最新人教版七年级数学上第2章整式的加减拔高题及易错题附答案
《易错题》七年级数学上册第二单元《整式加减》-解答题专项测试卷(含解析)

一、解答题1.已知多项式-13x 2y m +1+12xy 2-3x 3+6是六次四项式,单项式3x 2n y 2的次数与这个多项式的次数相同,求m 2+n 2的值. 解析:13 【解析】试题分析:根据多项式次数的定义,可得2+m+1=6,从而可求出m 的值,根据单项式的次数的定义结合题意可得2n+2=6,求解即可得到n 的值,把m ,n 的值代入到m 2+n 2中,计算即可得到求解. 试题根据题意得2+m +1=6,2n +2=6 解得:m =3, n =2, 所以m 2+n 2=13.点睛:此题考查多项式,解题的关键是弄清多项式的次数是多项式中次数最高的项的次数,还要弄清有几项. 2.若单项式21425m n x y +--与413n mx y +是同类项,求这两个单项式的积 解析:10453x y -【分析】根据题意,可得到关于m ,n 的二元一次方程组,求出m ,n 的值,即可求得答案. 【详解】∵单项式21425m n x y +--与413n mx y +是同类项, ∴21442m n n m +=+⎧⎨-=⎩,解得21m n =⎧⎨=⎩,∴21425252441011355533n m m n x y xy x y x y x y ++--⋅-⋅=-=【点睛】本题主要考查同类项的定义和单项式乘单项式的法则,根据同类项的定义,列出关于m ,n 的二元一次方程组,是解题的关键. 3.生活中,有人喜欢把传送的便条折成形状,折叠过程是这样的(阴影部分表示纸条的反面):如果由信纸折成的长方形纸条(图①)长为26cm ,宽为cm x ,分别回答下列问题:(1)为了保证能折成图④的形状(即纸条两端均超出点P ),试求P 的取值范围. (2)如果不但要折成图④的形状,而且为了美观,希望纸条两端超出点P 的长度相等,即最终图形是轴对称图形,试求在开始折叠时起点M 与点P 的距离(用P 表示) 解析:(1) x <5.2 (2) 13-1.5x 【详解】分析:(1)按图中方式折叠后可得到除去两端,纸条使用的长度为5x ,那么纸条使用的长度应大于0,小于纸条总长度. (2)是轴对称图形,那么AM=AP+x .解答:解:(1)由折纸过程可知0<5x <26,∴0<x <5.2.(2)∵图④为轴对称图形,∴AM=2652x-+x=13-1.5x , 即点M 与点A 的距离是(13-1.5x )cm .点评:本题考查学生的动手操作能力,难点是得到纸条除去两端使用的纸条的长度. 4.为鼓励居民节约用电,某市采用价格调控手段达到省电目的,该市电费收费标准如下表(按月结算): 每月用电量度 电价/(元/度) 不超过150度的部分0.50元/度 超过150度且不超过250度的部分 0.65元/度 超过250度的部分0.80元/度(2)设某月的用电量为x 度(0300x <≤),试写出不同电量区间应缴交的电费.解析:(1)该居民12月份应缴电费94.5元;(2)0.5,01500.6522.5,1502500.860,250300x x x x x x <≤⎧⎪-<≤⎨⎪-<≤⎩【分析】(1)根据用电量类型分别进行计算即可;(2)分三种情况进行讨论,当x 不超过150度时,x 超过150度,但不超过时250度时和x 超过250度时,再分别代入计算即可. 【详解】解:(1)由题意,得150×0.50+(180-150)×0.65=94.5(元) 答:该居民12月应缴交电费94.5元;(2)若某户的用电量为x 度,则当x≤150时,应付电费:0.50x 元; 当150<x≤250时,应付电费:0.65(x -150)+75=0.65x 22.5-(元); 当250<x <300,应付电费:0.80(x -250)+140=0.8x 60-(元).∴不同电量区间应缴交的电费为:0.5,01500.6522.5,1502500.860,250300x x x x x x <≤⎧⎪-<≤⎨⎪-<≤⎩.【点睛】本题考查了列代数式,读懂题目信息,理解阶梯电价的收费方法和电费的计算方法是解题的关键.5.窗户的形状如图所示(图中长度单位:cm ),其中上部是半圆形,下部是边长相同的四个小正方形. 已知下部小正方形的边长是acm. (1)计算窗户的面积(计算结果保留π). (2)计算窗户的外框的总长(计算结果保留π).(3)安装一种普通合金材料的窗户单价是175元/平方米,当a=50cm 时,请你帮助计算这个窗户安装这种材料的费用(π≈3.14,窗户面积精确到0.1).解析:(1)2214a +a 2π;(2)6a a π+;(3)245. 【分析】(1)根据图示,窗户的面积等于4个小正方形的面积加上半径是a 的半圆的面积; (2)根据图示,窗户外框的总长就是用3条长度是2acm 的边的长度加上半径是acm 的半圆的长度;(3)根据窗户的总面积,代入求值即可. 【详解】解:(1)窗户的面积为:()()222214a a 422a a a cm ππ⎛⎫⨯+=+ ⎪⎝⎭(2)窗户的外框的总长为:()()132a 262a a a cm ππ⨯+⨯=+(3)当a=50cm ,即:a=0.5m 时, 窗户的总面积为:()2220.540.5128m ππ⎛⎫⨯+=+ ⎪⎝⎭取π≈3.14,原式=1+0.3925≈1.4(m 2) 安装窗户的费用为:1.4×175=245(元). 【点睛】本题考查的知识点是求组合图形的面积与周长,将已知图形分解为所熟悉的简单图形是解此题的关键.6.已知多项式﹣x 2y 2m +1+xy ﹣6x 3﹣1是五次四项式,且单项式πx n y 4m ﹣3与多项式的次数相同,求m ,n 的值.解析:m =1,n =4.【分析】根据多项式的次数是多项式中次数最高的单项式的次数,可得m 的值,根据单项式的次数是单项式中所有字母指数和,可得n 的值. 【详解】∵多项式﹣x 2y 2m +1+xy ﹣6x 3﹣1是五次四项式,且单项式πx n y 4m ﹣3与多项式的次数相同, ∴2+2m +1=5,n +4m ﹣3=5, 解得m =1,n =4. 【点睛】本题考查了多项式,利用多项式的次数是多项式中次数最高的单项式的次数,单项式的次数是单项式中所有字母指数和得出m 、n 的值是解题关键.7.观察下列等式:21=2,22=4,23=8,24=16,25=32,26=64,27=128,…,通过观察,用你所发现的规律确定22017的个位数字. 解析:22017的个位数字是2. 【分析】根据已知的等式观察得到规律:24n+1的个位数字是2,24n+2的个位数字是4,24n+3的个位数字是8,24n+4的个位数字是6(n 为自然数),每四个一循环,由此得到答案. 【详解】观察可知:24n+1的个位数字是2,24n+2的个位数字是4,24n+3的个位数字是8,24n+4的个位数字是6(n 为自然数),每四个一循环, ∵22017=450412⨯+, ∴22017的个位数字是2. 【点睛】此题考查数字的规律,有理数乘方计算的实际应用,观察已知中等式的特点总结规律,并运用规律解答问题是解题的关键.8.观察由“※”组成的图案和算式,解答问题(1)请猜想1+3+5+7+9+…+19=;(2)请猜想1+3+5+7+9+…+(2n-1)+(2n+1)+(2n+3)= ;(3)请用上述计算103+105+107+…+2015+2017的值.解析:(1)102;(2)()22n+;(3)1015480.【分析】(1)由等式可知左边是连续奇数的和,右边是数的个数的平方,由此规律解答即可,此题中一共有10个连续奇数相加,所以结果应为102;(2)一共有(n+2)个连续奇数相加,所以结果应为n2;(3)让从1加到2005这些连续奇数的和,减去从1加到101这些连续奇数的和即可.【详解】(1)由图片知:第1个图案所代表的算式为:1=21;第2个图案所代表的算式为:1+3=4=22;第3个图案所代表的算式为:1+3+5=9=23;…依次类推:第n个图案所代表的算式为:1+3+5+…+(2n-1)=2n;1+3+5+…+19的个数为:191102+=,∴1+3+5+…+19=210;故答案为:210;(2)1+3+5+7+9+…+(2n-1)+(2n+1)+(2n+3)的个数为:23122nn++=+,∴1+3+5+7+9+…+(2n-1)+(2n+1)+(2n+3)=()22n+,故答案为:()22n+;(3)103+105+107+…+2015+2017=(1+3+…+2015+2017)-(1+3+…+99+101)=21009-251=1015480.【点睛】本题考查了数字的变化规律的应用;判断出有几个奇数相加是解决本题的易错点;得到从1开始连续奇数的和的规律是解决本题的关键.9.将一个长方形纸片连续对折,对折的次数越多,折痕的条数也就越多,如第一次对折后,有1条折痕,第2次对折后,共有3条折痕. (1)第3次对折后共有多少条折痕?第4次对折后呢? (2)对折多少次后折痕会超过100条?(3)请找出折痕条数与对折次数的对应规律,写出对折n 次后,折痕有多少条? 解析:(1)第3次对折后共有7条折痕,第4次对折后有15条折痕;(2)对折7次后折痕会超过100条;(3)对折n 次后,折痕有21n -条. 【分析】(1)动手操作即可得出第3次、第4次对折后的折痕条数;(2)在(1)的基础上,归纳类推出一般规律,再结合67264,2128==即可得出答案; (3)由题(2)已求得. 【详解】(1)动手操作可知,第3次对折后的折痕条数为7条, 第4次对折后的折痕条数为15条;(2)观察可知,第1次对折后的折痕条数为1121=-条, 第2次对折后的折痕条数为2321=-条, 第3次对折后的折痕条数为3721=-条, 第4次对折后的折痕条数为41521=-条, 归纳类推得:第n 次对折后的折痕条数为21n -条, 因为67264,2128==,所以对折7次后折痕会超过100条;(3)由(2)已得:对折n 次后的折痕条数为21n -条. 【点睛】本题考查了有理数乘方的应用,依据题意,根据前4次对折后的结果,正确归纳类推出一般规律是解题关键.10.某学生在写作业时,不慎将一滴墨水滴在了数轴上,如下图所示,而此时他要化简并求代数式()()2222352xy xx xy x xy ⎡⎤-----+⎢⎥⎣⎦的值.结果同学告诉他:x 的值是墨迹遮盖住的最大整数,y 的值是墨迹遮盖住的最小整数.请你帮助这位同学化简并求值.解析:xy ,1- 【分析】先把原式进行化简,得到最简代数式,结合x 的值是墨迹遮盖住的最大整数,y 的值是墨迹遮盖住的最小整数,得到x 、y 的值,然后代入计算,即可得到答案. 【详解】 解:()()2222352xy xx xy x xy ⎡⎤-----+⎢⎥⎣⎦=22226552xy x x xy x xy ⎡⎤-+--++⎣⎦ =22226552xy x x xy x xy -+-+-- =xy ; ∵74-<被盖住的数2<, ∴x 的值是墨迹遮盖住的最大整数, ∴1x =,∵y 的值是墨迹遮盖住的最小整数, ∴1y =-, ∴原式=1(1)1⨯-=-. 【点睛】本题考查了整式的化简求值,以及利用数轴比较有理数的大小,解题的关键是正确求出x 、y 的值,以及掌握整式的混合运算.11.已知多项式234212553x x x x ++-- (1)把这个多项式按x 的降冥重新排列;(2)请指出该多项式的次数,并写出它的二次项和常规项.解析:(1)432215253x x x x -+++-;(2)该多项式的次数为4,二次项是22x ,常数项是13-. 【分析】(1)按照x 的指数从大到小的顺序把各项重新排列即可;(2)根据多项式的次数的定义找出次数最高的项即是该多项式的次数,再找出次数是2的项和不含字母的项即可得二次项和常数项. 【详解】(1)按的降幂排列为原式432215253x x x x -+++-. (2)∵234212553x x x x ++--中次数最高的项是-5x 4, ∴该多项式的次数为4,它的二次项是22x ,常数项是13-.【点睛】本题考查多项式的定义,正确掌握多项式次数及各项的判定方法及多项式升幂、降幂排列方法是解题关键. 12.已知2223,Ax xy y B x xy()1若()2230x y ++-=,求2A B -的值()2若2A B -的值与y 的值无关,求x 的值解析:(1)-9;(2)x=-1 【分析】(1)根据去括号,合并同类项,可得答案;(2)根据多项式的值与y 无关,可得y 的系数等于零,根据解方程,可得答案. 【详解】(1)A-2B=(2x 2+xy+3y )-2(x 2-xy ) =2x 2+xy+3y-2x 2+2xy =3xy+3y .∵(x+2)2+|y-3|=0, ∴x=-2,y=3. A-2B=3×(-2)×3+3×3 =-18+9 =-9.(2)∵A-2B 的值与y 的值无关, 即(3x+3)y 与y 的值无关, ∴3x+3=0. 解得x=-1. 【点睛】此题考查整式的加减,解题关键在于掌握去括号,括号前是正数去括号不变号,括号前是负数去括号都变号. 13.数学老师给出这样一个题: 2-⨯2 2x x =-+.(1)若“”与“”相等,求“”(用含x 的代数式表示);(2)若“”为2326x x -+,当1x =时,请你求出“”的值.解析:(1)22x x --;(2)2223x x -+,3 【分析】 (1)用替换,得到-22x x =-+,进而得到答案;(2)把“”用2326x x -+替换,求出2223x x =-+,再把1x =代入求解即可得到答案; 【详解】 解:()1由题意得:2-⨯22x x =-+∴-22x x =-+∴22x x =--()2把“”用2326x x -+替换,得到:2326x x -+2-⨯2 2x x =-+即:2()223262x x x x =-+--+22362x x x x =-++- 2446x x =-+ ∴222 3.x x =-+当1x =时, 原式221213=⨯-⨯+223=-+3=. 【点睛】本题主要考查了新定义下的二元一次方程的应用,能把作相应的替换是解题的关键.14.古人云:凡事宜先预后立.我们做任何事情都要先想清楚,然后再动手去做,才能避免盲目从事.一天,需要小亮计算一个L 形的花坛的面积,在动手测量前,小亮依花坛形状画出示意图,并用字母表示出了将要测量的边长(如图所示),小亮在列式进行面积计算时,发现还需要再测量一条边的长度,你认为他还需要测量哪条边的长度?请你在图中用字母n 表示出来,然后求出它的面积.解析:图详见解析,am bn mn +- 【分析】由图可知花坛是由两块矩形组成,若想求解矩形面积就必需知道矩形的长和宽,而图中少了左边矩形的宽. 【详解】解:需要测量的边如图所示(或测量剩下的那条边的长度). 图形的面积为am bn mn +-.【点睛】不规则的几何图形的面积的计算要转化为规则的几何图形面积的和差. 15.已知a+b =2,ab =2,求32231122a b a b ab ++的值. 