高中数学会考题
高中会考数学试题及答案

高中会考数学试题及答案一、选择题(每题3分,共30分)1. 下列哪个数是无理数?A. 2B. √2C. 0.5D. 3.14答案:B2. 函数y=x^2+2x+1的图像是:A. 抛物线B. 直线C. 双曲线D. 圆答案:A3. 以下哪个选项是等比数列?A. 2, 4, 6, 8B. 1, 2, 4, 8C. 3, 6, 9, 12D. 5, 10, 15, 20答案:B4. 已知a=3,b=4,求a^2+b^2的值。
A. 25B. 29C. 37D. 415. 一个圆的半径为5,求该圆的面积。
A. 25πB. 50πC. 75πD. 100π答案:B6. 以下哪个函数是奇函数?A. y=x^2B. y=x^3C. y=x^4D. y=x答案:D7. 以下哪个选项是不等式x+2>3的解集?A. x>1B. x<1C. x>-1D. x<-1答案:A8. 一个等差数列的首项是2,公差是3,求第5项的值。
A. 17B. 14C. 11D. 8答案:A9. 以下哪个选项是方程2x-3=7的解?B. x=3C. x=1D. x=-1答案:A10. 以下哪个选项是函数y=2sin(x)的图像?A. 正弦波形B. 余弦波形C. 正切波形D. 直线答案:A二、填空题(每题4分,共20分)11. 计算(3+4i)(2-i)的结果为______。
答案:8+5i12. 已知等差数列的第3项是7,第5项是11,求公差d。
答案:213. 计算极限lim(x→0) (sin(x)/x)的值为______。
答案:114. 已知函数f(x)=x^2-4x+3,求f(2)的值。
答案:-115. 计算定积分∫(0 to 1) x^2 dx的结果为______。
答案:1/3三、解答题(每题10分,共50分)16. 求函数y=x^3-3x^2+2x的导数。
答案:y'=3x^2-6x+217. 证明函数f(x)=x^2在(0, +∞)上是增函数。
人教版a高中数学会考试题及答案

人教版a高中数学会考试题及答案一、选择题(每题4分,共40分)1. 函数y=x^2-4x+3的零点个数是()A. 0个B. 1个C. 2个D. 3个答案:C2. 已知函数f(x)=2x+3,g(x)=x^2-4x+5,求f[g(x)]的解析式()A. 2x^2-5x+11B. 2x^2-8x+13C. 2x^2-4x+11D. 2x^2-4x+13答案:A3. 已知等差数列{an}的首项a1=1,公差d=3,求a5的值()A. 13B. 16C. 19D. 22答案:A4. 已知双曲线C:x^2/a^2 - y^2/b^2 = 1(a>0,b>0),若点(2,1)在双曲线上,则a的取值范围是()A. 0<a<√5B. √5<a<2√5C. 2√5<a<5D. a>5答案:B5. 已知向量a=(2,-1),b=(1,3),求向量a+2b的坐标()A. (4,5)B. (5,4)C. (4,-1)D. (5,-1)答案:A6. 已知函数f(x)=x^3-3x^2+2,求f'(x)的解析式()A. 3x^2-6xB. 3x^2-6x+2C. x^2-6x+2D. x^3-6x^2+2答案:A7. 已知函数f(x)=x^2-4x+3,求f(x)的单调递增区间()A. (-∞,2)B. (2,+∞)C. (-∞,1)∪(3,+∞)D. (1,3)答案:B8. 已知函数f(x)=x^3-3x^2+2,求f(x)的极值点()A. x=1B. x=2C. x=-1D. x=0答案:B9. 已知等比数列{bn}的首项b1=2,公比q=2,求b4的值()A. 16B. 32C. 64D. 128答案:A10. 已知向量a=(3,2),b=(1,-1),求向量a·b的值()A. 1B. 2C. 3D. 4答案:A二、填空题(每题4分,共20分)11. 已知函数f(x)=x^2-4x+3,求f(1)的值。
高中会考试题数学及答案

