有m + 1 )—m _ J_ 'm +1 q上式两端zn + 1次方即导出所需的不 等式.当mV -1,即-(m + l)>0时,对数组(“,篦,…爲)及(© ,。

各省高中数学竞赛试题汇编——函数小题目

各省高中数学竞赛试题汇编——函数小题目

各省数学竞赛试题汇编——函数小题目1.【2018年湖南预赛】函数的定义城为_________.【答案】【解析】由得,所以函数的定义城为.故答案为2.【2018年湖南预赛】已知函数对任意的实数满足:,且当时,,当时,,则象与的图象的交点个数为___________。

【答案】10【解析】由题意知,f(x)=且周期是6,,且此函数是偶函数,在同一个直角坐标系中画出两个函数的图象如下图所示:由图可得,两个函数图象的交点个数是10个.3.【2018年陕西预赛】已知函数,若存在,使得,则正整数的最大值是________.【答案】6【解析】由题意得.故尽可能大时的情形为,此时. 4.【2018年陕西预赛】已知函数,若存在,使得,则正整数的最大值是________.【答案】6【解析】由题意得.故尽可能大时的情形为,此时. 5.【2018年陕西预赛】已知函数,若存在,使得,则正整数的最大值是________.【答案】6【解析】由题意得.故尽可能大时的情形为,此时. 6.【2018年贵州预赛】若方程有两个不等实根,则实数的取值范围是_____________. 【答案】【解析】由知x>0,故.令,则.当时,;当时,.所以在(0,e)上递增,在(e,+)上递减.故,即.7.【2018年安徽预赛】设点P、Q分别在函数的图象上,则的最小值=_________. 【答案】【解析】设P(),Q()使最小.由互为反函数,知点P、Q处的切线斜率都是1,直线PQ的斜率都是-1.故.故答案为:8.【2018年广东预赛】函数的值域为_____________.【答案】当时,的值域为();当时,的值域为().【解析】,因为,所以当时,的值域为();当时,的值域为().故答案为:当时,的值域为();当时,的值域为().9.【2018年广东预赛】已知方程在区间(-2,2)内恰有两个实根,则k的取值范围是__________. 【答案】【解析】记,令,得.当时,在()上为增函数.当时,在()上为减函数.所以在点处取得最大值,当且仅当时,在区间(-2,2)内恰有两个实根,故k的取值范围是.故答案为:10.【2018年贵州预赛】方程组的实数解为___________.【答案】【解析】因为,所以,即,代入,得.由.11.【2018年湖北预赛】设是定义在上的单调函数,若对任意的,都有,则不等式的解集为______.【答案】【解析】由题设,存在正常数,使得,且对任意的,有.当时,有,由单调性知此方程只有唯一解.所以.不等式,即,解得.故不等式的解集为.12.【2018年甘肃预赛】关于的方程有唯一实数解,则实数的取值范围是______.【答案】【解析】解法一原方程化为.(1).(2)时,的两根分别为1、3,不符合题意.(3)时,的两根分别为2,.因此,符合题意要求.(4),即时,若,不符合要求;若,因此,符合要求.解法二,因为,所以.上单调递增,在上单调递减.又,所以的取值范围是.13.【2018年吉林预赛】函数的定义域为__________.【答案】(1,2)(4,5)【解析】由题得,解之得x∈(1,2)(4,5).故答案为:(1,2)(4,5)14.【2018年山东预赛】对任意的实数的最小值为______.【答案】【解析】设,则①+②+③得.解得.又当时,有解.故当时,取到最小值.15.【2018年山东预赛】已知,且为方程的一个根,则的最大可能值为______.【答案】9【解析】由题设,则.因为,则必为完全平方数.设,则.所以.解得,8,,0.所以的最大可能值为9.16.【2018年山东预赛】设为最接近的整数,则______.【答案】【解析】设,则,即.而,因此满足个.注意到,从而或7.由于,所以.因此.17.【2018年天津预赛】已知函数的定义域都是,它们的图象围成的区域面积是_____________【答案】【解析】将的图象补充为完整的圆,则由中心对称性易知答案是圆面积的一半,为.故答案为:18.【2018年天津预赛】若为正实数,且是奇函数,则不等式的解集是_____________【答案】【解析】由可得即也即,所以.由于在(0,+)上递增,所以在(0,+)上是增函数,结合是奇函数可知在R上是增函数.解不等式,只需找到的解.方程等价于也即两边平方,解得.因此,不等式的解集是.故答案为:19.【2018年河南预赛】已知函数,若的定义域为,值域为,则的值为______.【答案】0【解析】因为,所以有,得,故上是增函数,进而.解得(舍)或.故填0.20.【2018年河北预赛】若,且满足那么. 【答案】1【解析】把已知条件变形为函数上为增函数且是奇函数,另,故,所以.21.【2018年四川预赛】设函数上的最大值为,最小值为,那么的值为______. 【答案】4【解析】因为上单调递减,在上单调递增,所以的最小值为.又的最大值为故故答案为:422.【2018年四川预赛】的值为______.【答案】1【解析】令,则从而,化简为.所以,原式故答案为:123.【2018年浙江预赛】已知a为正实数,且是奇函数,则的值域为________.【答案】【解析】由为奇函数可知,解得a= 2,即,由此得的值域为.24.【2018年浙江预赛】设,则有________个不同的解. 【答案】3【解析】因为由得到,或.由,得一个解;由得两个解,共3个解.25.【2018年浙江预赛】设满足,则x的取值范围为________. 【答案】【解析】由.令,,所以.26.【2018年江西预赛】函数的值域是区间______.【答案】【解析】显然函数定义域为,在此区间内,由于,即,故有角使得.于是,因为,则.在此范围内,则有.因此.(当时,;当时,)故答案为:27.【2018年山西预赛】函数的值域为________.【答案】【解析】由条件知.令.则,,,因为,所以,.28.【2018年湖南预赛】如图,A与P分别是单位圆O上的定点与动点,角x的始边为射线OA,终边为射线OP,过点P作直线OA的垂线,垂足为M,将点M到直线OP的距离表示为x的函数,则=__________.【答案】【解析】对角度x进行简单的分类,然后根据三角函数的定义得到利用函数的周期性得到.故答案为:29.【2018年湖南预赛】如图放置的边长为1的正方形ABCD沿x轴正向滚动,即先以A为中心顺时针旋转,当B落在x轴上时,再以B为中心顺时针旋转,如此继续,设顶点C滚动时的轨迹方程为,则上的表达式为__________.【答案】【解析】①由于是以4为周期的周期函数,所以当时此时由周期性及①式的结果得到故答案为:30.【2018年湖南预赛】设,函数(其中表示对于,当时表达式的最大值),则的最小值为_____.【答案】【解析】对于每一个,函数是线性函数.因此,在任意有限闭区间上,函数的最大值与最小值均在区间端点处达到,从而有由于函数图像交点的横坐标c满足,得到其图像为两条折线组成,且故答案为:31.【2018年福建预赛】已知定义在上的奇函数,它的图象关于直线对称.当时,,则______.【答案】2【解析】由为奇函数,且其图象关于直线对称,知,且,所以.是以8为周期的周期函数.又,所以.32.【2018年福建预赛】已知整系数多项式,若,则______.【答案】24【解析】设,则,于是.所以.所以是多项式的一个根.又不可能是三次整系数多项式、二次整系数多项式的零点.所以整除.故为整数.所以.由,得.所以.33.【2018年福建预赛】已知函数满足:对任意实数,都有成立,且,则______.【答案】【解析】在中,令,得.令,得.又,所以,即.又,,所以.故.34.【2016年上海预赛】若x∈(-1,1)时,恒为正值,则实数a的取值范围是____________。