解析:4 【分析】根据因式分解,首先将整式提取公因式12ab ,在采用完全平方公式合,在代入计算即可. 【详解】 解:原式=12a 3b +a 2b 2+12ab 3=12ab (a 2+2ab +b 2) =12ab (a +b )2, ∵a +b =2,ab =2, ∴原式=12×2×4=4. 【点睛】本题主要考查因式分解的代数计算,关键在于整式的因式分解.16.已知A=3a 2b ﹣2ab 2+abc ,小明同学错将“2A ﹣B”看成“2A+B”,算得结果为4a 2b ﹣3ab 2+4abc . (1)计算B 的表达式; (2)求出2A ﹣B 的结果;(3)小强同学说(2)中的结果的大小与c 的取值无关,对吗?若a=18,b=15,求(2)中式子的值.解析:(1)﹣2a 2b+ab 2+2abc ;(2) 8a 2b ﹣5ab 2;(3)对,0. 【分析】(1)根据B =4a 2b ﹣3ab 2+4abc -2A 列出关系式,去括号合并即可得到B ; (2)把A 与B 代入2A-B 中,去括号合并即可得到结果; (3)把a 与b 的值代入计算即可求出值. 【详解】解:(1)∵2A +B =4a 2b ﹣3ab 2+4abc , ∴B =4a 2b ﹣3ab 2+4abc -2A=4a 2b -3ab 2+4abc -2(3a 2b -2ab 2+abc)=4a2b-3ab2+4abc-6a2b+4ab2-2abc=-2a2b+ab2+2abc;(2)2A-B=2(3a2b-2ab2+abc)-(-2a2b+ab2+2abc) =6a2b-4ab2+2abc+2a2b-ab2-2abc=8a2b-5ab2;(3)对,由(2)化简的结果可知与c无关,将a=18,b=15代入,得8a2b-5ab2=8×218⎛⎫⎪⎝⎭×15-5×18×21()5=0.【点睛】本题考查了整式的加减,整式加减的运算法则:一般地,几个整式相加减,如果有括号先去括号,然后再合并同类项.17.已知有理数a和b满足多项式A,且A=(a﹣1)x5+x|b+2|﹣2x2+bx+b(b≠﹣2)是关于x 的二次三项式,求(a﹣b)2的值.解析:16或25【解析】试题分析:根据有理数a和b满足多项式A.A=(a﹣1)x5+x|b+2|﹣2x2+bx+b是关于x的二次三项式,求得a、b的值,然后分别代入计算可得.试题解:∵有理数a和b满足多项式A.A=(a﹣1)x5+x|b+2|﹣2x2+bx+b是关于x的二次三项式,∴a﹣1=0,解得:a=1.(1)当|b+2|=2时,解得:b=0或b=4.①当b=0时,此时A不是二次三项式;②当b=﹣4时,此时A是关于x的二次三项式.(2)当|b+2|=1时,解得:b=﹣1(舍)或b=﹣3.(3)当|b+2|=0时,解得:b=﹣2(舍)∴a=1,b=﹣4或a=1,b=﹣3.当a=1,b=﹣4时,(a﹣b)2=25;当a=1,b=﹣3时,(a﹣b)2=16.点睛:本题考查了多项式的知识,解题的关键是根据题意求得a、b的值,题目中重点渗透了分类讨论思想.18.已知多项式﹣3x2+mx+nx2﹣x+3的值与x无关,求(2m﹣n)2017的值.解析:-1【分析】先把多项式进行合并同类项得(n-3)x2+(m-1)x+3,由于关于字母x的二次多项式-3x2+mx+nx2-x+3的值与x无关,即不含x的项,所以n-3=0,m-1=0,然后解出m、n,代入计算(2m-n)2017的值即可.【详解】合并同类项得(n ﹣3)x 2+(m ﹣1)x+3,根据题意得n ﹣3=0,m ﹣1=0,解得m=1,n=3,所以(2m ﹣n )2017=(﹣1)2017=﹣1.【点睛】考查了多项式及相关概念:几个单项式的和叫做多项式,每个单项式叫做多项式的项,其中不含字母的项叫做常数项.多项式中次数最高的项的次数叫做多项式的次数. 19.已知单项式﹣2x 2y 的系数和次数分别是a ,b .(1)求a b ﹣ab 的值;(2)若|m|+m=0,求|b ﹣m|﹣|a+m|的值.解析:(1)﹣2;(2)1.【分析】(1)根据单项式的系数是数字因数,次数是字母指数的和,可得a 、b 的值,根据代数式求值,可得答案;(2)非正数的绝对值是它的相反数,可得m 的取值范围,根据差的绝对值是大数减小数,可得答案.【详解】解:由题意,得a=﹣2,b=2+1=3.a b ﹣ab=(﹣2)3﹣(﹣2)×3=﹣8+6=﹣2;(2)由|m|+m=0,得m≤0.|b ﹣m|﹣|a+m|=b ﹣m+(a+m )=b+a=3+(﹣2)=1;【点睛】本题考查了单项式的系数和次数的性质,掌握单项式中数字因数叫做单项式的系数,所有的字母的指数之和为次数是解决本题的关键.20.观察下列单项式:x -,23x ,35x -,47x ,…1937x -,2039x ,…写出第n 个单项式,为了解这个问题,特提供下面的解题思路.()1这组单项式的系数的符号,绝对值规律是什么?()2这组单项式的次数的规律是什么?()3根据上面的归纳,你可以猜想出第n 个单项式是什么?()4请你根据猜想,请写出第2014个,第2015个单项式.解析:()1 (1)n -(或:负号正号依次出现;),21n -(或:从1开始的连续奇数);()2从1开始的连续自然数;()3第n 个单项式是:()(1)21n n n x --;()4?2014个单项式是20144027x ;第2015个单项式是20154029x -.【分析】(1)根据已知数据得出单项式的系数的符号规律和系数的绝对值规律;(2)根据已知数据次数得出变化规律;(3)根据(1)和(2)中数据规律得出即可;(4)利用(3)中所求即可得出答案.【详解】()1数字为1-,3,5-,7,9-,11,…,为奇数且奇次项为负数,可得规律:()(1)21n n --;故单项式的系数的符号是:(1)n-(或:负号正号依次出现;),绝对值规律是:21n -(或:从1开始的连续奇数); ()2字母因数为:x ,2x ,3x ,4x ,5x ,6x ,…,可得规律:n x ,这组单项式的次数的规律是从1开始的连续自然数.()3第n 个单项式是:()(1)21n n n x --.()4把2014n =、2015n =直接代入解析式即可得到:第2014个单项式是20144027x ;第2015个单项式是20154029x -.【点睛】此题主要考查了数字变化规律,得出次数与系数的变化规律是解题关键.21.小马虎在计算一个多项式减去225a a +-的差时,因一时疏忽忘了对两个多项式用括号括起来,因此减去后面两项没有变号,结果得到的差是231a a +-.()1求这个多项式;()2算出此题的正确的结果.解析:(1)2324a a ++;(2)2 9a a ++.【分析】(1)根据题意可以求得相应的多项式;(2)根据(1)中的结果可以求得正确的结果.【详解】解:(1)由题意可得:这个多项式是:a 2+3a ﹣1+2a 2﹣a +5=3a 2+2a +4,即这个多项式是3a 2+2a +4;(2)由(1)可得:3a 2+2a +4﹣(2a 2+a ﹣5)=3a 2+2a +4﹣2a 2﹣a +5=a 2+a +9即此题的正确的结果是a 2+a +9.【点睛】本题考查了整式的加减,解答本题的关键是明确整式的加减的计算方法,求出相应的多项式.22.小丽暑假期间参加社会实践活动,从某批发市场以批发价每个m 元的价格购进100个手机充电宝,然后每个加价n 元到市场出售.(1)求售出100个手机充电宝的总售价为多少元(结果用含m ,n 的式子表示)? (2)由于开学临近,小丽在成功售出60个充电宝后,决定将剩余充电宝按售价8折出售,并很快全部售完.①她的总销售额是多少元?②相比不采取降价销售,她将比实际销售多盈利多少元(结果用含m 、n 的式子表示)?③若m=2n ,小丽实际销售完这批充电宝的利润率为 (利润率=利润÷进价×100%) 解析:(1)售出100个手机充电宝的总售价为:100(m+n )元;(2)①实际总销售额为:92(m+n )元;②实际盈利为92n ﹣8m 元;③38%.【分析】(1)先求出每个充电宝的售价,再乘以100,即可得出答案;(2)①先算出60个按售价出售的充电宝的销售额,再计算剩下40个按售价8折出售的充电宝的销售额,相加即可得出答案;②计算100个按售价出售的充电宝的销售额,跟①求出来的销售额比较,即可得出答案;③将m=2n 代入实际利润92n-8m 中,再根据利润率=利润÷进价×100%,即可得出答案.【详解】解:(1)∵每个充电宝的售价为:m+n 元,∴售出100个手机充电宝的总售价为:100(m+n )元.(2)①实际总销售额为:60(m+n )+40×0.8(m+n )=92(m+n )元,②实际盈利为92(m+n )﹣100m=92n ﹣8m 元,∵100n ﹣(92n ﹣8m )=8(m+n ),∴相比不采取降价销售,他将比实际销售多盈利8(m+n )元.③当m=2n 时,张明实际销售完这批充电宝的利润为92n ﹣8m=38m 元, 利润率为38100m m×100%=38%. 故答案为38%.【点睛】 本题考查的是列代数式,解题的关键是要看懂题目意思,理清字母之间的数量关系. 23.学习了整式的加减运算后,张老师给同学们布置了一道课堂练习题“当2a =-,2018b =,求222221(324)2(23)2()12a b ab a a b a ab a b -+--++-的值”.小明做完后对同桌说:“老师给的条件2018b =是多余的,这道题不给b 的值,照样可以求出结果来”.同桌不相信他的话.亲爱的同学们,你相信小明的说法吗?解析:-21【分析】首先化简代数式,通过去括号、合并同类项,得出结论即含有b 的代数式相加为0,即可说明.【详解】解()()222221324223212a b ab a a b a ab a b ⎛⎫-+--++- ⎪⎝⎭=222223244621a b ab a a b a ab a b -+-+++-=101a -当2a =-时原式=()1021⨯--=-21.【点睛】考查整式的化简求值,熟练掌握去括号法则以及合并同类项法则是解题的关键. 24.已知多项式22622452x mxyy xy x 中不含xy 项,求代数式32322125m m m m m m 的值.解析:-14【分析】先合并已知多项式中的同类项,然后根据合并后的式子中不含xy 项即可求出m 的值,再把所求式子合并同类项后代入m 的值计算即可.【详解】解:2222622452=6+42252x mxy y xy x x m xy y x , 由题意,得4-2m =0,所以m =2; 所以32322125m m m m m m =3226m m .当m =2时,原式= 322226 =14 . 【点睛】本题考查了整式的加减,属于基本题型,正确理解题意、熟练掌握合并同类项的法则是解题的关键.25.已知:A=2x 2+ax ﹣5y+b ,B=bx 2﹣32x ﹣52y ﹣3. (1)求3A ﹣(4A ﹣2B )的值;(2)当x 取任意数值,A ﹣2B 的值是一个定值时,求(a+314A )﹣(2b+37B )的值. 解析:(1)(2b ﹣2)x 2﹣(a+3)x ﹣(b+6);(2)﹣312. 【分析】(1)先化简原式,再分别代入A 和B 的表达式,去括号并合并类项即可;(2)先代入A 和B 的表达式并去括号并合并类项,由题意可令x 和x 2项的系数为零,求解出a 和b 的数值,再化简原式后代入相关数值即可求解.【详解】解:(1)∵A=2x 2+ax ﹣5y+b ,B=bx 2﹣32x ﹣52y ﹣3, ∴原式=3A ﹣4A+2B=﹣A+2B=﹣2x 2﹣ax+5y ﹣b+2bx 2﹣3x ﹣5y ﹣6=(2b ﹣2)x 2﹣(a+3)x ﹣(b+6);(2)∵A=2x 2+ax ﹣5y+b ,B=bx 2﹣32x ﹣52y ﹣3, ∴A ﹣2B=2x 2+ax ﹣5y+b ﹣2bx 2+3x+5y+6=(2﹣2b )x 2+(a+3)x+(b+6),由x 取任意数值时,A ﹣2B 的值是一个定值,得到2﹣2b=0,a+3=0,解得:a=﹣3,b=1,则原式=a﹣2b+314(A﹣2B)=﹣3﹣2+32=﹣312.【点睛】理解本题中x取任意数值时A﹣2B的值均是一个定值的意思是整式化简后的x和x2项的系数均为零是解题关键.26.观察下列各式:(1)-a+b=-(a-b);(2)2-3x=-(3x-2);(3)5x+30=5(x +6);(4)-x-6=-(x+6).探索以上四个式子中括号的变化情况,思考它和去括号法则有什么不同?利用你探索出来的规律,解答下面的题目:已知a2+b2=5,1-b=-2,求-1+a2+b+b2的值.解析:见解析,7.【解析】试题分析:注意观察等号两边的变化,等号右边添加了括号,然后观察符号的变化即可;根据已知条件将要求的式子通过添括号进行变形,然后再代入求值即可.试题添括号时,如果括号前面是正号,括到括号里的各项都不变号,如果括号前面是负号,括号括号里的各项都改变符号.∵a2+b2=5,1-b=-2,∴-1+a2+b+b2=(a2+b2)-(1-b)=5-(-2)=7.【点睛】本题是阅读理解题,主要是通过阅读发现添括号时符号的变化规律,解题的关键是要注意符号的变化问题.27.有一长方体形状的物体,它的长,宽,高分别为a,b,c(a>b>c),有三种不同的捆扎方式(如图所示的虚线).哪种方式用绳最少?哪种方式用绳最多?说明理由.解析:方式甲用绳最少,方式丙用绳最多.【解析】试题分析:根据长方形的对称性分别得到三种方式所需要的绳子的长度,然后将这三个代数式进行作差比较大小.试题方式甲所用绳长为4a+4b+8c,方式乙所用绳长为4a+6b+6c,方式丙所用绳长为6a+6b+4c,因为a>b>c,所以方式乙比方式甲多用绳(4a+6b+6c)-(4a+4b+8c)=2b-2c,方式丙比方式乙多用绳(6a+6b+4c)-(4a+6b+6c)=2a-2c.因此,方式甲用绳最少,方式丙用绳最多.28.计算:(1)()()312⨯-+-(2)2235223x x x x -+-+-解析:(1)5-;(2)241x x --【分析】(1)直接根据有理数的混合运算法则即可求解.(2)直接根据整式的加减混合运算法则即可求解.【详解】解:(1)原式(3)(2)=-+-5=-;(2)原式2(32)(51)(23)x x =---+-241x x =--.【点睛】此题主要考查有理数的加减运算和整式的加减运算,熟练掌握运算法则是解题关键. 29.定义:若2m n +=,则称m 与n 是关于1的平衡数.(1)3与______是关于1的平衡数,5x -与______(用含x 的整式表示)是关于1的平衡数;(2)若()22234a x x x =-++,()22342b x x x x ⎡⎤=--+-⎣⎦,判断a 与b 是否是关于1的平衡数,并说明理由.解析:(1)1-,3x -;(2)不是,理由见解析【分析】(1)由平衡数的定义求解即可达到答案;(2)计算a+b 是否等于1即可;【详解】解:(1)1-,3x -;(2)a 与b 不是关于1的平衡数.理由如下:因为()22234a x x x =-++,()22342b x x x x ⎡⎤=--+-⎣⎦,所以()()2222342342a b x x x x x x x ⎡⎤+=-+++--+-⎣⎦, 22223342342x x x x x x x =--++-+++,62=≠,所以a 与b 不是关于1的平衡数.【点睛】本题主要考查了整式的加减,准确分析计算是解题的关键.30.通过计算和观察,可以发现:1=12,1+3=4=22,1+3+5=9=32,请你计算: (1)1+3+5+7=____________=____________,1+3+5+7+9=____________=____________,1+3+5+7+9+…+97+99=____________=____________(2)用字母表示1+3+5+7+9+…+(2n-1)的结果;(3)用一句话概括你发现的规律.解析:(1)16,42,25,52,2500,502;(2)n2;(3)前n个连续正奇数的和为n2【分析】(1)观察给出的等式得到:从1开始的连续2个奇数和是22,连续3个奇数和是32,连续4个,5个奇数和分别为42,52…,即可求出答案;(2)根据规律即可猜想从1开始的连续n个奇数的和;(3)根据上述的规律,即可得到答案.【详解】解:(1)根据题意,则1+3+5+7=16=42;1+3+5+7+9=25=52;1+3+5+7+9+…+97+99=2500=502;故答案为:16,42,25,52,2500,502;(2)根据题意:1+3+5+7+9+…+(2n-1)=n2;(3)根据上述的结论,则得到:前n个连续正奇数的和为n2.【点睛】此题主要考查学生对规律型题的掌握,关键是要对给出的等式进行仔细观察分析,发现规律,根据规律解题.。