高中会考试题数学及答案一、选择题(每题3分,共30分)1. 若函数f(x) = 2x^2 + 4x + 3,则f(-1)的值为:A. 0B. 2C. 4D. 6答案:B2. 已知等差数列{a_n}的前三项分别为1, 4, 7,则该数列的公差为:A. 1B. 2C. 3D. 4答案:B3. 一个圆的半径为5,那么它的面积是:A. 25πB. 50πC. 75πD. 100π答案:B4. 若直线y = 2x + 1与直线y = -x + 3相交,则交点的横坐标为:A. -1B. 0C. 1D. 2答案:C5. 一个等腰三角形的两边长分别为3和4,那么它的周长是:A. 10B. 11C. 12D. 13答案:B6. 函数y = x^3 - 3x^2 + 4x - 2的导数是:A. 3x^2 - 6x + 4B. 3x^2 - 6x + 2C. 3x^2 - 9x + 4D. 3x^2 - 9x + 2答案:A7. 已知集合A = {1, 2, 3},集合B = {2, 3, 4},则A∩B的元素个数为:A. 1B. 2C. 3D. 4答案:B8. 若sin(α) = 3/5,且α为第一象限角,则cos(α)的值为:A. 4/5B. -4/5C. 3/5D. -3/5答案:A9. 一个数列的前四项为2, 5, 8, 11,若该数列是等差数列,则第五项为:A. 14B. 15C. 16D. 17答案:A10. 已知函数f(x) = x^2 - 4x + 3,若f(x) = 0,则x的值为:A. 1B. 2C. 3D. 4答案:B二、填空题(每题4分,共20分)1. 已知等比数列{a_n}的前三项分别为2, 6, 18,则该数列的公比为______。
答案:32. 一个矩形的长为10cm,宽为5cm,那么它的对角线长度为______。
答案:5√5 cm3. 函数y = √x的反函数是______。
答案:y = x^24. 已知一个抛物线的顶点为(2, -3),且开口向上,则它的标准方程为______。
高中会考数学试题及答案

高中会考数学试题及答案一、选择题(每题3分,共30分)1. 下列哪个数是无理数?A. 0.33333…(无限循环)B. πC. √2D. 1/32. 函数f(x) = 2x^2 - 3x + 1的图像与x轴的交点个数是:A. 0个B. 1个C. 2个D. 3个3. 已知等差数列的前三项和为6,第二项为2,求该数列的首项a1和公差d:A. a1 = 1, d = 1B. a1 = 0, d = 2C. a1 = 2, d = 0D. a1 = 3, d = -14. 集合A={1, 2, 3},集合B={2, 3, 4},求A∩B:A. {1}B. {2, 3}C. {3, 4}D. {1, 2, 3}5. 已知三角形ABC的三边长分别为a=3, b=4, c=5,求其面积:B. 9C. 10D. 126. 根据题目所给的函数y=x^3-2x^2+x-2,求导数y':A. 3x^2-4x+1B. x^3-2x^2+1C. 3x^2-4x+2D. x^3-2x7. 已知sinθ=0.6,求cosθ的值(结果保留根号):A. √(1-0.36)B. -√(1-0.36)C. √(1-0.6^2)D. -√(1-0.6^2)8. 将下列二次方程x^2-4x+4=0进行因式分解:A. (x-2)(x-2)B. (x+2)(x-2)C. (x-1)(x-3)D. (x+1)(x+3)9. 已知圆的方程为(x-2)^2 + (y-3)^2 = 9,求圆心坐标:A. (2, 3)B. (-2, 3)C. (2, -3)D. (-2, -3)10. 根据题目所给的等比数列求和公式S_n = a1(1-q^n)/(1-q),当n=5,a1=2,q=2时,求S_5:B. 63C. 64D. 65二、填空题(每题4分,共20分)11. 已知函数f(x) = x^2 + bx + c,若f(1) = 2,则b + c =_______。
高中数学会考模拟试题(七)

1高中数学会考模拟试题(七)一. 选择题:1. 已知I 为全集,P 、Q 为非空集合,且≠⊂P Q ≠⊂I ,则下列结论不正确的是( )A. I C P Q I ⋃=B. Q Q P =⋃C. I C P Q φ⋂=D. I P C Q φ⋂= 2. 若31)180sin(=+︒α,则=+︒)270cos(α( ) A.31 B. 31- C. 322 D. 322- 3. 椭圆192522=+y x 上一点P 到两焦点的距离之积为m 。
