数字电路实验基本知识(精选)
数字电路的基本知识

•
•
模拟信号与数字信号
• 模拟信号是指时间上和幅 度上均为连续取值的物理 量。 • 在自然环境下,大多数物 理信号都是模拟量。如温 度是一个模拟量,某一天 的温度在不同时间的变化 情况就是一条光滑、连续 的曲线:
• 数字信号是指时间上和幅 度上均为离散取值的物理 量。 • 可以把模拟信号变成数字 信号,其方法是对模拟信 号进行采样,并用数字代 码表示后的信号即为数字 信号。 • 用逻辑1和0表示的数字信 号波形如右图所示:
③异或门和同或门:异或门有两个输入端A、B,一个输出端Z。异或门
的逻辑功能是:当两个输入端相异(一个为1,另一个为0)时,输出 为1,当两个输入相同时,输出为0。其的表达式为:Z=A⊕B ,用符
号⊕代表异或。异或门的倒相就是异或非门,也叫同或门,其的表达
式为:Z=A⊕B,或Z=A⊙B。
逻辑函数表示方法间的相互转换
•
用BCD码表示十进制数,只要把十进制数的每一位数 码,分别用BCD码取代即可。 • 若要知道BCD码代表的十进制数,只要BCD码以小数 点为起点向左、右每四位分成一组,再写出每一组代码代 表的十进制数,并保持原排序即可。 • 例1-22 : 求出十进制数902.4510的8421BCD码。 • 解:
逻辑代数
• 在逻辑代数中,最基本的逻辑运算有与、或、非 三种 。 • 最基本的逻辑关系有三种:与逻辑关系、或逻辑 关系、非逻辑关系。 • 实 现基本逻辑运算和常用复合逻辑运算的单元电 路称为逻辑门电路。
三种最基本逻辑关系
• ①“与”逻辑关系 : 当决定一件 事情的各个条件全部具备时,这件 事才会发生,这样的因果关系我们 称之为“与”逻辑关系。 ②“或”逻辑关系 : 在决定 一件事情的各个条件中,只要具备 一个或 者一个以上的条件,这件 事就会发生,这样的因果关系我们 称之为“或”逻辑关系。 ③“非”逻辑关系 : 非就是 相反,就是否定。
数字电路基础知识总结

数字电路基础知识总结数字电路是现代电子技术的基础,广泛应用于计算机、通信、控制系统等领域。
它用二进制表示信号状态,通过逻辑门实现逻辑运算,从而实现各种功能。
下面是数字电路的基础知识总结。
1. 数字信号和模拟信号:数字信号是用离散的数值表示的信号,如二进制数,可以表示逻辑状态;而模拟信号是连续的变化的信号,可以表示各种物理量。
2. 二进制表示:二进制是一种只包含0和1两个数的数字系统,适合数字电路表示。
二进制数的位权是2的次幂,最高位是最高次幂。
3. 逻辑门:逻辑门是用来实现逻辑运算的基本电路单元。
包括与门(AND gate)、或门(OR gate)、非门(NOT gate)、异或门(XOR gate)等。
逻辑门接受输入信号,产生输出信号。
4. 逻辑运算:逻辑运算包括与运算、或运算、非运算。
与运算表示所有输入信号都为1时输出为1,否则为0;或运算表示有一个输入信号为1时输出为1,否则为0;非运算表示输入信号为0时输出为1,为1时输出为0。
5. 组合逻辑电路:组合逻辑电路是由逻辑门构成的电路,在任意时刻,根据输入信号的不同组合,产生不同的输出信号。
组合逻辑电路根据布尔代数的原理设计,可以实现各种逻辑功能。
6. 布尔代数:布尔代数是一种处理逻辑运算的代数系统,它定义了逻辑运算的数学规则。
包括与运算的性质、或运算的性质、非运算的性质等。
7. 时序逻辑电路:时序逻辑电路不仅依赖于输入信号的组合,还依赖于时钟信号。
时序逻辑电路包含存储器单元,可以存储上一时刻的输出,从而实现存储和反馈。
8. 编码器和解码器:编码器将一组输入信号转换为对应的二进制码,解码器则将二进制码转换为对应的输出信号。
编码器和解码器广泛应用于通信系统、数码显示等领域。
9. 多路选择器:多路选择器是一种能够根据选择信号选择多个输入中的一个输出。
多路选择器可以用于数据选择、地址选择等。
10. 计数器:计数器是一种可以根据时钟信号和控制信号进行计数的电路。
数字电路基础知识