(易错题)初中数学七年级数学上册第二单元《整式的加减》测试题(包含答案解析)(1)

一、选择题1.新制作的渗水防滑地板是形状完全相同的长方形.如图,三块这样的地板可以拼成一个大的长方形.如果大长方形的周长为150cm ,那么一块渗水防滑地板的面积是( ).A .2450cmB .2600cmC .2900cmD .21350cm2.已知5x =是关于x 的方程4231x m x +=+的解,则方程3261x m x +=+的解是_________. A .53B .53-C .-2D .13.下列变形中,正确的是( ) A .变形为B .变形为C .变形为D .变形为4.某种商品每件的标价是330元,按标价的8折销售时,仍可获利10%,则这种商品每件的进价为( ) A .300元B .250元C .240元D .200元5.一项工程,甲单独做需10天完成,乙单独做需6天完成.现由甲先做2天,乙再加入合做,完成这项工程共需多少天?若设完成这项工程共需x 天,依题意可得方程( )A .106x x +=1 B .22106x x +-+=1 C .2106x x -+=1 D .222106x x x --++=16.图①为一正面白色、反面灰色的长方形纸片.今沿虚线剪下分成甲、乙两长方形纸片,并将甲纸片反面朝上粘贴于乙纸片上,形成一张白、灰相间的长方形纸片,如图②所示.若图②中白色与灰色区域的面积比为8∶3,图②纸片的面积为33,则图①纸片的面积为( )A .2314B .3638C .42D .447.某种商品进价为800元,标价1 200元,由于该商品积压,商店准备打折销售,但要保证利润率不低于20%,则至少可以打 ( ) A .6折B .7折C .8折D .9折8.我国古代名著《九章算术》中有一题“今有凫起南海,七日至北海;雁起北海,九日至南海.今凫雁俱起,问何日相逢?”(凫:野鸭)设野鸭与大雁从北海和南海同时起飞,经过x 天相遇,可列方程为( ) A .(9﹣7)x=1B .(9+7)x=1C .11()179x -=D .11()179x +=9.两年前,李叔叔在银行存了一笔两年的定期存款,年利率是2.75%.到期后取出,得到本金和利息总共21100元.设李叔叔存入的本金为x 元,则下列方程正确的是( ) A .2 2.75%21100x ⨯= B . 2.75%21100x x += C .2 2.75%21100x x +⨯=D .2( 2.75%)21100x x +=10.一游泳池计划注入一定体积的水,按每小时500立方米的速度注水,注水2小时,注水口发生故障,停止注水,经20分钟抢修后,注水速度比原来提高了20%,结果比预定的时间提前了10分钟完成注水任务,则计划注入水的体积为( ) A .34000mB .32500mC .32000mD .3500m11.书架上,第一层书的数量是第二层书的数量的2倍,从第一层抽8本书到第二层,这时第一层剩下的书的数量恰好比第二层书的数量的一半多3本.设第二层原有x 本书,则可列方程为( ) A .2x -8=12(x +8)+3 B .2x =12(x +8)+3 C .2x -8=12x +3 D .2x =12x +3 12.方程的解是( ) A .B .C .D .二、填空题13.学校组织一次数学知识竞赛,共有20道题,每一题答对得5分,答错或不答都倒扣1分,小明最终得到76分,那么他答对了______道题. 14.如果3m -与21m +互为相反数,则m =________.15.已知一个角的补角是这个角的4倍,那么这个角的度数是_________.16.桐桐的爸爸三年前在银行办理了一份3000元的定期存款,今年到期时的本息和为3243元,请你帮桐桐的爸爸算一算这种储蓄的年利率,若设年利率为x%,则可列方程为________________.(前一年的利息不计入下一年本金)17.自来水公司为鼓励节约用水,对水费按以下方式收取:用水不超过10吨,每吨按2元收费;用水超过10吨,超过10吨的部分按每吨3元收费.王老师家三月份水费为50元,则王老师家三月份用水________吨.18.某区民用电的计费方式为:白天时段的单价为m 元/度,晚间时段的单价为n 元/度.某户8月份白天时段用电量比晚间时段多50%,9月份白天时段用电量比8月份白天时段用电量少60%,结果9月份的总用电量虽比8月份的总用电量多20%,但9月份的总电费却比8月份的总电费少10%,则mn______.19.在等式“2×( )-3×( )= -15”的括号中分别填入一个数,使这两个数满足:互为相反数.则这两个数依次是______,____________.20.一个长方形周长是44cm,长比宽的3倍少10cm,则这个长方形的面积是______.三、解答题21.在“五一”期间,小明、小亮等同学随家长一同到某公园游玩,下面是购买门票时,小明与爸爸的对话(如图),请根据图中的信息,解答下列问题:(1)他们共去了几个成人,几个学生?(2)请你帮他们算算,用哪种方式购票更省钱?22.小明用的练习本可以到甲商店购买,也可以到乙商店购买.已知两店的标价都是每本1元,甲商店的优惠条件是买10本以上,从第11本开始按标价的7折卖;乙商店的优惠条件是购买10本以上,每本按标价的8折卖.(1)小明要买20本练习本,到哪个商店较省钱?(2)小明要买10本以上练习本,买多少本时到两个商店付的钱一样多?(3)小明现有32元钱,最多可买多少本练习本?23.程大位是珠算发明家,他的名著《直指算法统宗》详述了传统的珠算规则,确立了算盘用书中有如下问题:一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚得几丁.意思是:有100个和尚分100个馒头,如果大和尚1人分3个,小和尚3人分1个,正好分完,大、小和尚各有多少人?24.一项工程,甲队独做10h完成,乙队独做15h完成,丙队独做20h完成,开始时三队合作,中途甲队另有任务,由乙、丙两队完成,从开始到工程完成共用了6h,问甲队实际工作了几小时?25.为鼓励居民节约用电,某市试行每月阶梯电价收费制度,具体执行方案如下:档次每户每月用电量(度)执行电价(元/度)第一档小于或等于2000.5第二档大于200且小于或等于450时,超出200的部分0.7第三档大于450时,超出450的部分1(1)一户居民七月份用电300度,则需缴电费__________元.(2)某户居民五、六月份共用电500度,缴电费290元.已知该用户六月份用电量大于五月份,且五、六月份的用电量均小于450度.①请判断该户居民五、六月份的用电量分别属于哪一个档次?并说明理由.②求该户居民五、六月份分别用电多少度?26.如图,甲船逆水,静水速度为28海里/时;乙船顺水,静水速度为12海里/时,两船相距60海里.已知水流速度为3海里/时,两船同时相向而行.(1)两船同时航行1小时,求此时两船之间的距离;(2)再(1)的情况下,两船再继续航行1小时,求此时两船之间的距离;(3)求两船从开始航行到两船相距12海里,需要多长时间?【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】设小长方形的长为x,根据大的长方形对边相等得到小长方形的宽为2x,再根据长方形的周长列等量关系得到2(2x+2x+x)=150,再解方程求出x,然后计算小长方形的面积.【详解】解:设小长方形的长为x,则宽为2x,根据题意得2(2x+2x+x)=150,解得x=15,2x=30,所以x•2x=15×30=450.答:一块渗水防滑地板的面积为450cm2.故选A.【点睛】本题考查了一元一次方程的应用:首先审题找出题中的未知量和所有的已知量,直接设要求的未知量或间接设一关键的未知量为x,然后用含x的式子表示相关的量,找出之间的相等关系列方程、求解、作答,即设、列、解、答.2.B解析:B【分析】根据方程的解求得m 的值,然后将m 的值代入方程3261x m x +=+求解x 的值即可. 【详解】解:∵x=5是关于x 的方程4x+2m=3x+1的解, ∴20+2m=15+1, 解得:m=-2, ∴方程变为3x-4=6x+1, 解得:x=53-. 故选B. 【点睛】本题考查了二元一次方程的解的知识,解题的关键是根据方程的解求得m 的值,难度不大.3.B解析:B 【解析】 【分析】利用等式的性质对每个等式进行变形即可找出答案. 【详解】A. 根据等式性质1,2x+6=0两边同时减去6,即可得到2x=−6;故选项错误.B. 根据等式性质2, 两边同时乘以2,即可得到x+3=4+2x ;故选项正确.C. 根据等式性质2, 两边都除以−2,应得到x−4=−1,故选项错误;D. 根据等式性质2, 两边同时乘以2,即可得到−x−1=1;故选项错误.故选B. 【点睛】本题考查解一元一次方程,熟练掌握计算法则是解题关键.4.C解析:C 【分析】设这种商品每件的进价为x 元,根据题意列出关于x 的方程,求出方程的解即可得到结果. 【详解】设这种商品每件的进价为x 元, 根据题意得:330×80%−x=10%x , 解得:x=240,则这种商品每件的进价为240元. 故选C. 【点睛】此题考查一元一次方程的应用,找准题目中的等量关系是解题的关键.5.C解析:C 【分析】设总工作量为1,从而可得甲、乙的工作效率,再根据“甲完成的工作量+乙完成的工作量1=”建立方程即可得. 【详解】设总工作量为1,则甲的工作效率为110,乙的工作效率为16, 若设完成这项工程共需x 天,则甲工作的天数为x 天,乙工作的天数为(2)x -天,由题意得:21106x x -+=, 故选:C . 【点睛】本题考查了列一元一次方程,读懂题意,正确找出等量关系是解题关键.6.C解析:C 【详解】解:设每一份为x ,则图②中白色的面积为8x ,灰色部分的面积为3x ,由题意,得 8x +3x =33,解得:x =3,∴灰色部分的面积为:3×3=9,∴图(①)纸片的面积为:33+9=42. 故选C . 【点睛】本题考查了比列问题在解实际问题中的运用,一元一次方程的解法的运用,解答时根据条件建立方程求出灰色部分的面积是关键.7.C解析:C 【分析】设打折x 折,利用利润率=100%⨯-⨯标价折扣进价进价的数量关系, 根据利润率不低于20%可得:12000.1x 80020%800⨯-≥,解不等式可得:8x ≥.【详解】设打折x 折,由题意可得: 12000.1x 80020%800⨯-≥,解得:8x ≥. 故选C. 【点睛】本题主要考查不等式解决商品利润率问题,解决本题的关键是要熟练掌握利润率的数量关系,列不等式进行求解.8.D解析:D 【分析】直接根据题意得出野鸭和大雁的飞行速度,进而利用它们相向而行何时相逢进而得出等式. 【详解】解:设野鸭大雁与从北海和南海同时起飞,经过x 天相遇, 可列方程为:11()179x +=. 故选D . 【点睛】此题主要考查了由实际问题抽象出一元一次方程,正确表示出每天飞行的距离是解题关键.9.C解析:C 【分析】根据“利息=本金×利率×时间”(利率和时间应对应),列出方程,即可得出结论. 【详解】 解:根据题意得: x+2×2.75%x=21100; 故选:C . 【点睛】此题主要考查了一元一次方程的应用,计算的关键是掌握根据利息、利率、时间和本金的等量关系,列出方程.10.B解析:B 【分析】设计划注入水的时间为x 小时,根据“比预定的时间提前了10分钟完成注水任务”列出方程并解答. 【详解】设计划注入水的时间为x 小时,依题意得:()20105002+5001+2025006060x x ⎛⎫⨯⨯---= ⎪⎝⎭%,解得x=5. 5×500=2500,即计划注入水的体积为2500立方米. 故选B.【点睛】此题考查一元一次方程的应用,解题关键在于根据题意找到等量关系列出方程. 11.A解析:A【分析】根据题意可以列出相应的方程,从而可以解答本题.【详解】解:由题意可得,2x-8=12(x+8)+3,故选:A.【点睛】本题考查了由实际问题抽象出一元一次方程,解答本题的关键是明确题意,列出相应的方程.12.C解析:C【解析】【分析】方程移项合并,把x系数化为1,即可求出解.【详解】方程,移项合并得:-2x=2,解得:x=-1,故选:C.【点睛】此题考查了解一元一次方程,解方程移项注意要变号.二、填空题13.16【分析】由题意可知小明的得分=答对题目的得分-答错或不答所扣的分据此列方程求解即可【详解】解:设小明答对了x道题则答错或没答的题有(20-x)道由题意得5x-(20-x)=76解得x=16故答案解析:16【分析】由题意可知,小明的得分=答对题目的得分-答错或不答所扣的分,据此列方程求解即可.【详解】解:设小明答对了x道题,则答错或没答的题有(20-x)道,由题意得5x-(20-x)=76,解得x =16. 故答案为:16. 【点睛】本题考查了一元一次方程的应用,解答本题的关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.14.-4【分析】根据互为相反数的两个数的和为0列出方程解方程即可【详解】∵3-m 与2m+1互为相反数∴3-m=-(2m+1)去括号得:3-m=-2m-1移项并合并同类项得:m=-4故答案是:-4【点睛】解析:-4 【分析】根据互为相反数的两个数的和为0列出方程,解方程即可. 