则当m 取最大值时,点P 的坐标是( )A. )0,5(和)0,5(- B. )233,25(和)233,25(- C. )3,0(和)3,0(- D. )23,235(和)23,235(- 4. 函数x x x y 2sin 21cos sin 2-+⋅=的最小正周期是( )A. 2πB. πC. π2D. π45. 直线 与两条直线1=y ,07=--y x 分别交于P 、Q 两点。
线段PQ 的中点坐标为)1,1(-,那么直线 的斜率是( ) A.32 B. 23 C. 32- D. 23- 6. 为了得到函数x y 2sin 3=,R x ∈的图象,只需将函数)32sin(3π-=x y ,R x ∈的图象上所有的点( )A. 向左平行移动3π个单位长度 B. 向右平行移动3π个单位长度 C. 向左平行移动6π个单位长度D. 向右平行移动6π个单位长度7. 在正方体1111D C B A ABCD -中,面对角线11C A 与体对角线D B 1所成角等于( ) A. ︒30 B. ︒45 C. ︒60 D. ︒90 8. 如果b a >,则在①ba 11<,② 33b a >,③ )1lg()1lg(22+>+b a ,④ b a 22>中,正确的只有( ) A. ②和③ B. ①和③ C. ③和④ D. ②和④ 9. 如果)3,2(-=,)6,(-=x ,而且⊥,那么x 的值是( ) A. 4 B. 4- C. 9 D. 9-10. 在等差数列}{n a 中,32=a ,137=a ,则10S 等于( ) A. 19 B. 50 C. 100 D. 12011. 1>a ,且⎩⎨⎧≠>0xy yx 是y x a a log log >成立的( )A. 充分而不必要条件B. 必要而不充分条件C. 充要条件D. 既不充分也不必要条件12. 设函数2)()(x x e e x x f --=,x x x g +-=11lg )(,则( )A. )(x f 是奇函数,)(x g 是偶函数B. )(x f 是偶函数,)(x g 是奇函数C. )(x f 和)(x g 都是奇函数D. )(x f 和)(x g 都是偶函数13. 在ABC ∆中,已知3=b ,33=c ,︒=∠30B ,则a 等于( ) A. 3或9 B. 6或9 C. 3或6 D. 6 14. 若11)(-+=x x x f ,)()(1x f x g -=-,则)(x g ( ) A. 在R 上是增函数B. 在)1,(--∞上是增函数C. 在),1(∞+上是减函数D. 在)1,(--∞上是减函数15. 不等式22121log )2(log x x >+的解集是( )A. {1|-<x x 或2>x }B. {21|<<-x x }C. {12|-<<-x x }D. {12|-<<-x x 或2>x }216. 把4名中学生分别推荐到3所不同的大学去学习,每个大学至少收一名,全部分完,不同的分配方案数为( ) A. 12 B. 24 C. 36 D. 28 17. 若a 、b 是异面直线,则一定存在两个平行平面α、β,使( ) A. α⊂a ,β⊂bB. α⊥a ,β⊥bC. α//a ,β⊥bD. α⊂a ,β⊥b18. 已知函数)(x f ,R x ∈,且)2()2(x f x f +=-,当2>x 时,)(x f 是增函数,设)2.1(8.0f a =,)8.0(2.1f b =,)27(log 3f c =,则a 、b 的大小顺序是( )A. c b a <<B. b c a <<C. c a b <<D. a c b << 二. 填空题19. 已知b 是a 与c 的等比中项,且27=abc ,则=b 20. 计算︒⋅︒75cos 105sin 的值等于21. 由数字1,2,3,4可以组成没有重复数字比1999大的数共有 个 22 不等式0343>---x x 的解集是23. 半球内有一内接正方体,正方体的一个面在半球的底面圆上,若正方体的一边长为6,则半球的体积是24. 点P 是双曲线112422=-y x 上任意一点,则P 到二渐近线距离的乘积是 三. 