数字电子技术基础>>> 数字电路基础知识
1.2 数制及编码
1.常用数制及转换方法 数制即计数的方法,常用的数制有十进制和二进制两种。 (1)十进制 (2)二进制 (3)二进制数与十进制数之间的相互转换 1)二进制数转换为十进制数。 2)十进制数转换为二进制数。
数字电子技术基础>>> 数字电路基础知识
数字电子技术基础>>> 数字电路基础知识
1.1 数字信号及其特点
我们先来看看如图所示的电压信号,观察它们有什么特点。
数字信号及波形
由图可以看到这两个电压信号在时间上、幅值上都不连续,我们把时间与幅度都不连续的信号 称为数字信号。数字信号虽然在时间上和数值上都是间断的,但其具有精度高、可靠性强、集成度 高、成本低、使用效率高、应用范围广等优点,因此成为研究的重点。
数字电路基础知识

数字电路基础知识在当今科技飞速发展的时代,数字电路作为电子技术的重要组成部分,广泛应用于计算机、通信、控制等众多领域。
如果你对电子技术感兴趣,或者正在学习相关专业,那么了解数字电路的基础知识是必不可少的。
接下来,让我们一起走进数字电路的世界。
一、数字电路的概念数字电路是处理数字信号的电子电路。
与模拟电路处理连续变化的信号不同,数字信号只有两种离散的状态,通常用“0”和“1”来表示。
这种简单的二进制表示使得数字电路具有可靠性高、抗干扰能力强、易于集成等优点。
在数字电路中,信息是以数字的形式进行存储、传输和处理的。
例如,计算机中的数据、数字通信中的信号等都是以数字形式存在的。
二、数字电路的基本逻辑门逻辑门是数字电路的基本单元,就像建筑中的砖块一样。
常见的基本逻辑门有与门、或门、非门三种。
1、与门与门的逻辑功能是只有当所有输入都为“1”时,输出才为“1”,否则输出为“0”。
可以把与门想象成一个需要多个条件同时满足才能打开的门。
2、或门或门则只要有一个输入为“1”,输出就为“1”,只有当所有输入都为“0”时,输出才为“0”。
类似于多个开关并联,只要有一个开关闭合,电路就导通。
3、非门非门是对输入进行取反操作,输入为“1”时,输出为“0”;输入为“0”时,输出为“1”。
通过这三种基本逻辑门的组合,可以构建出更复杂的逻辑电路,实现各种功能。
三、数字电路中的数制与编码1、数制数制是计数的方法。
在数字电路中,常用的数制有二进制、十进制、八进制和十六进制。
二进制是数字电路中最基本的数制,只有“0”和“1”两个数字。
十进制则是我们日常生活中最常用的数制,由 0 到 9 十个数字组成。
八进制和十六进制在计算机编程和数字电路设计中也经常用到。
2、编码编码是将信息转换为特定的代码形式。
例如,BCD 码(BinaryCoded Decimal)是用二进制编码表示十进制数;格雷码(Gray Code)在相邻的两个数之间只有一位发生变化,常用于减少数字电路中的误差。
数字电路总结知识点