【详解】∵3-m 与2m+1互为相反数, ∴3-m=-(2m+1) 去括号,得:3-m=-2m-1 移项并合并同类项,得:m=-4. 故答案是:-4. 【点睛】考查了用一元一次方程解决相反数的问题;用到的知识点为:a 的相反数为-a,则它们的和为0.15.36°【分析】设这个角的度数为根据补角的性质列出方程求解即可【详解】设这个角的度数为可得解得故答案为:36°【点睛】本题考查了一元一次方程的应用掌握解一元一次方程的解法补角的性质是解题的关键解析:36° 【分析】设这个角的度数为x ,根据补角的性质列出方程求解即可. 【详解】设这个角的度数为x ,可得1804x x ︒-= 解得36x =︒故答案为:36°. 【点睛】本题考查了一元一次方程的应用,掌握解一元一次方程的解法、补角的性质是解题的关键.16.【分析】本利和=本金+利息=本金+本金×年利率×年数把相关数值代入即可【详解】本题相等关系为本金+利息=本息和其中利息=本金×年数×年利率故可列方程为故答案为:【点睛】本题考查了列一元一次方程得到本 解析:300030003%3243x +⨯⨯=【分析】本利和=本金+利息=本金+本金×年利率×年数,把相关数值代入即可. 【详解】本题相等关系为“本金+利息=本息和”,其中利息=本金×年数×年利率,故可列方程为300030003%3243x +⨯⨯=.故答案为:300030003%3243x +⨯⨯=. 【点睛】本题考查了列一元一次方程,得到本利和的等量关系是解决本题的关键.注意本题的利息应算三年的利息.17.20【分析】设王老师家三月份用水x 吨根据水费=10×2+超出10吨的部分×3及水费=50即可得出关于x 的一元一次方程解之即可得出结论【详解】解:设王老师家三月份用水x 吨依题意:解得故答案为20【点睛解析:20 【分析】设王老师家三月份用水x 吨,根据水费=10×2+超出10吨的部分×3及水费=50,即可得出关于x 的一元一次方程,解之即可得出结论. 【详解】解:设王老师家三月份用水x 吨.依题意:102(10)350x ⨯+-⨯=,解得20x,故答案为20. 【点睛】本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.18.2【分析】设8月份晚间用电量为a 度则:8月份白天用电量为(1+50)a=15a 度8月份电费为:15ma+na=(15m+n )a 元9月份白天用电量为:15a (1-60)=06a 度9月份晚间用电量为:(解析:2 【分析】设8月份晚间用电量为a 度,则:8月份白天用电量为(1+50%)a=1.5a 度,8月份电费为:1.5ma+na=(1.5m+n )a 元,9月份白天用电量为:1.5a (1-60%)=0.6a 度,9月份晚间用电量为:(a+1.5a )(1+20%)-0.6a=2.4a 度,9月份电费为:0.6ma+2.4na=(0.6m+2.4n )a 元,然后根据题意即可列出方程,求出m 与n 的比值即可. 【详解】解:白天的单价为每度m 元,晚间的单价为每度n 元, 设8月份晚间用电量为a 度,则: 8月份白天用电量为:(1+50%)a=1.5a 度, 8月份电费为:1.5ma+na=(1.5m+n )a 元, 9月份白天用电量为:1.5a (1-60%)=0.6a 度,9月份晚间用电量为:(a+1.5a )(1+20%)-0.6a=2.4a 度,9月份电费为:0.6ma+2.4na=(0.6m+2.4n )a 元,根据题意得:(0.6m+2.4n )a =(1.5m+n )(1-10%)a .整理得:0.75m=1.5n , ∴1.520.75m n ==. 故答案为:2.【点睛】 此题主要考查了一元一次方程的应用,分别表示出8,9月份的用电量是解决问题的关键. 19.-33【分析】先设第一个空填m 则第二个空就填-m 最后形成一个方程接着解出方程进一步求出答案即可【详解】设第一个空填m 则第二个空就填-m ∴解得:∴故答案为:3【点睛】本题主要考查了一元一次方程的运用熟解析:-3, 3【分析】先设第一个空填m ,则第二个空就填-m ,最后形成一个方程,接着解出方程进一步求出答案即可.【详解】设第一个空填m ,则第二个空就填-m ,∴2315m m +=-,解得:3m =-,∴3m -=.故答案为:3-,3.【点睛】本题主要考查了一元一次方程的运用,熟练掌握根据题意设出未知数求解是解题关键. 20.112cm2【分析】根据长方形的特征对边平行且相等长方形的周长=(长+宽)×2已知长是宽的3倍少10cm 也就是长=3宽-10再根据长方形的面积公式s=ab 列式解答【详解】解:设长方形的宽为xcm 则长解析:112cm 2.【分析】根据长方形的特征,对边平行且相等,长方形的周长=(长+宽)×2,已知长是宽的3倍少10cm ,,也就是长=3宽-10,再根据长方形的面积公式s=ab ,列式解答.【详解】解:设长方形的宽为xcm,则长为(3x-10)cm,依题意得:2x+2(3x-10)=44解得:x=8∴长方形的长=38⨯-10=14cm.∴这个长方形的面积=14⨯8=112cm 2.故答案为112 cm 2.【点睛】此题主要考查长方形的周长公式、面积公式的综合运用.三、解答题21.(1)他们一共去了8个成人,4个学生;(2)按团体票购票更省钱【分析】(1)本题有两个相等关系:学生人数+成人人数=12人,成人票价+学生票价=400元,据此设未知数列方程组求解即可;(2)计算出按照团体票购买需要的钱数,然后与400元作对比即得答案.【详解】解:(1)设去了x 个成人,y 个学生,依题意得,1240400.5400x y x y +=⎧⎨+⨯=⎩,解得84x y =⎧⎨=⎩, 答:他们一共去了8个成人,4个学生;(2)若按团体票购票,共需16×40×0.6=384(元),∵384<400,∴按团体票购票更省钱.【点睛】本题主要考查了二元一次方程组的应用,属于常考题型,正确理解题意、找准相等关系是解题的关键.22.(1)到乙商店较省钱;(2)买30本;(3)最多可买41本练习本.【分析】(1)分别按照甲商店与乙商店给的优惠活动,计算出费用,哪个商店的费用更低,即更省钱,即可解决;(2)可设买x 本时到两个商店付的钱一样多,分别用x 表示到甲商店购买的钱与到乙商店购买的钱,令其相等,解出x ,即可解决本题;(3)设可买y 本练习本,分别算出到甲商店能买多少本,到乙商店能买多少本,取更多的即可解决.【详解】解:(1)∵甲商店:101(2010)170%17⨯+-⨯⨯=(元);乙商店:20180%16⨯⨯=(元).又∵17>16,∴小明要买20本练习本时,到乙商店较省钱.(2)设买x 本时到两个商店付的钱一样多.依题意,得10170%(10)80%x x ⨯+-=,解得30x =.∴买30本时到两个商店付的钱一样多.(3)设可买y 本练习本.在甲商店购买:1070%(10)32y +-=.解得29034177y ==. ∵y 为正整数,∴在甲商店最多可购买41本练习本.在乙商店购买:80%32y =.解得40y =.∴在乙商店最多可购买40本练习本.∵41>40,∴最多可买41本练习本.【点睛】本题主要考查了一元一次方程的实际应用,能够找出等量关系,列出方程是解决本题的关键.23.大和尚有25人,小和尚有75人【分析】设大和尚有x 人,则小和尚有(100x -)人,根据“3×大和尚人数+小和尚人数÷3=100”,即可得出关于x 的一元一次方程,此题得解.【详解】设大和尚有x 人,则小和尚有(100x -)人, 根据题意得:10031003x x -+= 解得:25x =,则10075x -=,答:大和尚有25人,小和尚有75人.【点睛】本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键. 24.3【分析】设三队合作时间为x ,总工程量为1,根据等量关系:三队合作部分工作量+乙、丙两队合作部分工作量=1,列式求解即可得到甲队实际工作时间.【详解】设三队合作时间为xh ,乙、丙两队合作为(6)x h -,总工程量为1, 由题意得:11111()()(6)11015201520x x ++++-=, 解得:3x =,答:甲队实际工作了3小时.【点睛】 本题主要考查了一元一次方程实际问题中的工程问题,准确分析题目中的等量关系以及设出未知量是解决本题的关键.25.(1) 170元;(2)①五月份用电量在第一档,六月份用电量在第二档. ②设五、六月份分别用电100度、400度.【分析】(1)根据阶梯电价收费制度,七月份用电300度属于第二档,所以应缴电费200×0.5+100×0.7=170(元);(2)①分情况进行讨论,从而确定五六月份的用电量分别位于哪一档;②由①的结论,设五月份用电x度,列方程求解即可.【详解】解:(1) ∵200<300小于450∴应缴电费:200×0.5+100×0.7=170(元)故答案为:170(2)①因为两个月的总用电量为500度,所以每个月用电量不可能都在第一档;假设该用户五、六月每月用电均超过200度,此时的电费共计200×0.5+200×0.5+100×0.7=270(元),而270<290,不符合题意;又因为六月份用电量大于五月份,所以五月份用电量在第一档,六月份用电量在第二档.②设五月份用电x度,则六月份用电(500-x)度,根据题意,得0.5x+200×0.5+0.7×(500-x-200)=290解得x=100,500-x=400.答:该户居民五、六月份分别用电100度、400度.【点睛】本题考查了一元一次方程的应用以及有理数的混合运算,解题的关键是:(1)根据收费标准列式计算;(2)分情况讨论用电量,列出关于x的一元一次方程.26.(1) 20海里;(2) 20海里;(3) 1.2小时或1.8小时.【分析】(1)根据1h后甲、乙间的距离=两船相距-(甲船行驶的路程+乙船行驶的路程)即可得;(2)根据2h后甲、乙间的距离=甲船行驶的路程-乙船行驶的路程即可得;(3)可分相遇前与相遇后两种情况讨论即可解答.【详解】解:根据题意可知甲船的行驶速度为28-3=25海里/时,乙船的行驶速度为12+3=15海里/时(1)1h后甲、乙间的距离=60-25×1-15×1=20海里;(2)2h后甲、乙间的距离=25×2-15×2=20海里;(3)相遇前,设两船从开始航行到两船相距12海里,需要t小时则12=60-(25+15)t,求得t=1.2小时相遇后,设两船从开始航行到两船相距12海里,需要t1小时则12+60=(25+15)t1,求得t1=1.8小时故两船从开始航行到两船相距12海里,1.2小时或1.8小时.【点睛】本题主要考查列代数式与一元一次方程的实际应用,掌握船顺流航行时的速度与逆流航行的速度公式是解题的关键.。
(易错题)人教版初中七年级数学上册第二章《整式的加减》模拟检测(包含答案解析)(3)

一、选择题1.(0分)[ID :68031]下面用数学语言叙述代数式1a﹣b ,其中表达正确的是( ) A .a 与b 差的倒数 B .b 与a 的倒数的差 C .a 的倒数与b 的差D .1除以a 与b 的差2.(0分)[ID :68056]某公司今年2月份的利润为x 万元,3月份比2月份减少8%,4月份比3月份增加了10%,则该公司4月份的利润为(单位:万元)( ) A .(x ﹣8%)(x+10%) B .(x ﹣8%+10%) C .(1﹣8%+10%)xD .(1﹣8%)(1+10%)x3.(0分)[ID :68055]把有理数a 代入|a +4|﹣10得到a 1,称为第一次操作,再将a 1作为a 的值代入得到a 2,称为第二次操作,…,若a =23,经过第2020次操作后得到的是( ) A .﹣7B .﹣1C .5D .114.(0分)[ID :68054]下列对代数式1a b-的描述,正确的是( ) A .a 与b 的相反数的差 B .a 与b 的差的倒数 C .a 与b 的倒数的差 D .a 的相反数与b 的差的倒数5.(0分)[ID :68052]有一组单项式如下:﹣2x ,3x 2,﹣4x 3,5x 4……,则第100个单项式是( ) A .100x 100B .﹣100x 100C .101x 100D .﹣101x 1006.(0分)[ID :68050]某文具店三月份销售铅笔100支,四、五两个月销售量连续增长.若月平均增长率为x ,则该文具店五月份销售铅笔的支数是( ) A .100(1+x ) B .100(1+x )2 C .100(1+x 2) D .100(1+2x ) 7.(0分)[ID :68048]已知-25a 2m b 和7b 3-n a 4是同类项,则m +n 的值是( ) A .2 B .3C .4D .6 8.(0分)[ID :68042]下列计算正确的是( )A .﹣1﹣1=0B .2(a ﹣3b )=2a ﹣3bC .a 3﹣a=a 2D .﹣32=﹣99.(0分)[ID :68004]下列各式中,符合代数书写规则的是( ) A .273x B .14a ⨯C .126p - D .2y z ÷10.(0分)[ID :67985]多项式3336284a a x y x --+中,最高次项的系数和常数项分别为( ) A .2和8B .4和8-C .6和8D .2-和8-11.(0分)[ID :67975]式子5x x-是( ).A .一次二项式B .二次二项式C .代数式D .都不是12.(0分)[ID :67973]在3a ,x+1,-2,3b -,0.72xy ,2π,314x -中单项式的个数有( ) A .2个B .8个C .4个D .5个13.(0分)[ID :67968]根据图中数字的规律,则x y +的值是( )A .729B .593C .528D .73814.(0分)[ID :67959]如果m ,n 都是正整数,那么多项式的次数是( ) A .B .mC .D .m ,n 中的较大数 15.(0分)[ID :67958]长方形一边长为2a +b ,另一边为a -b ,则长方形周长为( )A .3aB .6a +bC .6aD .10a -b二、填空题16.(0分)[ID :68151]如图是用棋子摆成的“上”字:如果按照以下规律继续摆下去,第n 个“上”字需用______枚棋子.17.(0分)[ID :68148]已知整数a 1,a 2,a 3,a 4…满足下列条件:a 1=0,a 2=﹣|a 1+1|,a 3=﹣|a 2+2|,a 4=﹣|a 3+3|,…,依此类推,则a 2016的值为_______. 18.(0分)[ID :68145]观察下面的一列单项式:2342,4,8,16,,x x x x --根据你发现的规律,第n 个单项式为__________.19.(0分)[ID :68144]将正偶数按照如下规律进行分组排列,依次为(2),(4,6),(8,10,12),(14,16,18,20)…,我们称“4”是第2组第1个数字,“16”是第4组第2个数字,若2020是第m 组第n 个数字,则m +n =_____. 20.(0分)[ID :68120]观察下列各式:22223124,4135-=⨯-=⨯,225146-=⨯ ,……,若221012m m -=⨯+,则m =_____________21.(0分)[ID :68104]在如图所示的运算流程中,若输出的数3y =,则输入的数x =________________.22.(0分)[ID :68103]观察下面的单项式:234,2,4,8,,a a a a 根据你发现的规律,第8个式子是____.23.(0分)[ID :68101]下面每个正方形中的五个数之间都有相同的规律,根据这种规律,则第4个正方形中间数字m 为________,第n 个正方形的中间数字为______.(用含n 的代数式表示)…………24.(0分)[ID :68098]将一张长方形的纸对折,如图,可得到一条折痕(图中虚线),连续对折,对折时每次折痕与上次的折痕保持平行,连续对折3次后,可以得7条折痕,连续对折5次后,可以得到________条折痕.25.(0分)[ID :68095]如果关于x 的多项式42142mx x +-与多项式35n x x +的次数相同,则2234n n -+-=_________.26.(0分)[ID :68079]仅当b =______,c =______时,325x y 与23b c x y 是同类项。
