高等量子力学 第二章 算符培训资料

合集下载

量子力学第二章算符理论

量子力学第二章算符理论

量⼦⼒学第⼆章算符理论第⼆章(⼀维)算符理论本章提要:本章从线性变换和微分算⼦出发,建⽴算符理论统⼀它们来处理「观测⾏为」,引⼊观测公设。

接着,从观测值=本征值为实数的要求出发,找到了符合条件的厄⽶矩阵来描述⼒学量,引⼊算符公设。

之后介绍了运算法则、基本的位置和动量算符、复合算符的对易⼦、哈密顿算符等。

最后,作为对上述内容的综合应⽤,讨论了不确定性原理。

1.算符:每⼀个可观测量,在态空间中被抽象成算符。

在态空间中,观测⾏为被抽象为,某可测量对应的算符「作⽤」在态⽮量上①线性变换:线性代数告诉我们,⼀个线性变换「作⽤」到n 维向量上会获得⼀个新的n 维向量,这等价于⼀个n 阶⽅阵「作⽤」在n ⾏1列矩阵上得到新的n ⾏1列矩阵,⽤数学语⾔可表⽰为()Ta b T =?=αβ。

总之,⽅阵与线性变换⼀⼀对应。

由于⽅阵性质⽐矩阵更丰富,我们将只研究⽅阵。

②微分算⼦:在微积分中2222,,,ii x f x f dx f d dx df 也可简写成f f f D Df 22,,,??。

前两种在解欧拉⽅程和⾼阶⽅程式时常⽤,后两种则经常出现在⽮量分析中。

简写法可看作是微分算⼦「作⽤」在函数上,我们知道它遵守加法和数乘法则,是⼀种线性运算③本征值和本征⽮:在矩阵⽅程x Ax λ=中,把λ称为矩阵本征值,x 称为矩阵的本征⽮④本征值和本征函数:在微分⽅程f f D mixµ=中,把µ称为问题本征值,f 称为本征函数⑤线性算符:现在把上述概念统⼀为线性算符理论。

考虑⼀个可测量Q ,定义它的对应算符为Q ?,它的本征⽅程是ψ=ψλQ或λψψ=Q ?,把λ称为算符的「本征值」,λ的取值集合称为算符的「谱」,ψ称为算符的「本征态」(或本征⽮),ψ称为算符的「本征函数」(注意:有时也把ψ记作本征值的对应本征态λ,如后⾯将遇到的坐标算符本征态x 、动量算符本征态p )⑥第三公设——观测公设:对于量⼦系统测量某个量Q ,这过程可以抽象为对应的算符Q ?作⽤于系统粒⼦的态⽮量ψ,测量值只能为算符Q ?的本征值iλ。

量子力学第二章

量子力学第二章

ˆ F r r
ˆ 就称 r 为算符 F 相应本征值 的本征函数
2、本征方程的解 简并
(1)分离解:
ˆ F 本征值 本征函数


1 2


1
2

2、连续解
ˆ F



3、简并、非简并 非简并:一个本征值 m 对应一个本征函数
例题(1 p x是否是厄米算符?(x , 0, 0) :)ˆ
(全微分

d ( * ) *
*
x
dx (
x
)* dx )
ˆ dx * ( i d ) dx Px dx i d ( * ) ( i ) ( i ( * ) (i x
z
2 2
2 ma
2
(1,2,1)
6 2 E111
121
8 a
3
sin

a
2 a
y sin

a
z
(2,1,1)
当能量次低时,发生3重简并
211
8 a
3
sin
2 a
x sin

a
y sin

a
z
例: 绕定轴转动的刚体称为平面转子,假设其转动惯量 用 I 表示,转角用 表示,则其哈密顿算符表示为 ,试求算符 的本征值和本征函数。
4、算符对易
BA ˆˆ ˆˆ AB ˆˆ BA ˆ ˆ A、 B对易 ˆ ˆ A、 B不对易
5、单位算符
ˆ I
例题: ( ) F d , 1 ˆ