2018 年全国高中数学联合竞赛A 卷试题及解析(含一试及加试)

2018 年全国高中数学联合竞赛A 卷试题及解析(含一试及加试)
I� f(x ) 三 2 钟 !(宵 - 2)三/(x)�/( 8-2 叶 ,
而I<π - 2 < 8-2r. < 2 , 故原不等式组成立当且仅当xE[肯 - 2, 8-2肯}. 6.设复数z满足l= I=I , 使得关于,y的方程 x' + 2:x+2 =0有实根 , 则这样

的复数z的和为 答案:
分别是F;、凡,椭l2ll c 的弦 ST 与 UV 分别 -'¥· 行于 x 剿l与y轴 , 且相交子点P. 己 知线段PU,PS ‘ PV 、 PT 的长分另lj为L 2. 3. 6 , 则 MF., 凡的朋积为 答案: -Jl5. 解: 由对称性 , 不妨设 P (,飞·,,, )'p )在第 一 象限,则由条件知
主.
解:设们在平面。上的射影为。白条件知, 立 = tanLOQP |丘♂ I ' OQ I 3
ε
i己为 a, b,c, d, e,f ,则。be ÷d吃f ;是偶数的
概率为 答案: 解:先考虑。 bc+def :为奇数的俏况,此时 abc、 d吃f 一 奇一 {间,若 abc 为奇敛,
10
则。 , b,c 为l, 3, 5 的排列 , 避而 d‘ e,f 为2,4,6的排列,这样有3!×31=36种情况, 由对称性可知 , 使 abc+def 为奇数的情况数为 36 × 2 =72 种.从而 abc+d,电f 为偶 72 72 9 =I-一一=一. 数的概率为I-一 ' 6 720 JO
1. 设织合 A= {I, 2, 3、
2018年全国高中数学联合竞赛一试(A卷) 参考答案及评分标准
,99}‘B={2xjxE A}, C={xl2xε斗 , 则B门C的元