解答题25.设222tan =θ,),2(ππθ∈求θθθθcos sin 1sin 2cos 22+--的值.26.解不等式222)21(2--+>x x x27.已知三棱锥BCD A -,平面⊥ABD 平面BCD ,AB=AD=1,AB ⊥AD ,DB=DC ,DB ⊥DC(1)求证:AB ⊥平面ADC ;(2)求二面角A (3)求三棱锥BCD A -的体积28.已知数列}{n a 中,n S 是它的前n 项和,并且n S (1)设n n n a a b 21-=+,求证}{n b 是等比数列 (2)设n nn a C 2=,求证}{n C 是等差数列 (3)求数列}{n a 的通项公式及前n 项和公式29.已知直线 :m y x =+和曲线C :)4(42+=x y )44(≤≤-x(1)直线 与曲线C 相交于两点,求m 的取值范围(2)设直线 与曲线C 相交于A 、B ,求AOB ∆面积的最大值。
安徽普通高中会考数学真题及答案

2024年安徽普通高中会考数学真题及答案2024年安徽普通高中会考数学真题及答案一、真题部分1、在等差数列${ a_{n}}$中,已知$a_{3} + a_{7} = 22$,那么$a_{5} =$() A.$10$ B.$9$ C.$8$ D.$7$2、已知复数$z = \frac{1 + i}{1 - i}$,则$|z| =$()A.$1$B.$\sqrt{2}$C.$2$D.$2\sqrt{2}$3、已知向量$\overset{\longrightarrow}{a} = (1,2)$,$\overset{\longrightarrow}{b} = (x,y)$,且$\overset{\longrightarrow}{a} \perp\overset{\longrightarrow}{b}$,则$xy$的值为()A.$2$B.$3$C.$4$D.$5$二、答案部分1、正确答案是:A. $10$ 在等差数列${ a_{n}}$中,因为$a_{3} + a_{7} = 22$,所以$a_{5} = \frac{a_{3} + a_{7}}{2} = 10$。
因此,答案为A。
2、正确答案是:B. $\sqrt{2}$ 复数$z = \frac{1 + i}{1 - i} = \frac{(1 + i)^{2}}{(1 - i)(1 + i)} = i$,因此$|z| = 1$. 所以正确答案为B。
3、正确答案是:C.$4$ 向量$\overset{\longrightarrow}{a} = (1,2)$,$\overset{\longrightarrow}{b} = (x,y)$,且$\overset{\longrightarrow}{a} \perp\overset{\longrightarrow}{b}$,所以$\overset{\longrightarrow}{a} \cdot\overset{\longrightarrow}{b} = x + 2y = 0$,解得$xy = 4$. 因此,正确答案为C。
数学会考高中试题及答案

数学会考高中试题及答案一、选择题(每题3分,共30分)1. 已知函数\( f(x) = 2x^2 - 4x + 3 \),下列说法正确的是:A. 函数的图像是开口向上的抛物线B. 函数的图像是开口向下的抛物线C. 函数的图像与x轴有两个交点D. 函数的图像与x轴没有交点答案:A2. 圆的方程为\( (x-2)^2 + (y-3)^2 = 9 \),圆心坐标为:A. (2, 3)B. (-2, 3)C. (2, -3)D. (-2, -3)答案:A3. 已知等差数列的前三项依次为1,3,5,则该数列的第五项为:A. 7B. 9C. 11D. 13答案:B4. 函数\( y = \log_2(x) \)的定义域是:A. \( x > 0 \)B. \( x < 0 \)C. \( x \geq 0 \)D. \( x \leq 0 \)答案:A5. 集合\( A = \{1, 2, 3\} \)和集合\( B = \{2, 3, 4\} \)的交集为:A. \( \{1\} \)B. \( \{2, 3\} \)C. \( \{2, 4\} \)D. \( \{3, 4\} \)答案:B6. 