量子力学第二章知识点

量子力学第二章知识点

量子力学第二章知识点基本概念波粒二象性量子力学中的粒子既可以表现出粒子性,也可以表现出波动性。

这种既是粒子又是波动的性质被称为波粒二象性。

波函数波函数是量子力学中描述粒子状态的数学函数。

波函数的模的平方表示在某一位置发现粒子的概率密度。

叠加原理量子力学中,两个波函数的线性叠加仍然是一个有效的波函数。

这个原理被称为叠加原理。

量子态所有可能的状态(波函数)构成了量子力学中的量子态。

一个量子态可以通过线性叠加得到另一个量子态。

算符和测量算符算符是描述量子系统性质变化的数学操作。

在量子力学中,算符通常用来描述物理量的测量和演化。

算符的本征值和本征态对于一个算符,它的本征值是测量该物理量时可能得到的值;而本征态是对应于这些本征值的一组特定的波函数。

观测量和平均值观测量是指用来测量物理量的实际实验装置,而平均值则是对同一量子态进行多次测量得到的结果的平均值。

不确定性原理不确定性原理是量子力学的基本原理之一,它描述了在某些物理量的测量中,有些对应物理量无法同时精确确定的限制。

氢原子壳层和轨道氢原子中,电子围绕原子核运动的轨道被称为壳层。

氢原子的壳层用主量子数 n 来标记。

能级和能量氢原子中电子的能量是量子化的,称为能级。

能级由主量子数 n 决定,能级越高,能量越大。

轨道角动量氢原子中,电子的轨道运动导致了其具有轨道角动量。

轨道角动量用量子数 l 来标记。

磁量子数氢原子中,轨道角动量的分量在某一方向上的投影用磁量子数 m 来标记。

自旋和电子态自旋自旋是粒子固有的一种角动量,与粒子的旋转运动无关。

电子具有自旋角动量。

自旋量子数自旋量子数用 s 来标记,对于电子,其自旋量子数为 1/2。

自旋态自旋态是描述粒子自旋状态的波函数。

对于电子,自旋态可以是自旋向上的态,记作|↑⟩,也可以是自旋向下的态,记作|↓⟩。

自旋磁量子数自旋磁量子数用 m_s 来标记,对于电子,其自旋磁量子数可以是 1/2 或 -1/2。

总结本文介绍了量子力学第二章的知识点,包括波粒二象性、波函数、叠加原理、量子态、算符和测量、算符的本征值和本征态、观测量和平均值、不确定性原理、氢原子的壳层和轨道、能级和能量、轨道角动量、磁量子数、自旋和电子态等内容。

量子力学之算符PPT课件

量子力学之算符PPT课件

满足如下运算规律的 算符 Ô 称为线性算符
动量算符 pˆ i 例如: 单位算符 Iˆ
是线性算符。
开方算符、取复共轭就不是线性算符。 注意:描写可观测量的力学量算符都是线性算符,这是态叠加原理的反映。
(2)算符相等
若两个算符 Ô 、Û 对体系的任何波函数 ψ的运算结果都相 同,即Ô ψ= Û ψ,则算符Ô 和算符Û 相等记为Ô = Û 。
p
i i i
x
p (r)
y
p
(r)
z
p
(r
)
px p (r)
py
p
(r
)
pz p (r)
其 分 量 形 式 :
第16页/共73页
I. 求解
采用分离变量法,令:
p ( r ) ( x )( y )( z )
代入动量本征方程
上面的第四式称为 Jacobi 恒等式。
第5页/共73页
(7)逆算符
并不是所有算符都存 在逆算符,例如投影 算符就不存在逆.
1. 定义: 设Ôψ= φ, 能够唯一的解出 ψ, 则可定义
算符 Ô 之逆 Ô-1 为: Ô-1 φ = ψ
2.性质 I: 若算符 Ô 之逆 Ô-1 存在,则 Ô Ô-1 = Ô-1 Ô = I , [Ô , Ô-1] = 0
(5)对易关系
若ÔÛ ≠ ÛÔ,则称Ô 与 Û 不对易。
例如:算符 x
证 ( 1 )x p ˆ : x x ( i x ) i x x
( 2 ) p ˆ x x ( i x ) x i i x x
pˆ x
i
x
不对易。
xpˆ x pˆ x x