2021年四川预赛(参考答案及评分细则)

2021年四川预赛(参考答案及评分细则)

a b
2
cyc
a.
注意到由均值不等式,
2b
b
a
4( b
b
b
a
)
1 4
4b ,
a c d aacd
2b
b
c
4( b
b
b
c1 )4
4b ,
c a d ccad
上两式相加得: 3 b 3 b c a 8b . c add
对(*)轮换求和即得:
3 b 3 b c a 8 b
cyc c cyc a cyc d cyc d
n i1
ai ai 1
n i 1
ai +1 ai
n
2
i1
ai
79 124 127 2 0 .
故 n 6 均不满足条件. 所以, n 4 .
……10 分
另一方面,再证: n 4 满足条件.

a1, a2, a3, a4
分别记为 a, b, c, d
,则 abcd
1,即证
cyc
b a
cyc
所以,点 Q 的轨迹方程为 (x 1)2 4 y2 1 ( y 0 ). 3
解法二:易求得椭圆 的方程是 x2 y2 1 . 43
因为直线 BQE 截△ADP,由梅涅劳斯定理,得 AB DE PQ 1 . BD EP QA
因为 AB 2 , DE 3 , BD 3 EP 2
……4 分
2, a6
an
1,
n

ai
2 1 1 64 2 (n 6) 16 78 n 1 79 n ,
a i1 i1
64 64
32
及 n ai1 1 64 64 1 1 (n 6) 1 124 n ,
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(1)若 f (x) 在其定义域内为单调递增函数,求实数 p 的取值范围;
(2)设
g(x)

2e x
,且
p

0 ,若在[1,
e] 上至少存在一点
x0
,使得
f
( x0
)

g ( x0
)

立, 求实数 p 的取值范围;
(3)求证:对任意的正整数 n ,都有 n ln2 (1 2) 3 成立.
k 1
所以,T 的最小值为 20 14 2 .
x 1 2
y
解法三:注意到:
2 2
1 2
2
x

2
1
2

1 y

2
2
2
1

1
x 2
2

(
1
)
1 2
2
2
12 2
.
y
(x 1 2)( y 1 2)(z 1 2)
y
z
x
于是,
(2 2)3
……10 分 ……15 分
③对任意正整数 a ,都有 Z (3a ) 3a 1.
其中所有真命题的序号为
A、 ①②
B、 ①③
C、 ②③
【】 D、①②③
得 分 评卷人 二、填空题(本大题共 6 个小题,每小题 5 分,共 30 分)
7. 设函数 f (x) x 9 在 [1, 4] 的最大值为 M ,最小值为 m ,则 M m 的值 x
A2 ,点 P 是双曲线上不同于 A1 、
A2 的一个动点,直线 PA1 、 PA2 分别与直线 x 1交于 M1 、 M 2 两点.
证明:以线段 M1M 2 为直径的圆必经过定点.
14. 设 x , y , z 为正实数,求 (x 1 2)( y 1 2)(z 1 2) 的最小值.
则 x02 y02 1. 43
因为直线
PA1 的方程为
y

y0 x0
2
(x

2)
,直线
PA2 的方程为
y

y0 x0
(x 2

2)

所以 M1(1,
3y0 x0 2
),
M2
(1,
y0 ) x0 2
),
……5 分
设以线段 M1M 2 为直径的圆 C 上任意一点 Q(x,y),
y
z
x
……20 分
当 x y z 1时,可取到等号.
所以,T 的最小值为 (2 2)3 20 14 2 .
15.
已知数列{an } 满足:a1
1 ,an1

1 8
an2
m
(n N* ) ,若对任意正整数 n ,都有
an 4 ,求实数 m 的最大值.
解:因为 an1
A、1
B、 2
C、 3
D、2
3.
函数
y

(sin
x 1)(cos x 2 sin 2x
1)(x

R)
的最大值为
【】
2
A、
2
B、1
C、 1 2 22
D、 2
4. 设多项式 f (x) x12 x6 1除以 x2 1的商式为 q(x) ,余式 r(x) ax b ,其
x1 y
2 y1 z
2 z1 x
2
2 2
2 2
2 2