(易错题)初中数学七年级数学上册第二单元《整式的加减》检测(含答案解析)

一、选择题1.下列方程变形中,正确的是( )A .方程3221x x -=+,移项,得3212x x -=-+B .方程()3251x x -=--,去括号,得3251x x -=--C .方程2332t =,系数化为1,得1t = D .方程110.20.5x x--=,整理得36x = 2.新制作的渗水防滑地板是形状完全相同的长方形.如图,三块这样的地板可以拼成一个大的长方形.如果大长方形的周长为150cm ,那么一块渗水防滑地板的面积是( ).A .2450cmB .2600cmC .2900cmD .21350cm3.如果x =2是方程12x +a =﹣1的解,那么a 的值是( ) A .0B .2C .﹣2D .﹣64.有两支同样长的蜡烛,一支能点燃小时,另一支能点燃小时,一次遇到停电,同时点燃这两支蜡烛,来电后同时吹灭,发现其中一支的长度是另一支的一半,则停电时间为( ) A .小时B .小时C .小时D .小时5.互联网“微商”经营已成为大众创业新途径,某微信平台上一件商品标价为200元,按标价的五折销售,仍可获利20元,则这件商品的进价为( ) A .120元B .100元C .80元D .60元6.已知a=2b ,则下列选项错误的是( ) A .a+c=c+2bB .a ﹣m=2b ﹣mC .2a b = D .2ab= 7.若代数式x +2的值为1,则x 等于( ) A .1B .-1C .3D .-38.某校在举办“读书月”的活动中,将一些图书分给了七年一班的学生阅读,如果每人分3本,则剩余20本:如果每人分4本,则还缺25本.若设该校七年一班有学生x 人,则下列方程正确的是( ) A .3x ﹣20=24x +25 B .3x +20=4x ﹣25 C .3x ﹣20=4x ﹣25D .3x +20=4x +259.两年前,李叔叔在银行存了一笔两年的定期存款,年利率是2.75%.到期后取出,得到本金和利息总共21100元.设李叔叔存入的本金为x 元,则下列方程正确的是( ) A .2 2.75%21100x ⨯= B . 2.75%21100x x += C .2 2.75%21100x x +⨯=D .2( 2.75%)21100x x +=10.某项工作甲单独做4天完成,乙单独做6天完成,若甲先做1天,然后甲、乙合作完成此项工作,若甲一共做了x 天,则所列方程为( ) A .1146x x++= B .1146x x ++= C .1146x x -+= D .111446x x +++= 11.某种高端品牌的家用电器,若按标价打八折销售该电器一件,则可获纯利润500元,其利润率为20%,则该电器的标价为( ) A .3750元B .4000元C .4250元D .3500元12.某工厂一、二月份共完成生产任务吨,其中二月份比一月份的多吨,设一月份完成吨,则下列所列方程正确的是( ) A . B . C .D .二、填空题13.解关于x 的方程,有如下变形过程:①由2316x =-,得2316x =-; ②由342x -=,得324x =-;③由0.221 1.530.1x x -+=+,得366045x x +=-+; ④由253x x-=,得352x x -=. 以上变形过程正确的有_____.(只填序号)14.一个“数值转换机”按如图的程序计算,例如:输入的数为36,则经过一次运算即可输出结果106.若输出的结果127是经过两次运算才输出的,则输入的数是_____.15.当3x =时,式子22x +与5x k +的值相等,则k 的值是______. 16.对于实数a ,b ,c ,d ,规定一种运算a b c d=ad -bc ,如102(2)-=1×(-2)-0×2=-2,那么当(1)(2)(3)(1)x x x x ++--=27时,则x =_____.17.若关于x 的方程23360m x m --+=是一元一次方程,则这个方程的解是__________. 18.在某张月历表上,若前三个星期日的数字之和是42,则第一个星期_______号.19.用5个同样大小的小长方形恰好可以拼成如图所示的大长方形,若大长方形的周长是14,则小长方形的长是_______,宽是________.20.若关于x的方程3x m-2-m=0是一元一次方程,则m=________,方程的解为________.三、解答题21.解方程:2284 25920x x x--+=-.22.如表是中国电信两种“4G套餐”计费方式.(月基本费固定收,主叫不超过主叫时间,流量不超上网流量不再收费,主叫超时和上网流量超出部分加收超时费和超流量费)(1)若小萱某月主叫通话时间为220分钟,上网流量为800MB,则她按套餐1计费需________元,按套餐2计费需________元;若小花某月按套餐2计费需129元,主叫通话时间为240分钟,则上网流量为________MB.(2)若上网流量为540MB,是否存在某主叫通话时间t(分),按套餐1和套餐2计费相等?若存在,请求出t的值;若不存在,请说明理由.(3)若上网流量为540MB,直接写出当主叫通话时间t(分)满足什么条件时,选择套餐1省钱;当主叫通话时间t(分)满足什么条件时,选择套餐2省钱.月基本费/元主叫通话时间/分上网流量/MB套餐149200500套餐269250600接听超时费(元/分)超流量费(元/MB)套餐1免费0.20.3套餐2免费0.150.223.李老师准备购买一套小户型商品房,他去售楼处了解情况得知,该户型商品房的单价是5000元2/m,如图所示(单位:m,卫生间的宽未定,设宽为xm),售楼处为李老师提供了以下两种优惠方案:方案一:整套房的单价为5000元2/m,其中卫生间可免费赠送一半的面积;方案二:整套房按原销售总金额的9.5折出售.(1)用含x的代数式表示该户型商品房的面积及按方案一、方案二购买一套该户型商品房的总金额;(2)当2x 时,通过计算说明哪种方案更优惠,优惠多少元.24.某市水果批发欲将A市的一批水果运往本市销售,有火车和汽车两种运输方式,运输过程中的损耗均为200元/时,其它主要参考数据如下:运输工具途中平均速度(千米/时)运费(元/千米)装卸费用(元)火车100152000汽车8020900(1) 如果汽车的总支出费用比火车费用多1100元,你知道本市与A市之间的路程是多少千米吗?请你列方程解答.(总支出包含损耗、运费和装卸费用)(2) 如果A市与B市之间的距离为S千米,你若是A市水果批发部门的经理,要想将这种水果运往B市销售,试分析以上两种运输工具中选择哪种运输方式比较合算呢?25.数学课上,某班同学用天平和一些物品(如图)探究了等式的基本性质.该班科技创新小组的同学提出问题:仅用一架天平和一个10克的砝码能否测量出乒乓球和一次性纸杯的质量?科技创新小组的同学找来足够多的乒乓球和某种一次性纸杯(假设每个乒乓球的质量相同,每个纸杯的质量也相同),经过多次试验得到以下记录:记录天平左边天平右边状态记录一6个乒乓球,1个10克的砝码14个一次性纸杯平衡记录二8个乒乓球7个一次性纸杯,平衡请算一算,一个乒乓球的质量是多少克?一个这种一次性纸杯的质量是多少克? 解:(1)设一个乒乓球的质量是x 克,则一个这种一次性纸杯的质量是______克;(用含x 的代数式表示)(2)列一元一次方程求一个乒乓球的质量,并求出一个这种一次性纸杯的质量. 26.学友书店推出售书优惠方案:①一次性购书不超过100元,不享受优惠;②一次性购书超过100元但不超过200元一律打九折;③一次性购书超过200元一律打八折.如果王明同学一次性购书付款162元,那么王明所购书的原价为多少?【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】根据解方程的步骤逐一对选项进行分析即可. 【详解】A . 方程3221x x -=+,移项,得3212x x -=+,故A 选项错误;B . 方程()3251x x -=--,去括号,得325+5-=-x x ,故B 选项错误;C . 方程2332t =,系数化为1,得94t =,故C 选项错误;D . 方程110.20.5x x--=,去分母得()5121--=x x ,去括号,移项,合并同类项得:36x =,故D 选项正确. 故选:D 【点睛】本题主要考查解一元一次方程,掌握解一元一次方程的步骤是解题的关键. 2.A解析:A 【分析】设小长方形的长为x ,根据大的长方形对边相等得到小长方形的宽为2x ,再根据长方形的周长列等量关系得到2(2x+2x+x )=150,再解方程求出x ,然后计算小长方形的面积. 【详解】解:设小长方形的长为x ,则宽为2x , 根据题意得2(2x+2x+x )=150,解得x=15,2x=30,所以x•2x=15×30=450.答:一块渗水防滑地板的面积为450cm2.故选A.【点睛】本题考查了一元一次方程的应用:首先审题找出题中的未知量和所有的已知量,直接设要求的未知量或间接设一关键的未知量为x,然后用含x的式子表示相关的量,找出之间的相等关系列方程、求解、作答,即设、列、解、答.3.C解析:C【分析】将x=2代入方程12x+a=-1可求得.【详解】解:将x=2代入方程12x+a=﹣1得1+a=﹣1,解得:a=﹣2.故选C.【点睛】本题是一道求方程待定字母值的试题,把方程的解代入原方程是求待定字母的值的常用方法,平时应多注意领会和掌握.4.C解析:C【解析】【分析】根据每小时两支蜡烛燃烧总长度的,再利用燃烧后其中的一支是另一支的一半,进而得出等式求出即可.【详解】设停电时间为x小时,根据题意可得:1−x=2×(1−x),解得:x=.答:停电时间为小时.故选C.【点睛】此题考查一元一次方程的应用,解题关键在于根据题意列出方程.5.C解析:C 【详解】解:设该商品的进价为x 元/件,依题意得:(x+20)÷510=200,解得:x=80. ∴该商品的进价为80元/件. 故选C .6.D解析:D 【分析】根据等式的性质判断即可. 【详解】解:A 、因为a=2b ,所以a+c=c+2b ,正确; B 、因为a=2b ,所以a-m=2b-m ,正确; C 、因为a=2b ,所以2a=b ,正确; D 、因为a=2b ,当b≠0,所以ab=2,错误; 故选D . 【点睛】此题考查比例的性质,关键是根据等式的性质解答.7.B解析:B 【分析】 列方程求解. 【详解】解:由题意可知x+2=1,解得x=-1, 故选B . 【点睛】本题考查解一元一次方程,题目简单.8.B解析:B 【分析】如果每人分 3 本,则剩余 20 本,此时这些图书的数量可表示为3x+20;如果每人分 4 本,则还缺25本,此时这些图书的数量可表示为4x-25,据此列出方程即可. 【详解】解:根据题意可得:3x +20=4x ﹣25.【点睛】本题考查了一元一次方程的应用,找到图书的数量是相等的是解题关键.9.C解析:C 【分析】根据“利息=本金×利率×时间”(利率和时间应对应),列出方程,即可得出结论. 【详解】 解:根据题意得: x+2×2.75%x=21100; 故选:C . 【点睛】此题主要考查了一元一次方程的应用,计算的关键是掌握根据利息、利率、时间和本金的等量关系,列出方程.10.C解析:C 【分析】首先要理解题意找出题中存在的等量关系:甲完成的工作量+乙完成的工作量=总的工作量,根据题意我们可以设总的工作量为单位“1“,根据效率×时间=工作量的等式,分别用式子表示甲乙的工作量即可列出方程. 【详解】设甲一共做了x 天,则乙一共做了(x−1)天. 可设工程总量为1,则甲的工作效率为14 ,乙的工作效率为16. 那么根据题意可得出方程1146x x -+=, 故选C. 【点睛】此题考查由实际问题抽象出一元一次方程,解题关键在于理解题意列出方程.11.A解析:A 【分析】先根据利润=20%×成本,设未知数解方程求出成本,再用售价÷8折=标价解答即可. 【详解】解:设该电器的成本为x 元.依题意,得50020%x =,解得2500x =. 所以该电器的标价为(2500500)0.83750+÷=(元). 故选:A .本题考查了一元一次方程的应用,属于常考题型,正确理解题意、找准相等关系是解题的关键.12.B解析:B 【解析】 【分析】由题意可知:一月份完成吨,二月份完成()吨,一、二月份共完成生产任务吨,列出方程解答即可. 【详解】 由题意可知:.故选:B 【点睛】此题考查从实际问题中抽象出一元一次方程,找出题目蕴含的数量关系是解决问题的关键.二、填空题13.无【分析】①方程x 系数化为1求出解即可做出判断;②方程移项得到结果即可做出判断;③方程去分母得到结果即可做出判断;④方程去分母得到结果即可做出判断【详解】①由得;②由得;③由得;④由得则以上变形过程解析:无. 【分析】①方程x 系数化为1求出解,即可做出判断; ②方程移项得到结果,即可做出判断; ③方程去分母得到结果,即可做出判断; ④方程去分母得到结果,即可做出判断. 【详解】①由2316x =-,得1623x =-; ②由342x -=,得324x =+; ③由0.221 1.530.1x x -+=+,得3660 4.5x x +=-+; ④由253x x-=,得3530x x -=. 则以上变形过程正确的有无, 故答案为:无本题考查等式的基本性质,掌握等式的基本性质,对等式进行变形是解答此题的关键.14.15【分析】根据题中的数值转换机计算即可求出所求【详解】解:根据题意得:3x﹣2=127解得:x=43可得3x﹣2=43解得:x=15则输入的数是15故答案为15【点睛】考核知识点:解一元一次方程理解析:15【分析】根据题中的“数值转换机”计算即可求出所求.