数字电路总结知识点一、基本原理数字电路是以二进制形式表示信息的电路,它由数字信号和逻辑元件组成。
数字信号是由禄电平、高电平表示的信号,逻辑元件是由逻辑门组成的。
数字电路的设计和分析都是以逻辑门为基础的。
逻辑门是用来执行逻辑函数的元件,比如“与”门、“或”门、“非”门等。
数字电路的基本原理主要包括二进制数制、布尔代数、卡诺图、逻辑函数和逻辑运算等内容。
二进制数制是数字电路中最常用的数制形式,它使用0和1表示数字。
布尔代数是描述逻辑运算的理论基础,它包括基本逻辑运算、逻辑运算规则、逻辑函数、逻辑表达式等内容。
卡诺图是用于简化逻辑函数的图形化方法,它可以简化逻辑函数的表达式,以便进一步分析和设计数字电路。
二、逻辑门逻辑门是数字电路的基本元件,它用来执行逻辑函数。
常见的逻辑门包括与门、或门、非门、异或门、与非门、或非门等。
这些逻辑门都有特定的逻辑功能和真值表,它们可以用于组合成复杂的逻辑电路。
逻辑门的特点有两个,一个是具有特定的逻辑功能,另一个是可以实现逻辑函数。
逻辑门的逻辑功能对应着二进制操作的逻辑运算,它可以实现逻辑的“与”、“或”、“非”、“异或”等功能。
逻辑门的实现是通过逻辑元件的布局和连接来完成的,比如用传输门和与门实现一个或门。
三、组合逻辑电路组合逻辑电路是由逻辑门组成的电路,它执行逻辑函数,但没有存储元件。
组合逻辑电路的特点是对输入信号的变化立即做出响应,并且输出信号仅依赖于当前的输入信号。
常见的组合逻辑电路包括加法器、减法器、多路选择器、译码器等。
加法器是一个重要的组合逻辑电路,它用来执行加法运算。
有半加器、全加器和多位加法器等不同类型的加法器,它们可以实现不同精度的加法运算。
减法器是用来执行减法运算的组合逻辑电路,它可以实现数的减法运算。
多路选择器是一个多输入、单输出的组合逻辑电路,它根据控制信号选择其中的一个输入信号输出到输出端。
译码器是用来将二进制码转换成其它码制的组合逻辑电路,它可以将二进制数码转换成BCD码、七段码等。
数字电路实验基本知识

c.设计错误
• 设计错误自然会造成与预想的结果不一致。原因是所用器件的原理没 有掌握。在集成逻辑电路实际应用中,不用的输入端是不允许悬空的。 因为由于电磁感应,悬空的输入端易受到干扰产生噪声,而这种噪声 有可能被逻辑门当作输入逻辑信号,从而产生错误输出信号。因此, 常把不用的输入端与有用的输入端连接到一起,或根据器件类型,把 它们接到高电平或低电平。在带有触发器的电路中,未能正确处理边 沿转换时间和激励信号变化时间之间的关系。 • 当实验中发现结果与预期不一致时,应仔细观测现象,冷静分析问题 所在。 首先检查仪器、仪表的使用是否正确。在正确使用仪器、仪表的前提 下,按逻辑图和接线图查找问题出现在何处。查找与纠错是综合分析、 仔细推究的过程,有多种方法,但以“二分法”查错速度较快。所谓 “二分发”是将所设计的逻辑电路从最先信号输入端到电路最终信号 输出端之间的电路一分为二,在中间找到切入点,断开后半部分电路, 对前半部分电路进行分析、测试,确定前半部分电路是否正确,如前 半部分电路不正确,在对其半部分电路再分为二,以此类推,只要认 真分析、仔细查找,总会就错成功。
三、数字电路逻辑状态与电平标准规定
• 数字电路是一种开关电路,开关的两种状态“开通”与“关断”,常 用二元常量0和1来表示。 • 在VHDL中通常用 BIT 表述 bit or bit-vector • 数字信号按信号方向分输入与输出(in/out/inout/buff) • 在数字逻辑电路中,区分逻辑电路状态“1”和“0”信号用电平来体现 信号的电平一般有两种规定,即正逻辑和负逻辑。 正逻辑规定,高电平表示逻辑“1”,低电平则表示逻辑“0”。 负逻辑规定,低电平表示逻辑“1”,高电平则表示逻辑“0”。 工程中多数采用正逻辑描述。 现在常用的电平标准有TTL、CMOS、LVTTL、LVCMOS、ECL、 PECL、LVPECL、RS232、RS485等, 还有一些速度比较高的LVDS、GTL、PGTL、CML、HSTL、SSTL等
数字电路知识点归纳(精华版)