1
(x 2
2

(
1
)
1 2
2
2
12 2
1
) ( y2
2

(
1
)
1 2
2
2
12 2
1
) (z 2
2

(
1
)
1 2
2
2
12 2
)
y
z
x
1 .
故 (x 1 2)( y 1 2)(z 1 2) (2 2)3 .
an

1 8
an2
an
m

1 8 (an
4)2

m

2

m

2

n1
故 an a1 (ak1 ak ) 1 (m 2)(n 1) .
k 1
……5 分
若 m 2 ,注意到 n 时, (m 2)(n 1) ,
因此,存在充分大的 n ,使得1 (m 2)(n 1) 4 ,即 an 4 ,矛盾!
y
z
x
2018 年全国高中数学联赛(四川预赛) 第 3 页 (共 4 页)
15.
已知数列{an } 满足:a1
1 , an1

1 8
an2
m
(n N* ) ,若对任意正整数 n ,都
有 an 4 ,求实数 m 的最大值.
16. 设函数 f (x) px p 2 ln x . x
(2)设
g(x)

2e x
,且
p

0 ,若在[1,
e] 上至少存在一点
x0
PC 2 ,若点 Q 为三棱锥 P ABC 外接球的球面上任一点,则 Q 到面 ABC 距离的最大
值为
.
11. 设直线 y kx b 与曲线 y x3 x 有三个不同的交点 A 、 B 、 C ,
且| AB || BC | 2 ,则 k 的值为
.
12. 设集合 I {1, 2,3, 4,5,6, 7,8}, 若 I 的非空子集 A 、B 满足 A B ,就称有
y
z
x
解:记T (x 1 2)( y 1 2)(z 1 2) ,
y
z
x
当 x y z 1时, T 有最小值 (2 2)3 20 14 2 .
下证: T 20 14 2 .
……5 分
解法一:T (xyz 1 ) 2(xy yz zx 1 1 1 )
………………………………………………………密……………………封……………………线………………………………………………………
2018 年全国高中数学联合竞赛(四川预赛)
(5 月 20 日下午 14:30——16:30)
题目


13
得分
评卷人
复核人

14
15
总成绩 16
考生注意:1.本试卷共有三大题(16 个小题),全卷满分 140 分. 2.用黑(蓝)色圆珠笔或钢笔作答. 3.计算器、通讯工具不准带入考场. 4.解题书写不要超过密封线.
26
三、解答题(本大题共 4 个小题,每小题 20 分,共 80 分)
13.
已知双曲线
x2 4

y2 3
1,设其实轴端点为 A1 、
A2 ,点 P 是双曲线上不同于 A1 、
A2 的一个动点,直线 PA1 、 PA2 分别与直线 x 1交于 M1 、 M 2 两点.
证明:以线段 M1M 2 为直径的圆必经过定点. 证明:由已知可设 A1 (2, 0) , A2 (2, 0) ,双曲线上动点 P 的坐标为 (x0 , y0 ) 且 y0≠0,
k
2018 年全国高中数学联赛(四川预赛) 第 4 页 (共 4 页)
2018 年全国高中数学联赛(四川预赛)试题
参考答案及评分标准
说明:
1、评阅试卷时,请依据评分标准.选择题和填空题只设 5 分和 0 分两档;其它各题的
评阅,请严格按照评分标准规定的评分档次给分,不要再增加其它中间档次.
2、如果考生的解答题方法和本解答不同,只要思路合理,步骤正确,在评阅时可参
则由 M1Q

M2Q

0
得圆
C
的方程为 (x
1)(x
1)

(y

3y0 )( y x0 2

y0 ) x0 2

0 .…10


y0,代入上述圆方程,得
(x
1)2

3 y02 x02 4

0

由 x02 4

y02 3

1可得
y02 x02
4
序集合对 ( A, B) 为 I 的“隔离集合对”,则集合 I 的“隔离集合对”的个数为
.
(用具体数字作答)
2018 年全国高中数学联赛(四川预赛) 第 2 页 (共 4 页)
得 分 评卷人 三、解答题(本大题共 4 个小题,每小题 20 分,共 80 分)
13.
已知双曲线
x2 4

y2 3
1,设其实轴端点为 A1 、
【】
A、2
B、3
C、5
D、7
2.
x2 设 F1 、F2 分别是椭圆 a2

y2 b2
1 (a b 0) 的左、右焦点,P 为该椭圆上一点,
满足F1PF2 90 . 若 PF1F2 的面积为 2, 则 b 的值为【 】
xyz
zxy
2 6 2 36 2 3 5 2 20 14 2 . 当 x y z 1时,可取到等号.
……15 分 ……20 分
所以,T 的最小值为 20 14 2 .
解法二:T (2 x 2)(2 y 2)(2 z 2)
y
z
x
……10 分
8 4 2( x z y ) 4( x y z ) 2 2
相关文档
最新文档