直线\( y = 2x + 1 \)与直线\( y = -x + 4 \)的交点坐标为:A. (1, 3)B. (-1, 3)C. (1, -1)D. (-1, -1)答案:A7. 已知\( \sin \alpha = \frac{1}{2} \),\( \alpha \)是第二象限角,则\( \cos \alpha \)的值为:A. \( \frac{1}{2} \)B. \( -\frac{1}{2} \)C. \( \frac{\sqrt{3}}{2} \)D. \( -\frac{\sqrt{3}}{2} \)答案:D8. 函数\( f(x) = x^3 - 3x^2 + 3x - 1 \)的单调递增区间为:A. \( (-\infty, 1) \)B. \( (1, +\infty) \)C. \( (-\infty, 2) \)D. \( (2, +\infty) \)答案:B9. 向量\( \vec{a} = (1, 2) \)和向量\( \vec{b} = (2, 1) \)的夹角为:A. \( \frac{\pi}{4} \)B. \( \frac{\pi}{3} \)C. \( \frac{\pi}{2} \)D. \( \frac{2\pi}{3} \)答案:A10. 已知等比数列的前三项依次为2,4,8,则该数列的公比为:A. 2B. 4C. 1D. 0.5答案:A二、填空题(每题4分,共20分)1. 已知\( \tan \theta = 3 \),\( \theta \)是第一象限角,则\( \sin \theta \)的值为______。
高中数学会考模拟题(含答案)

一、选择题(本大题共19个小题,每小题3分,共57分;在每小题给出的四个选项中,只有一项是符合题目要求的) 1.集合P={0,2,4},Q={0,1,3,5},则P∪Q=A){0} B){7} C){0,1,2,3,4,5} D)φ 2.函数y =A)[2,+∞) B )[-2,+∞) C)(-∞,-2] D)(-∞,2] 3.在正方体ABCD -A1B1C1D1中,BC1与AC 所成角为A)30° B)45° C)60° D)90°4.函数11||y x =-A)是奇函数但不是偶函数 B)是偶函数但不是奇函数 C)既是奇函数又是偶函数 D)既不是奇函数又不是偶函数 5.已知数列{}n a 满足11a =,12n n a a +=+,则4a =A)5 B)6 C)7 D)86.函数cos()42xy π=-的最小正周期为A)2πB)π C)2π D)4π7.圆22210x y x ++-=的圆心和半径为A)(1,0),2B)(-1,0),2C)(1,0),2 D)(—1,0),2 8.1tan 151tan 15-+的值为A)3 B)33C)1 D)229.设0b a >>,则下列各式中正确的是A)2a b a b+>>>B)2a b b a+>>>C)2a b a b +>>>D)2a b b a +>>>10.函数21(0)y x x =+<的反函数为A))y x R =∈B) )y x R =∈C)1)y x =≥D) 1)y x =≥11.已知数列{}n a 满足前n项和21()nn sa n N *=-∈则3a =A)2 B)4 C)8 D)1612.已知向量()1,sin a θ=- ,1,cos 2b θ⎛⎫= ⎪⎝⎭ ,若a b ⊥ ,且θ为锐角,则θ= A)12πB)6πC)4π D)3π13.“0ab <”是“方程22ax by c +=表示双曲线”的 A) 充分不必要条件 B)必要不充分条件 C)充要条件 D)既不充分也不必要条件14.由数字0,1,2,3,4,5组成没有重复数字的五位数中,偶数的个数为A)120 B)240 C)96 D)312 15.在(1-x)4展开式的各项中,系数最大是A)—4 B)4 C)—6 D)6 16.已知G为△ABC所在平面上一点,若GCGB GA ++=0 ,则G 为△ABC 的A)内心 B)外心 C)重心 D)垂心17.