【详解】解:根据题意得:3x﹣2=127,解得:x=43,可得3x﹣2=43,解得:x=15,则输入的数是15,故答案为15【点睛】考核知识点:解一元一次方程.理解程序意义是关键.15.-7【分析】把x=3代入两个式子即可表示出两个式子的值就可得到一个关于k的方程从而求得k的值【详解】解:由题意得:8=15+k解得:k=-7故答案为:-7【点睛】本题要注意列出方程求出未知数的值解析:-7【分析】把x=3代入两个式子即可表示出两个式子的值,就可得到一个关于k的方程,从而求得k 的值.【详解】解:由题意得:8 =15+k,解得:k=-7,故答案为:-7【点睛】本题要注意列出方程,求出未知数的值.16.22【分析】由题中的新定义可知此种运算为对角线乘积相减的运算化简所求的式子得到关于x的方程然后解方程即可求出x的值【详解】解:∵=27∴(x+1)(x-1)-(x+2)(x-3)=27∴x2-1-(解析:22【分析】由题中的新定义可知,此种运算为对角线乘积相减的运算,化简所求的式子得到关于x的方程,然后解方程即可求出x的值.【详解】解:∵(1)(2) (3)(1)x xx x++--=27,∴(x+1)(x-1)-(x+2)(x-3)=27,∴x2-1-(x2-x-6)=27,∴x2-1-x2+x+6=27,∴x=22;故答案为:22.【点睛】本题考查了新定义运算,及灵活运用新定义的能力,根据新定义把所给算式转化为一元一次方程是解答本题的关键.17.x=1【分析】利用一元一次方程的定义求解即可【详解】∵关于x的方程3xm-2-3m+6=0是一元一次方程∴m-2=1解得:m=3此时方程为3x-9+6=0解得:x=1故答案为x=1【点睛】此题考查一解析:x=1【分析】利用一元一次方程的定义求解即可.【详解】∵关于x的方程3x m-2-3m+6=0是一元一次方程,∴m-2=1,解得:m=3,此时方程为3x-9+6=0,解得:x=1,故答案为x=1.【点睛】此题考查一元一次方程的定义以及解一元一次方程,熟练掌握一元一次方程的定义是解题的关键.18.【解析】【分析】根据题意先设中间一个的数字为x即可解答【详解】设中间一个的数字为x其他两个为x+7x-7则x+7+x+x-7=42解答x=14所以第一个是14-7=7日故答案为:7【点睛】此题考查一解析:7【解析】【分析】根据题意先设中间一个的数字为x,即可解答.【详解】设中间一个的数字为x,其他两个为x+7,x-7,则x+7+x+x-7=42,解答x=14,所以第一个是14-7=7日,故答案为:7.此题考查一元一次方程的应用,解题关键在于找出等量关系.19.1【解析】【分析】观察图形找出大长方形与小长方形的关系设小长方形的宽为x列出方程即可求出其长和宽的值【详解】解:设小长方形的宽为x则长=(14-10x)=2x解得x=1即小长方形的宽为1长为2;故答解析:1【解析】【分析】观察图形找出大长方形与小长方形的关系,设小长方形的宽为x,列出方程即可求出其长和宽的值.【详解】解:设小长方形的宽为x,则长=12(14-10x)=2x,解得x=1,即小长方形的宽为1,长为2;故答案为:2;1.【点睛】本题考查了一元一次方程的应用,准确识图并列出方程是解题的关键.20.x=1【解析】【分析】根据一元一次方程的定义得到:m-2=1进而求得M结合m的值可得原方程为3x-3=0求解可得方程的解【详解】由题意得:m-2=1解得:m=3所以原方程为3x-3=0解得x=1【点解析:x=1【解析】【分析】根据一元一次方程的定义得到:m-2=1,进而求得M,结合m的值可得原方程为3x-3=0,求解可得方程的解【详解】由题意得:m-2=1,解得:m=3所以原方程为3x-3=0解得x=1【点睛】此题考查一元一次方程的知识,熟练掌握一元一次方程的定义是关键三、解答题21.49 x考虑到最后一项的分子分母可同时除以4,可化简此项后再根据解一元一次方程的方法和步骤解答.【详解】 解:原方程可化为:2222595x x x --+=+. 移项、合并同类项,得229x =. 系数化为1,得49x =. 【点睛】 本题考查了一元一次方程的解法,灵活应用整体思想、熟练掌握解一元一次方程的方法和步骤是解题的关键.22.(1)143,109,900;(2)若上网流量为540MB ,当主叫通话时间为240分钟时,按套餐1和套餐2计费相等;(3)当240t <时,选择套餐1省钱;当240t >时,选择套餐2省钱.【分析】(1)根据表中数据分别计算两种计费方式,第三空求上网流量时,可设上网流量为xMB ,列方程求解即可;(2)分0≤t <200时,当200≤t≤250时,当t >250时,三种情况分别计算讨论即可; (3)由(2)中结果直接得出.【详解】(1)143,109,900套餐1:490.2(220200)0.3(800500)+⨯-+⨯-490.2200.3300=+⨯+⨯49490=++143=(元).套餐2:690.2(800600)+⨯-690.2200=+⨯6940=+109=(元)设上网流量为x MB ,则690.2(600)129x +-=.解得900x =.故答案为:143;109;900.(2)存在.当0200t 时,490.3(540500)6169+-=≠,所以此时不存在这样的t ,按套餐1和套餐2计费相等;当200250t <时,490.2(200)0.3(540500)69t +-+-=.解得240t =;当250t >时,490.2(200)0.3(540500)690.15(250)t t +-+-=+-.解得210t =,不合题意,舍去.综上,若上网流量为540MB ,当主叫通话时间为240分钟时,按套餐1和套餐2计费相等;(3)由(2)可知,当240t <时,选择套餐1省钱;当240t >时,选择套餐2省钱.【点睛】本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键. 23.(1)该户型商品房的面积为2(482)x m +,按方案一购买一套该户型商品房的总金额为(2400005000)x +元,按方案二购买一套该户型商品房的总金额为(2280009500)x +元;(2)当2x =时,方案二更优惠,优惠3000元.【分析】(1)该户型商品房的面积=大长方形的面积-卫生间右侧的长方形,代入计算,也可以利用各间的面积和来求;方案一:(总面积-厨房的12)×单价5000;方案二:总价×0.95; (2)分别把数据代入计算即可;【详解】解:(1)该户型商品房的面积为: 2473(84)2(73)(842)(482)x x m ⨯+⨯-+⨯-+--=+按方案一购买一套该户型商品房的总金额为:147342425000(2400005000)2x x ⎛⎫⨯+⨯+⨯+⨯⨯=+ ⎪⎝⎭元; 按方案二购买一套该户型商品房的总金额为:(4734242)500095%(2280009500)x x ⨯+⨯+⨯+⨯⨯=+元.(2)当2x =时,方案一总金额为2400005000250000x +=(元);方案二总金额为2280009500247000x +=(元).方案二比方案一优惠2500002470003000-=(元).所以方案二更优惠,优惠3000元.【点睛】本题是根据实际应用列代数式,是楼房销售问题,考查了图形面积与销售总额及银行利率的知识;解题的关键是熟练掌握利用代数式表示图形的面积.24.(1) x =400;(2) 当s >200时,选择火车运输;当s <200时,选择汽车运输;当s =200时,两种方式都一样【分析】(1)设路程为x 千米,题中等量关系是:汽车的总支出费用比火车费用多1100元,列出方程解答;(2)根据(1)中结论分别算出火车和汽车所需的运费,再进行比较即可求解.【详解】(1) 设本市与A 市之间的路程是x 千米200•20015200011002090010080x x x x +++=++, 解得x =400(2) 火车的运输费用为•200152000172000100s s s ++=+ 汽车运输的费用为•2002090022.590080s s s ++=+ 当17s +2000=22.5s +900,解得s =200当s >200时,选择火车运输当s <200时,选择汽车运输当s =200时,两种方式都一样【点睛】本题主要考查了一元一次方程的应用,根据题意列出方程是解答本类问题的关键. 25.(1)61014x +或8107x -;(2)一个乒乓球的质量是3克,一个这种一次性纸杯的质量是2克.【分析】(1)根据题意即可得出答案;(2)弄清题意,找到合适的等量关系,列出方程,解方程即可.【详解】解:(1)61014x +或8107x - (2)根据题意得,610810147x x +-= 6101620x x +=-6162010x x -=--1030x -=-3x =.当3x =时,610631021414x +⨯+==(克). 答:一个乒乓球的质量是3克,一个这种一次性纸杯的质量是2克.【点睛】本题考查了一元一次方程与实际问题,解题的关键是找到合适的等量关系,列出方程,解方程.26.180元或202.5元【分析】先根据题意判断出可能打折的情况,再分别算出可能的可能的原价.【详解】∵200×0.9=180,200×0.8=160,160<162<180,∴一次性购书付款162元,可能有两种情况.162÷0.9=180元;162÷0.8=202.5元.故王明所购书的原价一定为180元或202.5元.【点睛】本题考查打折销售问题,关键在于分类讨论.。
《易错题》七年级数学上册第二单元《整式加减》-解答题专项知识点复习(含答案)

一、解答题1.已知多项式234212553x x x x ++-- (1)把这个多项式按x 的降冥重新排列; (2)请指出该多项式的次数,并写出它的二次项和常规项.解析:(1)432215253x x x x -+++-;(2)该多项式的次数为4,二次项是22x ,常数项是13-.【分析】(1)按照x 的指数从大到小的顺序把各项重新排列即可;(2)根据多项式的次数的定义找出次数最高的项即是该多项式的次数,再找出次数是2的项和不含字母的项即可得二次项和常数项.【详解】(1)按的降幂排列为原式432215253x x x x -+++-. (2)∵234212553x x x x ++--中次数最高的项是-5x 4, ∴该多项式的次数为4,它的二次项是22x ,常数项是13-. 【点睛】 本题考查多项式的定义,正确掌握多项式次数及各项的判定方法及多项式升幂、降幂排列方法是解题关键.2.若单项式21425m n x y +--与413n m x y +是同类项,求这两个单项式的积 解析:10453x y - 【分析】根据题意,可得到关于m ,n 的二元一次方程组,求出m ,n 的值,即可求得答案.【详解】∵单项式21425m n x y +--与413n m x y +是同类项, ∴21442m n n m +=+⎧⎨-=⎩, 解得21m n =⎧⎨=⎩,∴21425252441011355533n m m n x y x y x y x y x y ++--⋅-⋅=-= 【点睛】本题主要考查同类项的定义和单项式乘单项式的法则,根据同类项的定义,列出关于m ,n 的二元一次方程组,是解题的关键.3.已知22332A x y xy =+-,2222B xy y x =--.(1)求23A B -.(2)若|23|1x -=,29y =,且||x y y x -=-,求23A B -的值.解析:(1)2212127x y xy +-;(2)114或99.【分析】(1)把22332A x y xy =+-,2222B xy y x =--代入23A B -计算即可;(2)根据|23|1x -=,29y =,且||x y y x -=-求出x 和y 的值,然后代入(1)中化简的结果计算即可.【详解】解:(1)()()2222232332322A B x y xy xy y x -=+----2222664366x y xy xy y x =+--++2212127x y xy =+-;(2)由题意可知:231x -=±,3=±y ,∴2x =或1,3=±y ,由于||x y y x -=-,∴2x =,3y =或1x =,3y =.当2x =,3y =时,23114A B -=.当1x =,3y =时,2399A B -=.所以,23A B -的值为114或99.【点睛】本题考查了整式的加减运算,绝对值的意义,以及分类讨论的数学思想,熟练掌握整式的加减运算法则是解(1)的关键,分类讨论是解(2)的关键.4.有一道化简求值题:“当1a =-,3b =-时,求222(32)2(())44a b ab ab a ab a b ---+-的值.”小明做题时,把“1a =-”错抄成了“1a =”,但他的计算结果却是正确的,小明百思不得其解,请你帮他解释一下原因,并求出这个值.解析:2228a b a +,解释见解析,2.【分析】将原式化简后即可对计算结果进行解释;将a 、b 的值代入化简后的式子计算即得结果.【详解】解:原式22232284a b ab ab a ab a b =--++-2228a b a =+.因为无论1a =-,还是1a =,2a 都等于1,所以代入的结果是一样的.所以当1a =-,3b =-时,原式222(1)(3)8(1)=⨯-⨯-+⨯-682=-+=.【点睛】本题考查了整式的加减运算及代数式求值,属于常考题型,熟练掌握整式加减运算法则是解题关键.5.当0.2x =-时,求代数式22235735x x x x -+-+-的值。
人教版七年级上《第2章整式的加减》拔高题及易错题附答案