(xpˆ x pˆ x x) i

喀兴林高等量子力学习题EX2.算符教学提纲

喀兴林高等量子力学习题EX2.算符教学提纲

喀兴林高等量子力学习题E X2.算符EX2.算符2.1证明下列常用公式 (陈玉辉解答 项鹏核对 )(1)C B A C A B BC A ],[],[],[+=证明:CB AC A B CBA AB CA AC B BAC ABC BCA BAC BCAABC BC A ],[],[][][],[+=-+-=-+-=-=(2)B C A C B A C AB ],[],[],[+=证明:BC A C B A BCA AC CB BC A CABACB ACB ABC CABABC C AB ],[],[][][],[+=-+-=-+-=-=2.2 若算符B 与],[B A 对易,证明: (陈玉辉解答 项鹏核对 )],[],[1B A nB B A n n -=证明:],[],[],[],[111---+=⋅=n n n n B A B B B A B B A B A将n 换成(n-1),就有],[],[],[221---+=n n n B A B B B A B A],[],[2],[],[],[],[2212211-----+=++=⇒n n n n n n B A B B B A B A B B B A B B A B A重复这种递推过程(n-1)次,即得],[],[],)[1(],[],)[1(],[111)1(11B A nB B A B B B A n B A B B B A n B A n n n n n n n n -------=+-=+-=#练习2.3 证明: (输入人:杜花伟 核对人:王俊美)(1)若A 有逆,a ≠0,则aA 也有逆,且111)(--=A aaA ; (2)若A,B 都有逆,则AB 也有逆,且111)(---=A B AB ;(3)})(1{)(111---+-=+B A B A B A ;(4)⋅⋅⋅+++=--------11121111)(BA BA A BA A A B A λλλ.(λ为复数);证明:(1)若A 有逆,a ≠0,满足1,111==--aa AA ,则11111==----AA aa A aAa所以aA 有逆,且111)(--=A aaA . (2) 若A,B 都有逆,满足1,111==--BB AA ,则1111==---AA A ABB所以AB 有逆,且111)(---=A B AB .(3)})(1{})())({(}))({(})({)()(111111111111------------+-=+-++=+-+=+=+=+B A B A B A B B A B A A B A B B A A B A A A B A A A B A(4) 由于1)1(--χ(x 极小,即x →0时)展为级数:⋅⋅⋅++++=--3211)1(χχχχ故(⋅⋅⋅+++=⋅⋅⋅+++=-=-=----------------111211*********11)1()1()]1([)(BA BA A BA A A BA BA BA A BA A BA A B A λλλλλλλ#2.4 若线性算符A 有逆,{|μ>}(i=1,2,3,…,n )是A 的有限维的定义域的中的一组完全集。

高等量子力学 算符

高等量子力学 算符
为交);至于 BA的定义域,若 A 的值域在 B 的定义域之内,则 BA 的定义域就是 A 的定义域,若 A 的值域只有一部分在 B 的定义 域内,则 BA的定义域要比 A 的定义域小。
两个算符相等的定义是: A与B 有相同的定义域并且对域内
任意矢量 有
这时我们记作
2020/4/1
A B AB
若两个算符 A和B 满足 ABBA
线性算符的定义域,可以是整个右矢空间本身,也可以是 它的一个子空间。
可以证明,线性算符具有下列性质:
(1)线性算符的值域也是右矢空间(大空间本身或其子空间)。 (2)若定义域是有限维的空间,则值域空间的维数等于或小于
定义域空间的维数。 (3)在定义域中,那些受A的作用得到零矢量的右矢全体,也
构成一个右矢空间(定义域的子空间)。 复数对右矢的数乘,可以看成算符对右矢的作用,每一个
A [A ( i) , B ] [A ( i) , B ]A [A ( i 1 ) , B ]
n A i,B A n i i n 0n n ! i!i!A i,B A n 1 i i n 0n n ! i!i!A i 1 ,B A n i
在上式右边第二个取和式中,取j=i+1,得
§2-2 算符的代数运算
在量子力学中,经常出现不可对易线性算符的代数运算, 在这一小节里,我们举几个较复杂的运算例子;并且用代数方 法证明两个常用的算符等式(2.9)和(2.14)两式。
设 A 和 B 为两个线性算符,互不对易。首先我们定义多重对
易式[ Ai , B]和[B, Ai ] :
A 0,BB
2020/4/1
由上述定义可知,除交换律不一定成立外,算符之间服从 一般的加、减、乘和幂次的代数运算法则:

高等量子力学 量子动力学

高等量子力学 量子动力学

六、能量本征矢
知道时间演化算符随时间变化,还需要知道它如何作用于 一态矢才能求出态矢的时间变化。如果我们选用能量本征态 为基,则时间演化算符对态的作用可轻易求得。 有
Η a′ = Ε a′ a′ ; α , t0 = 0 = a′ a′ a = ca′ a′ a′ a′
e
− iHt
= a′′ a′′ e
− i Η ( t − t0 )
t0