将函数()y f x =的图象按(,2)4a π=-- 平移得到函数sin y x =的图象,则函数()f x 为 A)sin()24x π++ B)sin()24x π+-C)sin()24x π-+ D)sin()24x π--18.椭圆2214xym+=的离心率为0.5,则m的值为A)3 B)316 C)3或316 D)-3或-31619.从甲口袋内摸出1个白球的概率是31,从乙口袋内摸出1个白球的概率是21,从两个口袋内各摸出1个球,至少有一个是白球的概率为A)61B)23 C)65 D)21第Ⅱ卷(非选择题,共43分)二、填空题(本大题共5个小题,每小题3分,共15分;请直接在每小题的横线上填写结果) 20.已知球面的表面积为36π,则此球的半径为21.已知3cos 5θ=,且θ∈(—2π,0),则sin2θ=________22.61⎛⎝的展开式的常数项为_________(用数字作答)23.函数f (x) =2-x -x1(x>0)的最大值为________24.过点A(—1,1)的一束光线射向x 轴,经反射后与圆()2211x y -+=(相切,则入射线所在直线的方程为______________三、解答题(本大题共4小题,共28分;要求写出必要的文字说明、演算步骤或推理过程) 26.(本题满分6分)甲、乙二人独立地破译一个密码,他们能译出密码的概率分别为13和14,求: (Ⅰ)恰有1人译出密码的概率; (Ⅱ)至多有1人译出密码的概率.参考答案选择题CDCBC , DBBBD , BCADD , CCCB 填空题:20.3; 21.2425-; 22.52-; 23.0; 24.4310x y ++=解答题26.解:设甲、乙二人独立破译密码分别为事件A 、B.则11(),()34P A P B ==(Ⅰ)恰有1人译出密码概率为11115()()()()()(1)(1)343412P A B A B P A P B P A P B +=⋅+⋅=⋅-+-⋅=(Ⅱ)至少有1人译出密码的概率为11111()1()()13412P A B P A P B -⋅=-⋅=-⋅=。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2018届吉林省普通高中学业模拟考试(数学)
注意事项:
1.答题前将自己的姓名、考号、考籍号、科考号、试卷科目等项目填写或涂在答题卡在试卷规定的位置上。
考试结束时,将试卷和答题卡一并交回。
2.本试题分两卷,第Ⅰ卷为选择题,第Ⅱ卷为书面表达题。
试卷满分为120分。
答题时间为100分钟。
3.第Ⅰ卷的选择题答案都必须涂在答题卡上。
每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后·再选涂其他答案标号。
选择题答案写试卷上无效。
4.第Ⅱ卷的答案直接写在试卷规定的位置上,注意字迹清楚,卷面整洁。
第Ⅰ卷 选择题(共50分)
一、选择题:本大题共15小题,只有一项是正确的.第1-10每小题3分,第11-15
每小题4分,共50分)
1.已知集合{0,2},{|02}M N x x ==≤<,则M ∩N 等于 ( )
A .{0,1,2}
B .{0,1}
C .{0,2}
D .{0}
2.下列结论正确的是( )
A .若ac>bc ,则a>b
B .若a 2>b 2,则a>b
C .若a>b,c<0,则 a+c<b+c
D .若a <b ,则a<b
3 在直角坐标系中,直线033=-+y x 的倾斜角是( )
A .
6π B .3π
C .6
5π
D .3
2π
4.已知奇函数()f x 在区间[3,7]上是增函数,且最小值为5,那么函数()f x 在区间
[-7,-3]上( )
A .是减函数且最小值为-5
B .是减函数且最大值为-5
C .是增函数且最小值为-5
D .是增函数且最大值为-5
5. 函数2()1log f x x =-的零点是( )
A. 1
B. (1,1)
C. 2
D. (2,0)
6.在等比数列{}n a 中,若32a =,则12345a a a a a = ( )
A. 8
B. 16
C. 32
D.
7.甲、乙、丙三名同学站成一排,甲站在中间的概率是( )
A.