人教版七年级数学第2章整式的加减拔咼及易错题精选一、选择题(每小题4分,共40分)1.计算3a3+ a3,结果正确的是()A . 3a6B . 3a3C . 4a62 .单项式-Z a2n-1b4与3a2m b8m是同类项,则(1+n)100?(1-m)102:28. —个多项式A与多项式B = 2x2—3xy —y2的和是多项式C = x2+ xy + y2,则A等于(A.C.9. 当A.C.12.已知单项式討°与单项式才严的差是ax肽严,则耐A .无法计算3.已知a3b m+ x n—1y3m—1A. 6B. —6B .141 —s n+1 2m—5 s+3n—a b +x yC. 12C. 4D. 1的化简结果是单项式,那么D. —12mn s=(10. 一种商品进价为每件a元,按进价增加25%出售,后因库存积压降价,按售价的九折出售,每件还盈利()A. 0.125a 元B. 0.15a 元C. 0.25a 元D. 1.25a 元4 .若A和B都是五次多项式,则(A. A + B 一定是多式C. A —B是次数不高于5的整式15 . a—b=5,那么3a+ 7+ 5b —6(a+— b)等于(3C. —9 B. A —B 一定是单项式D. A + B是次数不低于5的整式、填空题(每小题5分,共30分)3_. 2 42 abA. - 7B. —8 D. 1011.单项式-宁的系数是,次数是6.随着服装市场竞争日益激烈,某品牌服装专卖店一款服装按原售价降价次打7折,现售价为b元,则原售价为()A丄1°b A. a —7 c — 1°a C. b —7ba10 b 7a10a元后,再 5 3 5 313.当x=1 时,代数式ax +bx +cx+1=2017,当x= —1 时,ax +bx +cx+ 1 =14 .已知2=3,代数式=一洱的值为a-b 3(a 卞b)7.如图,阴影部分的面积是(A 11 13A. xyB. xy2 2D. 3xyC. 6xy15.已知a, b, c在数轴上的位置如图所示,化简: |a— b|+ |b+ c|+ |c—a|=(全卷总分150分)姓名得分D .4a3)x2—4xy —2y2 B . —x2+ 4xy+ 2y23x2—2xy —2y2 D . 3x2—2xyx = 1 时,ax+ b+ 1 的值为一2,则(a+ b—1)(1 —a—b)的值为(—16 B . —816•平移小菱形◊可以得到美丽的中国结”图案,下面四个图案是由◊平移后得到的类似中国结”的图案,按图中规律,第20个图案中,小菱形的个数是__________ .佃.(8分)多项式a2x3+ax2—4x3+2x2+x+1是关于x的二次三项式,求a2+— +a的值. a20. (8分)已知多项式(2x2+ ax—y+ 6) —(bx2—2x+ 5y —1).(1)若多项式的值与字母x的取值无关,求a、b的值;(2)在⑴的条件下,先化简多项式2(a2—ab+ b2) —(a2+ ab+ 2b2),再求它的值.三、解答题(共80分)17. (8分)已知数轴有A、B、C三点,位置如图,分别对应的数为x、2、y,若, BA=BC,求4x+4y+30 的值。
(易错题)初中数学七年级数学上册第二单元《整式的加减》测试卷(含答案解析)(1)

一、选择题1.在《九章算术》方田章“圆田术”中指出:“割之弥细,所失弥少,割之又割,以至于不可割,则与圆周合体而无所失矣”,这里所用的割圆术所体现的是一种无限与有限的转化的思想,比如在234111112222+++++…中,“…”代表按规律不断求和,设234111112222x +++++⋅⋅⋅=.则有112x x =+,解得2x =,故2341111122222+++++⋅⋅⋅=.类似地2461111333++++⋅⋅⋅的结果为( ) A .43 B .98 C .65 D .22.某车间有22名工人每人每天可以生产1200个螺钉或2000个螺母,1个螺钉需要配2个螺母,为使每天生产的螺钉和螺母刚好配套 ,设有x 名工人生产螺钉,其他工人生产螺母,根据题意列出方程( )A .20001200(22)x x =-B .212002000(22)x x ⨯=-C .220001200(22)x x ⨯=-D .12002000(22)x x =- 3.下列方程变形中,正确的是( )A .方程3221x x -=+,移项,得3212x x -=-+B .方程()3251x x -=--,去括号,得3251x x -=--C .方程2332t =,系数化为1,得1t = D .方程110.20.5x x --=,整理得36x = 4.已知,每本练习本比每根水性笔便宜2元,小刚买了6本练习本和4根水性笔正好用去18元,设水性笔的单价为x 元,下列方程正确的是( )A .6(x+2)+4x =18B .6(x ﹣2)+4x =18C .6x+4(x+2)=18D .6x+4(x ﹣2)=18 5.小淇在某月的日历中圈出相邻的三个数,算出它们的和是19,那么这三个数的位置可能是( ) A . B .C .D .6.下列变形中,正确的是( )A .变形为B .变形为C .变形为D .变形为7.有两支同样长的蜡烛,一支能点燃小时,另一支能点燃小时,一次遇到停电,同时点燃这两支蜡烛,来电后同时吹灭,发现其中一支的长度是另一支的一半,则停电时间为( )A .小时B .小时C .小时D .小时8.下列方程中,是一元一次方程的是( )A .243x x -=B .0x =C .21x y +=D .11x x -= 9.互联网“微商”经营已成为大众创业新途径,某微信平台上一件商品标价为200元,按标价的五折销售,仍可获利20元,则这件商品的进价为( )A .120元B .100元C .80元D .60元10.某种商品的标价为120元,若以九折降价出售,相对于进价仍获利20%,则该商品的进价是( ).A .95元B .90元C .85元D .80元11.某种商品进价为800元,标价1 200元,由于该商品积压,商店准备打折销售,但要保证利润率不低于20%,则至少可以打 ( )A .6折B .7折C .8折D .9折 12.某商场的老板销售一种商品,标价为360元,可以获得80%的利润,则这种商品进价多少( )A .80元B .200元C .120元D .160元二、填空题13.已知一个角的补角是这个角的4倍,那么这个角的度数是_________.14.购买某原料有如下优惠方案:①一次性购买金额不超过1万元不享受优惠;②一次性购买金额超过1万元但不超过3万元给予9折优惠;③一次性购买金额超过3万元,其中3万元给予9折优惠,超过部分给予7折优惠.(1)若某人购该原料付款9900元,则他购买的原料原价是________元;(2)某人分两次购买该原料,第1次付款8000元,第2次付款25200元,若他一次性购买同样数量的原料,可比分两次购买少付________元.15.若关于x 的方程1253n ax bx x x +-+=+是一元一次方程,则a n +=_________ ,b_________.16.所谓方程的解就是使方程中等号左右两边相等的未知数的值。
《易错题》七年级数学上册第二单元《整式加减》-解答题专项知识点复习(含解析)

一、解答题1.已知多项式2x 2+4xy ﹣3y 2+x 2+kxy+5y 2,当k 为何值时,它与多项式3x 2+6xy+2y 2是相等的多项式.解析:k=2.【分析】根据两个多项式是相同的多项式,可以直接列等式根据各项前对应系数相等直接列式计算.【详解】解:2x 2+4xy ﹣3y 2+x 2+kxy+5y 2,=3x 2+(4+k )xy+2y 2,因为它与多项式3x 2+6xy+2y 2是相等的多项式,所以4+k=6,解得:k=2.【点睛】本题考查了带系数多项式与已知多项式相等求未知系数,掌握多项式的概念是解决此题的关键.2.化简下列各式:(1)32476x y y -+--+;(2)4(32)3(52)x y y x ----.解析:(1)352x y --+;(2)67x y --【分析】(1)根据合并同类项的法则解答即可;(2)先去括号,再合并同类项.【详解】解:(1)原式3(27)(46)352x y x y =-+-+-+=--+;(2)原式12815667x y y x x y =-+-+=--.【点睛】本题考查了整式的加减运算,属于基础题型,熟练掌握整式加减运算的法则是关键. 3.化简:(1)()()22224232a b ab ab a b ---;(2)2237(43)2x x x x ⎡⎤----⎣⎦.解析:(1)22105a b ab -;(2)2533x x --【分析】(1)先去括号,再合并同类项即可得到答案;(2)先去括号,再合并同类项即可得到答案.【详解】(1)()()22224232a b ab ab a b ---22224236a b ab ab a b =--+22105a b ab =-.(2)2237(43)2x x x x ⎡⎤----⎣⎦2237(43)2x x x x =-+-+2237432x x x x =-+-+2533x x =--.【点睛】本题主要考查了整式的加减,整式加减的实质就是去括号,合并同类项,一般步骤是:先去括号,然后再合并同类项.4.有理数,,a b c 在数轴上的位置如图所示,化简代数式||||||||a c b b a b a ----++.解析:3a b c --+【分析】首先判断出a c -,b b a b a -+,,的正负,再去掉绝对值符号,然后合并同类项即可.【详解】由题意可知0a c -<,0b >,0b a ->,0b a +<,||||||||a c b b a b a ----++3a c b b a b a a b c =-+--+--=--+.故答案为:3a b c --+.【点睛】本题主要考查了整式的化简求值,数轴,绝对值,熟练掌握运算法则以及数轴上右边的数总比左边的数大是解答本题的关键.5.已知222242,325A ab b a B b a ab =--=-+,当11.5,2a b ==-时,求34B A -的值. 解析:12【分析】根据题意,先根据整式的混合运算法则化简34B A -,再将a ,b 的值代入即可.【详解】()()2222222234332544296151684B A b a ab ab b a b a ab ab b a -=-+---=-+-++=22172b a ab --, 当11.5,2a b ==-时,原式22111931172 1.5 1.517224242⎛⎫⎛⎫=⨯--⨯-⨯-=⨯-+= ⎪ ⎪⎝⎭⎝⎭. 【点睛】本题主要考查了整式的化简求值,熟练掌握整式的混合运算法则以及有理数的运算是解决本题的关键.6.用代数式表示:(1)a 的5倍与b 的平方的差;(2)m 的平方与n 的平方的和;(3)x ,y 两数的平方和减去它们积的2倍.解析:(1)5a -b 2(2)m 2+n 2(3)x 2+y 2-2xy【分析】(1)a 的5倍表示为5a ,b 的平方表示为b 2,然后把它们相减即可;(2)m 与n 平方的和表示为m 2+n 2;(3)x 、y 两数的平方和表示为x 2+y 2,它们积的2倍表示为2xy ,然后把两者相减即可;【详解】解:(1)a 的5倍与b 的平方的差可表示为:5a -b 2;(2)m 的平方与n 的平方的和可表示为:m 2+n 2;(3)x ,y 两数的平方和减去它们积的2倍可表示为:x 2+y 2-2xy .【点睛】本题考查了列代数式:把问题中与数量有关的词语,用含有数字、字母和运算符号的式子表示出来,就是列代数式.列代数式时,要先认真审题,抓住关键词语,仔细辩析词义;分清数量关系;规范地书写.7.将一个长方形纸片连续对折,对折的次数越多,折痕的条数也就越多,如第一次对折后,有1条折痕,第2次对折后,共有3条折痕.(1)第3次对折后共有多少条折痕?第4次对折后呢?(2)对折多少次后折痕会超过100条?(3)请找出折痕条数与对折次数的对应规律,写出对折n 次后,折痕有多少条?解析:(1)第3次对折后共有7条折痕,第4次对折后有15条折痕;(2)对折7次后折痕会超过100条;(3)对折n 次后,折痕有21n -条.【分析】(1)动手操作即可得出第3次、第4次对折后的折痕条数;(2)在(1)的基础上,归纳类推出一般规律,再结合67264,2128==即可得出答案;(3)由题(2)已求得.【详解】(1)动手操作可知,第3次对折后的折痕条数为7条,第4次对折后的折痕条数为15条;(2)观察可知,第1次对折后的折痕条数为1121=-条,第2次对折后的折痕条数为2321=-条,第3次对折后的折痕条数为3721=-条,第4次对折后的折痕条数为41521=-条,归纳类推得:第n 次对折后的折痕条数为21n -条,因为67264,2128==,所以对折7次后折痕会超过100条;(3)由(2)已得:对折n 次后的折痕条数为21n -条.【点睛】本题考查了有理数乘方的应用,依据题意,根据前4次对折后的结果,正确归纳类推出一般规律是解题关键.8.试写出一个含a 的代数式,使a 不论取何值,这个代数式的值不大于1.解析:所写代数式为:﹣a 2+1【分析】从平方数非负数的角度考虑解答.【详解】解:所写代数式可以为:- a 2+1.(答案不唯一)【点睛】本题考查了代数式,平方数非负数,考虑利用非负数是解题的关键.9. 1+2+3++100⋯=?经过研究,这个问题的一般性结论是()1123n n n 12+++⋯+=+,其中n 是正整数.现在我们来研究一个类似的问题:()122334n n 1⨯+⨯+⨯+⋯+=?观察下面三个特殊的等式:()1121230123⨯=⨯⨯-⨯⨯ ()1232341233⨯=⨯⨯-⨯⨯ ()1343452343⨯=⨯⨯-⨯⨯ 将这三个等式的两边相加,可以得到1122334345203⨯+⨯+⨯=⨯⨯⨯=.读完这段材料,请你思考后回答:(1)直接写出下列各式的计算结果:1223341011⨯+⨯+⨯+⋯⨯=① ______()122334n n 1⨯+⨯+⨯+⋯+=② ______(2)探究并计算:()()123234345n n 1n 2⨯⨯+⨯⨯+⨯⨯+⋯+++= ______ (3)请利用(2)的探究结果,直接写出下式的计算结果:123234345101112⨯⨯+⨯⨯+⨯⨯+⋯+⨯⨯= ______ .解析:(1)①440,②()()1n n 1n 23++;(2)()()()1n n 1n 2n 34+++;(3)4290 【分析】(1)①根据阅读材料的结论计算即可;②根据阅读材料的结论进行总结;(2)仿照(1)的计算方法进行归纳即可;(3)代入(2)总结的规律进行计算即可.【详解】解:(1)①1×2+2×3+3×4+…10×11=13×10×11×12=440,②1×2+2×3+3×4+…+n(n+1)=13n(n+1)(n+2),(2)1×2×3=14(1×2×3×4-0×1×2×3),2×3×4=14(2×3×4×5-1×2×3×4),3×4×5=14(3×4×5×6-2×3×4×5),则1×2×3+2×3×4+3×4×5+…+n(n+1)(n+2)=14n(n+1)(n+2)(n+3);(3)123234345101112⨯⨯+⨯⨯+⨯⨯++⨯⨯=14×10×11×12×13=4290.【点睛】本题考查了有理数的混合运算、规律型-数字的变化类,弄清题意,得出一般性的规律是解本题的关键.10.一种商品每件成本a元,原来按成本增加22%定出价格.(1)请问每件售价多少元?(2)现在由于库存积压减价,按售价的85%出售,请问每件还能盈利多少元?解析:(1)每件售价1.22a元;(2)每件盈利0.037a元.【分析】(1)根据每件成本a元,原来按成本增加22%定出价格,列出代数式,再进行整理即可;(2)用原价的85%减去成本a元,列出代数式,即可得出答案.【详解】(1)根据题意,得:(1+22%)a=1.22a(元),答:每件售价1.22a元;(2)根据题意,得:1.22a×85%-a=0.037a(元).答:每件盈利0.037a元.【点睛】本题考查了列代数式,解决问题的关键是读懂题意,找到所求的量的等量关系,注意把列出的式子进行整理.11.