数字电路知识点汇总(东南大学)第1章数字逻辑概论一、进位计数制1.十进制与二进制数的转换2.二进制数与十进制数的转换3.二进制数与16进制数的转换二、基本逻辑门电路第2章逻辑代数表示逻辑函数的方法,归纳起来有:真值表,函数表达式,卡诺图,逻辑图及波形图等几种。
一、逻辑代数的基本公式和常用公式1)常量与变量的关系A+0=A与A=⋅1AA+1=1与0⋅A0=A⋅=0AA+=1与A2)与普通代数相运算规律a.交换律:A+B=B+AA⋅⋅=ABBb.结合律:(A+B)+C=A+(B+C)⋅A⋅B⋅⋅=(C)C()ABc.分配律:)⋅=+A⋅B(CA⋅⋅BA C+A+=+)B⋅)(C)()CABA3)逻辑函数的特殊规律a.同一律:A+A+Ab.摩根定律:BBA+=A⋅A+,BBA⋅=b.关于否定的性质A=A二、逻辑函数的基本规则代入规则在任何一个逻辑等式中,如果将等式两边同时出现某一变量A的地方,都用一个函数L表示,则等式仍然成立,这个规则称为代入规则例如:C⋅+⊕⋅A⊕BACB可令L=CB⊕则上式变成LA⋅⋅=C+LA⊕⊕=A⊕LBA三、逻辑函数的:——公式化简法公式化简法就是利用逻辑函数的基本公式和常用公式化简逻辑函数,通常,我们将逻辑函数化简为最简的与—或表达式1)合并项法:利用A+1A=⋅⋅,将二项合并为一项,合并时可B=+A=A或AAB消去一个变量例如:L=BACA=++)=(BABCCACB2)吸收法利用公式A⋅A⋅可+,消去多余的积项,根据代入规则BA=BA以是任何一个复杂的逻辑式例如化简函数L=EAB++DAB解:先用摩根定理展开:AB=BA+再用吸收法L=E+AAB+DB=EA+B++ABD=)A+A+D+(E()BB=)AA+++1(D)B1(EB=BA+3)消去法利用B+消去多余的因子A+=ABA例如,化简函数L=ABCA+++BABEBA解:L=ABCA+++BABABE=)ABA+++B)E(ABC(AB=)BA++E+BA)((BCB=)BCBA++B+++))(A)((BBB(C=)CBA+++A()(CB=ACA++B+ABCA=C+A+BBA4)配项法利用公式C⋅+=++⋅⋅将某一项乘以(AA⋅BBAAACBCA+),即乘以1,然后将其折成几项,再与其它项合并。
数字电路知识点总结

数字电路知识点总结一、数字电路基础1. 数字信号与模拟信号- 数字信号:离散的电压级别表示信息,通常为二进制。
- 模拟信号:连续变化的电压或电流表示信息。
2. 二进制系统- 基数:2。
- 权重:2的幂次方。
- 转换:二进制与十进制、十六进制之间的转换。
3. 逻辑电平- 高电平(1)与低电平(0)。
- 噪声容限。
4. 逻辑门- 基本逻辑门:与(AND)、或(OR)、非(NOT)、异或(XOR)。
- 复合逻辑门:与非(NAND)、或非(NOR)、异或非(XNOR)。
二、组合逻辑1. 逻辑门电路- 基本逻辑门的实现与应用。
- 标准逻辑系列:TTL、CMOS。
2. 布尔代数- 基本运算:与、或、非。
- 逻辑公式的简化。
3. 多级组合电路- 级联逻辑门。
- 编码器、解码器。
- 多路复用器、解复用器。
- 算术逻辑单元(ALU)。
4. 逻辑函数的表示- 真值表。
- 逻辑表达式。
- 卡诺图。
三、时序逻辑1. 触发器- SR触发器(置位/复位)。
- D触发器。
- JK触发器。
- T触发器。
2. 时序逻辑电路- 寄存器。
- 计数器。
- 有限状态机(FSM)。
3. 存储器- 随机存取存储器(RAM)。
- 只读存储器(ROM)。
- 闪存(Flash)。
4. 时钟与同步- 时钟信号的重要性。
- 同步电路与异步电路。
四、数字系统设计1. 设计流程- 需求分析。
- 概念设计。
- 逻辑设计。
- 物理设计。
2. 硬件描述语言(HDL)- VHDL与Verilog。
- 模块化设计。
- 测试与验证。
3. 集成电路(IC)- 集成电路分类:SSI、MSI、LSI、VLSI。
- 集成电路设计流程。
4. 系统级集成- 系统芯片(SoC)。
- 嵌入式系统。
- 多核处理器。
五、数字电路应用1. 计算机系统- 中央处理单元(CPU)。
- 输入/输出接口。
2. 通信系统- 数字信号处理(DSP)。
- 通信协议。
- 网络通信。
3. 消费电子产品- 音频/视频设备。