容易验证该 u ( t , t0 ) 满足 Schrodinger 方程:
∂ i ∂ t exp − i t dt ′Η ( t ′ ) = − i Η ( t ) u ( t , t ) ′ ′ Η u ( t , t0 ) = − dt t ( ) 0 t0 ∂t ∂t t0
第二章:量子动力学
(物理状态和观测量随时间的变化)
2.1 时间演化和 Schrodinger 方程


时间在量子力学中是参量而非算符,因而不是 可观测量。与谈论坐标算符那样谈论时间算符 是无意义的。 相对性量子理论确将时空对等处理,但代价是 将位置作为参量而非观测量处理。
一、时间演化算符

设一物理态矢在 t0 由 α 表示,在 t > t0 状态由 α , t0 ; t lim α , t0 ; t = α ,简写成, 表示。由于时间是连续参量,
= ca ' a '
a'

iΕα ′t − iΕ a′′t * B = Ca ′ a ′ e B Ca′′e a′′ = a ′′ a′
C
a ′a ′′
* a′
Ca′′

高等量子力学 角动量算符和角动量表象 自旋表象PPT课件

高等量子力学 角动量算符和角动量表象  自旋表象PPT课件

另一幺正性关系是
l
'' '' lm lm l0 ml
l
Ylm* , Ylm ','
1
sin
'
'
l0 ml
(8.70)
这也是函数形式的球谐函数的完全性关系.
第18页/共30页
任何函数 r,, 都可以展开成为
l
r, , clmRlmrYlm , l 0 ml
Ylm* 1,1 Ylm 2,2
ml
2l
4
1
Pl
cos
(8.72)
式中 1,1 和 2 ,2 代表两个单位矢量的方向,而 是二矢量间
的夹角.
另一个有用公式为
eikr 4
l
il jl
kr Ylm*
ek
Ylm
er
l0 ml
2l 1il jl krPl cos
(8.73)
式中
mm! !eim
sinm
d
d
cos
lm sin 2l
(8.64)
Ylm* , 1mYl,m,
全部球谐函数构成完全函数组 。
第13页/共30页
§8-5 lm 表象和 表象
在以单粒子的位置 x, y, z 或 r,, 为自变量的函数空间中,
我们建立了与抽象的希尔伯特空间一一对应的态矢量和算符,而且 把这一函数空间分解为两个较小的函数空间的直积空间:一个是以 r 为自变量的函数所组成的空间,以算符 Rˆ 的本征矢量为基矢;另一
jm jm jj mm
(8.16)
此式对轨道角动量、自旋角动量或其它角动量的本征矢量均成立。
第10页/共30页
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
[F ˆG ˆ,M ˆ] F ˆ[G ˆ,M ˆ] [F ˆ,M ˆ] G ˆ [A ˆ,[B ˆ,C ˆ] ][B ˆ,[C ˆ,A ˆ] ][C ˆ,[A ˆ,B ˆ] ]0(Ja恒 co等 bi
由上述定义可知,除交换律不一定成立外,算符之间服从 一般的加、减、乘和幂次的代数运算法则:
ABC AB AC ABC ABC
等等。
A3 AAA
可以用算符和复数构成一个多项式作为算符的函数:
F A a 0 a 1 A a 2 A 2 a n A n
甚至可以构成无穷级数(我们不去仔细考察由此引起的数学问 题),例如可以写
1 a A 2 1 !a 2A 2 3 1 ! a 3 A 3 n 0n 1 !a nA n e aA (2.3)
线性算符的定义域,可以是整个右矢空间本身,也可以是 它的一个子空间。
可以证明,线性算符具有下列性质:
(1)线性算符的值域也是右矢空间(大空间本身或其子空间)。 (2)若定义域是有限维的空间,则值域空间的维数等于或小于
定义域空间的维数。 (3)在定义域中,那些受A的作用得到零矢量的右矢全体,也
构成一个右矢空间(定义域的子空间)。 复数对右矢的数乘,可以看成算符对右矢的作用,每一个
(2.4)
则算符A有逆,而且
A1 BC
证明: 我们证明这样的A满足有逆条件(1)和(2)。
条件(1):在值域中取一任意 ,证明在定义域有 存在:
1 A B A B
可见对于任意 ,确有 存在,这个 就是 B 。
条件(2):若 A1 A 2 ,用 C 作用在此式两;其定义域和值域均为全空间:
a a