16 B. 1
3 C. 12 D. 23
8.一个几何体的三视图如图,则组成该组合体的简单几何体为 ( )
A .圆柱和圆锥
B .正方体和圆锥
C .四棱柱和圆锥
D .正方体和球
9.若sin α2=3
3,则cos α=( )
A .13
B .-1
3 C. -2
3 D. 23
10.要得到)4
2sin(3π
+=x y 的图象只需将y=3sin2x 的图象 ( )
A .向左平移
8
π
个单位 B .向右平移
8
π
个单位
C .向左平移4π个单位
D .向右平移4
π
个单位
11.函数f (x )=ax 2+2(a -1)x +2在区间(-∞,4)上为减函数,则a 的取值范围为 ( )
A . 0<a ≤
51 B .0≤a ≤5
1 C .0<a ≤5
1
D .a >
5
1
12. 输入-5,按图中所示程序框图运行后,输出的结果是( )
A. -5
B.0
C. -1
D.1
第12题图
1
13.为了从甲乙两人中选一人参加数学竞赛,老师将二人最近6次数学测试的分数进行统
计,甲乙两人的平均成绩分别是x 甲、x 乙,则下列说法正确的是( )
A. x 甲>x 乙,乙比甲成绩稳定,应选乙参加比赛
B. x 甲>x 乙,甲比乙成绩稳定,应选甲参加比赛
C. x 甲<x 乙,甲比乙成绩稳定,应选甲参加比赛
D. x 甲<x 乙,乙比甲成绩稳定,应选乙参加比赛
第13题图
14.已知⎩⎨⎧≤>=03
0log )(2x x x x f x ,则)]41
([f f 的值是( )
A .9
1
B .9
C .9-
D .9
1
-
15.已知,x y 是正数,且19
1x y
+=,则x y +的最小值是( )
A.6
B.12
C.16
D.24
2016 年 吉 林 省 普 通 高 中 会 考
数 学
注意事项:
1.第Ⅱ卷共4页,用蓝、黑色钢笔或圆珠笔直接答在试卷上。
2.答题前将密封线内的项目写清楚,并在第6页右下方“考生座位序号”栏内正确填入自己的座位序号。
第Ⅱ卷(非选择题 共70分)
二、填空题:本大题共4小题,每小题5分,共20分.把正确答案
填写在题中的横线上.
16.知平面向量(3,1)a =,(,3)b x =-,且a b ⊥,则x =___________
17. 学校为了调查学生在课外读物方面的支出情况,抽取了一个容量为100的样本,其频率 分布直方图如图所示,则据此估计支出在[50,60)元的同学人数为 .
17题图
18.有4条线段,长度分别为1,3,5,7,从这四条线段中任取三条,则所取三条线段能构
成一个三角形的概率为 19.若x ,y ∈R ,且⎩⎪⎨⎪
⎧
x ≥1,x -2y +3≥0,
y ≥x ,
且z =x +2y 的最小值等于
三、解答题:(本大题共5小题,每小题10分,共50分.解答应写出文字说明、证明过程或
演算步骤) 20.(本题满分10分)如图,已知棱锥
S -
ABCD ,底面为正方形,SA ⊥底面ABCD ,AB =AS =1,M 、N 分别为AB 、SC 的中点.
(1)求四棱锥S -ABCD 的表面积; (2)求证:MN ∥平面SAD .
21.(本小题满分10分)在ABC ∆中,c b a ,,分别是角C B A ,,的对边,且
222b c a +-=.
(1)求角A 的大小
(2)若9b c +=,且ABC ∆的面积S =b 和c 的长。
22(本小题满分10分)等差数列{}n a 中,71994,2,a a a == (I )求{}n a 的通项公式;
(II)设{}1
,.n n n n
b b n S na =
求数列的前项和
23.圆8)1(22=++y x 内有一点P(-1,2),AB 过点P,
① 若弦长72||=AB ,求直线AB 的倾斜角α;
②若圆上恰有三点到直线AB 的距离等于2
,求直线AB 的方程.
24.设函数()25(2)
5(2)x ax a x f x ax x ⎧-+≥=⎨+<⎩
(a 为常数),
(1)对任意12,x x R ∈,当 12x x ≠若f(x)单调递增时,求实数a 的取值范围; (2) 在(1)的条件下,求2
()43g x x ax =-+在区间[1,3]上的最小值()h a 。