其中两个特殊的算符: , 1 , 1
对一切 成立;前者称为零算符,后者称为单位算符。
两个算符 A与B 的和 A B 及乘积 BA的定义是:
AB A B
BA BA
A B 的定义域是 A与B 两算符的定义域的共同部分(数学上称
为交);至于 BA的定义域,若 A 的值域在 B 的定义域之内,则 BA 的定义域就是 A 的定义域,若 A 的值域只有一部分在 B 的定义 域内,则 BA的定义域要比 A 的定义域小。
两个算符相等的定义是: A与B 有相同的定义域并且对域内
任意矢量 有
这时我们记作
A B
AB
若两个算符 A和B 满足 ABBA
则说这两个算符是可对易的,或称为两个算符对易。
定义:
[A,B]AB BA
(2.2)
经常使用的几个对易关系:
[F ˆ,G ˆ][G ˆ,F ˆ]
[F ˆ,G ˆ M ˆ] [F ˆ,G ˆ] [F ˆ,M ˆ] [F ˆ,G ˆM ˆ] G ˆ[F ˆ,M ˆ] [F ˆ,G ˆ]M ˆ
但此式就是 1 2 ,条件(2)也得到满足,因此 A1 存在。
A1 既然存在,将 AB=1 用 A1 左乘,得 A1 B
将 CA 1用A1 右乘得 A1 C
定理证毕。
在 A 的定义域为无穷维空间的情况,此定理指出:当(2.4)
式中 B和C 都存在时,才能说 有A1 存在, B和C 中只有一个是不 够的。但当 A 的定义域为有限维时,可以证明 B 与 C 二者中存 在一个,即可断定算符 A 有逆。
注意上式是算符的指数函数的定义式。在此定义下,关系式
eAeBeAB (当[A,B]=0 时成立)
而当[A, B] 0 时是不成立的(参见本节§2-2)。 逆算符 设在一个右矢空间中,算符 A 把定义域中的一个右矢
变为值域中的一个右矢 :
A
若算符 A 所建立的这个关系是一一对应的,即对应值域中的
一个算符A,其定义域是一个矢量空间,而又满足下列条件的, 称为线性算符:
AAA
AaAa
(2.1)
满足下列二条件的,称为反线性算符:
AAA
AaAa*
(2.2)
其中a是任意常数。在量子力学中出现的算符,绝大多数都是线 性算符,下面我们只讨论线性算符。
算符对其定义域中每一个右矢作用,都应有确定的结果。
定义一个具体的算符应当规定其定义域,并指出它对其定义域 中每一个矢量作用的结果。而确定一个具体的线性算符,只须 规定它对其定义域中的一组线性无关的右矢(例如一组基矢) 中每个右矢的作用结果即可。
§2-2 算符的代数运算
在量子力学中,经常出现不可对易线性算符的代数运算, 在这一小节里,我们举几个较复杂的运算例子;并且用代数方 法证明两个常用的算符等式(2.9)和(2.14)两式。
设 A 和 B 为两个线性算符,互不对易。首先我们定义多重对
易式[ Ai , B]和[B, Ai ] :
每一个 ,在定义域中有且只有一个 ,则由 到 的逆对
应关系存在,这种关系称为 A 的逆算符,用 A1 表示:
A1
逆算符 A1 满足
A1AA1 A 1
逆算符 A1 的定义域和值域分别是 A 的值域和定义域。逆算符相
当于算符的除法,有时也写成 A 1 1 A
不是所有的算符都有逆。一个算符A有逆的条件如下:
§2-1 定义
规定一个具体的对应关系,用 A 来表示。使右矢空间中的某
些右矢与其中一些右矢相对应,例如使 与 相对应,记为
A
这样的对应关系 A 称为算符。我们说算符 A 作用于右矢 ,
得到右矢 。
在算符的定义中,被算符A作用的右矢全体,称为A的定义 域;得出的右矢全体称为值域。二者可以不同,也可以部分或 完全重合。通常算符的定义域与值域都是整个空间。
§2 算符
主要内容: §2-1 定义 §2-2 算符的代数运算 §2-3 作用于左矢的算符 §2-4 厄米算符和幺正算符 §2-5 投影算符
算符是矢量空间中又一重要概念。在这一节里,我们在右 矢空间中引入算符,并从左右矢空间的对应关系去讨论算符及 其性质。这些性质很容易回到单一空间的表示方法中去。
(1) 在 A 中对于每一个 , 总有 存在;
(2) 若 A1 A 2 ,则必有 1 2 。
这两条须同时满足,对于每一个 ,条件(1)要求有 ,条件(2)
要求只有一个 。
定理 设A是一个定义域和值域都在全空间的线性算符,若有另 外两个线性算符B和C存在,满足
AB=1, CA=1
相关文档
最新文档