先化简,再求值:-2x 2-2[3y 2-2(x 2-y 2)+6],其中x =-1,y =-2.解析:2221012x y --,-50.【分析】根据整式的加减及合并同类项先对原式进行化简,得到2221012x y --,再将1,2x y =-=-代入即可求解,需要注意本题中两次遇到去括号,注意符号的改变.【详解】原式=2222223226x y x y ⎡⎤---++⎣⎦=2222264412x y x y --+--=2222246412x x y y -+---=2221012x y --,当1,2x y =-=-时,原式=222(1)10(2)1250⨯--⨯--=-.【点睛】本题主要考查了去括号,整式的加减,合并同类项,乘法的分配律等相关内容,熟练掌握各项计算法则是解决本题的关键,注意去括号中符号的改变原则.12.已知2223,A x xy y B x xy()1若()2230x y ++-=,求2A B -的值()2若2A B -的值与y 的值无关,求x 的值解析:(1)-9;(2)x=-1【分析】(1)根据去括号,合并同类项,可得答案;(2)根据多项式的值与y 无关,可得y 的系数等于零,根据解方程,可得答案.【详解】(1)A-2B=(2x 2+xy+3y )-2(x 2-xy )=2x 2+xy+3y-2x 2+2xy=3xy+3y .∵(x+2)2+|y-3|=0,∴x=-2,y=3.A-2B=3×(-2)×3+3×3=-18+9=-9.(2)∵A-2B 的值与y 的值无关,即(3x+3)y 与y 的值无关,∴3x+3=0.解得x=-1.【点睛】此题考查整式的加减,解题关键在于掌握去括号,括号前是正数去括号不变号,括号前是负数去括号都变号.13.让我们规定一种运算a b ad cb c d =-, 如232534245=⨯-⨯=-. 再如14224x x =-. 按照这种运算规定,请解答下列问题,(1)计算60.5142= ;-3-245= ;2-335x x =- (2)当x=-1时,求223212232x x x x -++-+---的值(要求写出计算过程). 解析:(1)1;-7;-x ;(2)-7【分析】(1)根据新运算的定义式,代入数据求出结果即可;(2)根据新运算的定义式将原式化简为-x-8,代入x=-1即可得出结论.【详解】解:(1)60.5160.543211242=⨯-⨯=-=; -3-23524158745=-⨯--⨯=---=-()(); 2-3253310935x x x x x x x=⨯---⨯=---=--()()(). 故答案为:1;-7;-x .(2)原式=(-3x 2+2x+1)×(-2)-(-2x 2+x-2)×(-3),=(6x 2-4x-2)-(6x 2-3x+6),=-x-8,当x=-1时,原式=-x-8=-(-1)-8=-7.∴当x=-1时,223212232x x x x -++-+---的值为-7. 【点睛】本题考查了整式的化简求值以及有理数的混合运算,读懂题意掌握新运算并能用其将整式进行化简是解题的关键.14.生活中,有人喜欢把传送的便条折成形状,折叠过程是这样的(阴影部分表示纸条的反面):如果由信纸折成的长方形纸条(图①)长为26cm ,宽为cm x ,分别回答下列问题:(1)为了保证能折成图④的形状(即纸条两端均超出点P),试求P的取值范围.(2)如果不但要折成图④的形状,而且为了美观,希望纸条两端超出点P的长度相等,即最终图形是轴对称图形,试求在开始折叠时起点M与点P的距离(用P表示)解析:(1) x<5.2(2) 13-1.5x【详解】分析:(1)按图中方式折叠后可得到除去两端,纸条使用的长度为5x,那么纸条使用的长度应大于0,小于纸条总长度.(2)是轴对称图形,那么AM=AP+x.解答:解:(1)由折纸过程可知0<5x<26,∴0<x<5.2.(2)∵图④为轴对称图形,∴AM=2652x+x=13-1.5x,即点M与点A的距离是(13-1.5x)cm.点评:本题考查学生的动手操作能力,难点是得到纸条除去两端使用的纸条的长度.15.若关于x,y的多项式my3+3nx2y+2y3-x2y+y不含三次项,求2m+3n的值.解析:-3.【分析】先合并同类项,根据已知得出m+2=0,3n-1=0,求出m、n的值后代入进行计算即可.【详解】my3+3nx2y+2y3-x2y+y=(m+2)y3+(3n-1)x2y+y,∵此多项式不含三次项,∴m+2=0,3n-1=0,∴m=-2,n=13,∴2m+3n=2×(-2)+3×13=-4+1=-3.【点睛】本题考查了合并同类项和解一元一次方程的应用,关键是求出m、n的值.16.已知A=3a2b﹣2ab2+abc,小明同学错将“2A﹣B”看成“2A+B”,算得结果为4a2b﹣3ab2+4abc.(1)计算B的表达式;(2)求出2A﹣B的结果;(3)小强同学说(2)中的结果的大小与c的取值无关,对吗?若a=18,b=15,求(2)中式子的值.解析:(1)﹣2a2b+ab2+2abc;(2) 8a2b﹣5ab2;(3)对,0.【分析】(1)根据B=4a2b﹣3ab2+4abc-2A列出关系式,去括号合并即可得到B;(2)把A与B代入2A-B中,去括号合并即可得到结果;(3)把a与b的值代入计算即可求出值.【详解】解:(1)∵2A+B=4a2b﹣3ab2+4abc,∴B=4a2b﹣3ab2+4abc-2A=4a2b-3ab2+4abc-2(3a2b-2ab2+abc)=4a2b-3ab2+4abc-6a2b+4ab2-2abc=-2a2b+ab2+2abc;(2)2A-B=2(3a2b-2ab2+abc)-(-2a2b+ab2+2abc)=6a2b-4ab2+2abc+2a2b-ab2-2abc=8a2b-5ab2;(3)对,由(2)化简的结果可知与c无关,将a=18,b=15代入,得8a2b-5ab2=8×218⎛⎫⎪⎝⎭×15-5×18×21()5=0.【点睛】本题考查了整式的加减,整式加减的运算法则:一般地,几个整式相加减,如果有括号先去括号,然后再合并同类项.17.奇奇同学发现按下面的步骤进行运算,所得结果一定能被9整除.请你用我们学过的整式的知识解释这一现象.解析:见解析.【分析】设原来的两位数十位数字为a,个位数字为b,表示出原来两位数与新的两位数,相减得到结果,即可得出结果.【详解】解:设原来的两位数十位数字为a,个位数字为b,则原来两位数为10a+b,交换后的新两位数为10b+a,(10a+b)-(10b+a)=10a+b-10b-a=9a-9b=9(a-b),则这个结果一定是被9整除.【点睛】此题考查了整式的加减,熟练掌握去括号法则与合并同类项法则是解本题的关键.18.父母带着孩子(一家三口)去旅游,甲旅行社报价大人为a元,小孩为a2元;乙旅行社报价大人、小孩均为a元,但三人都按报价的90%收费,则乙旅行社收费比甲旅行社贵多少元?(结果用含a的代数式表示)解析:乙旅行社收费比甲旅行社贵0.2a元.【分析】根据题意分别表示出甲乙两旅行社的费用,相减即可得到结果.【详解】根据题意得:(a+a+a)×90%-(a+a+12 a)=2.7a-2.5a=0.2a(元),则乙旅行社收费比甲旅行社贵0.2a元.【点睛】此题考查了整式的加减,熟练掌握运算法则是解本题的关键.19.已知多项式-13x2y m+1+12xy2-3x3+6是六次四项式,单项式3x2n y2的次数与这个多项式的次数相同,求m2+n2的值.解析:13【解析】试题分析:根据多项式次数的定义,可得2+m+1=6,从而可求出m的值,根据单项式的次数的定义结合题意可得2n+2=6,求解即可得到n的值,把m,n的值代入到m2+n2中,计算即可得到求解.试题根据题意得2+m+1=6,2n+2=6解得:m=3, n=2,所以m2+n2=13.点睛:此题考查多项式,解题的关键是弄清多项式的次数是多项式中次数最高的项的次数,还要弄清有几项.20.观察下列单项式:x -,23x ,35x -,47x ,…1937x -,2039x ,…写出第n 个单项式,为了解这个问题,特提供下面的解题思路.()1这组单项式的系数的符号,绝对值规律是什么?()2这组单项式的次数的规律是什么?()3根据上面的归纳,你可以猜想出第n 个单项式是什么?()4请你根据猜想,请写出第2014个,第2015个单项式.解析:()1 (1)n -(或:负号正号依次出现;),21n -(或:从1开始的连续奇数);()2从1开始的连续自然数;()3第n 个单项式是:()(1)21n n n x --;()4?2014个单项式是20144027x ;第2015个单项式是20154029x -.【分析】(1)根据已知数据得出单项式的系数的符号规律和系数的绝对值规律;(2)根据已知数据次数得出变化规律;(3)根据(1)和(2)中数据规律得出即可;(4)利用(3)中所求即可得出答案.【详解】()1数字为1-,3,5-,7,9-,11,…,为奇数且奇次项为负数,可得规律:()(1)21n n --;故单项式的系数的符号是:(1)n-(或:负号正号依次出现;),绝对值规律是:21n -(或:从1开始的连续奇数); ()2字母因数为:x ,2x ,3x ,4x ,5x ,6x ,…,可得规律:n x ,这组单项式的次数的规律是从1开始的连续自然数.()3第n 个单项式是:()(1)21n n n x --.()4把2014n =、2015n =直接代入解析式即可得到:第2014个单项式是20144027x ;第2015个单项式是20154029x -.【点睛】此题主要考查了数字变化规律,得出次数与系数的变化规律是解题关键.21.将正整数1,2,3,4,5,……排列成如图所示的数阵:(1)十字框中五个数的和与框正中心的数11有什么关系?(2)若将十字框上下、左右平移,可框住另外五个数,这五个数的和与框正中心的数还有这种规律吗?请说明理由;(3)十字框中五个数的和能等于180吗?若能,请写出这五个数;若不能,请说明理由; (4)十字框中五个数的和能等于2020吗?若能,请写出这五个数;若不能,请说明理由.解析:(1)十字框中五个数的和是正中心数的5倍;(2)十字框中五个数的和是正中心数的5倍,理由见解析;(3)不能,理由见解析;(4)这五个数是404,403,405,397,411.【分析】(1)把框住的数相加即可求解;(2)设中心的数为a ,则其余4个数分别为1a -,1a +,7a -,7a +,相加即可得到规律;(3)由(2)得五个数的和为5a ,令5a=180,根据解得情况即可求解;(4)由(2)得五个数的和为5a ,令5a=2020,根据解得情况即可求解;【详解】解:(1)十字框中五个数的和是正中心数的5倍.∵十字框中五个数的和41011121855511=++++==⨯,∴十字框中五个数的和是正中心数的5倍.(2)五个数的和与框正中心的数还有这种规律.设中心的数为a ,则其余4个数分别为1a -,1a +,7a -,7a +.11775a a a a a a +-+++-++=,∴十字框中五个数的和是正中心数的5倍.(3)十字框中五个数的和不能等于180.∵当5180a =时,解得36a =,36751÷=,36在数阵中位于第6排的第1个数,其前面无数字,∴十字框中五个数的和不能等于180.(4)十字框中五个数的和能等于2020.∵当52020a =时,解得404a =,4047575÷=,404在数阵中位于第58排的第5个数,∴十字框中五个数的和能等于2020,这五个数是404,403,405,397,411.【点睛】此题主要考查一元一次方程的应用,解题的关键是设中心的数为a ,求出十字框中五个数的和为5a.22.已知A=2a2+3ab﹣2a﹣1,B=﹣a2+12 23 ab(1)当a=﹣1,b=﹣2时,求4A﹣(3A﹣2B)的值;(2)若(1)中式子的值与a的取值无关,求b的值.解析:(1)4ab﹣2a+13;(2)b=12【分析】(1)将a=﹣1,b=﹣2代入A=2a2+3ab﹣2a﹣1,B=﹣a2+12ab+23,求出A、B的值,再计算4A﹣(3A﹣2B)的值即可;(2)把(1)结果变形,根据结果与a的值无关求出b的值即可.【详解】(1)4A﹣(3A﹣2B)=4A﹣3A+2B=A+2B,∵A=2a2+3ab﹣2a﹣1,B=﹣a2+12ab+23,∴A+2B=2a2+3ab﹣2a﹣1+2(﹣a2+12ab+23)=2a2+3ab﹣2a﹣1﹣2a2+ab+4 3=4ab﹣2a+13;(2)因为4ab﹣2a+1 3=(4b﹣2)a+13,又因为4ab﹣2a+13的值与a的取值无关,所以4b﹣2=0,所以b=12.【点睛】本题考查了整式的加减、化简求值,熟练掌握运算法则是解答本题的关键.23.小丽暑假期间参加社会实践活动,从某批发市场以批发价每个m元的价格购进100个手机充电宝,然后每个加价n元到市场出售.(1)求售出100个手机充电宝的总售价为多少元(结果用含m,n的式子表示)?(2)由于开学临近,小丽在成功售出60个充电宝后,决定将剩余充电宝按售价8折出售,并很快全部售完.①她的总销售额是多少元?②相比不采取降价销售,她将比实际销售多盈利多少元(结果用含m 、n 的式子表示)? ③若m=2n ,小丽实际销售完这批充电宝的利润率为 (利润率=利润÷进价×100%) 解析:(1)售出100个手机充电宝的总售价为:100(m+n )元;(2)①实际总销售额为:92(m+n )元;②实际盈利为92n ﹣8m 元;③38%.【分析】(1)先求出每个充电宝的售价,再乘以100,即可得出答案;(2)①先算出60个按售价出售的充电宝的销售额,再计算剩下40个按售价8折出售的充电宝的销售额,相加即可得出答案;②计算100个按售价出售的充电宝的销售额,跟①求出来的销售额比较,即可得出答案;③将m=2n 代入实际利润92n-8m 中,再根据利润率=利润÷进价×100%,即可得出答案.【详解】解:(1)∵每个充电宝的售价为:m+n 元,∴售出100个手机充电宝的总售价为:100(m+n )元.(2)①实际总销售额为:60(m+n )+40×0.8(m+n )=92(m+n )元,②实际盈利为92(m+n )﹣100m=92n ﹣8m 元,∵100n ﹣(92n ﹣8m )=8(m+n ),∴相比不采取降价销售,他将比实际销售多盈利8(m+n )元.③当m=2n 时,张明实际销售完这批充电宝的利润为92n ﹣8m=38m 元, 利润率为38100m m×100%=38%. 故答案为38%.【点睛】 本题考查的是列代数式,解题的关键是要看懂题目意思,理清字母之间的数量关系. 24.已知230x y ++-=,求152423x y xy --+的值. 解析:-24.【分析】首先根据绝对值的非负性求出x ,y ,然后代入代数式求值.【详解】解:∵230x y ++-=,∴x+2=0,y-3=0,∴x=-2,y=3, ∴152423x y xy --+ ()()552342323=-⨯--⨯+⨯-⨯ ()5524=-+-24=-.【点睛】本题考查了代数式求值,利用非负数的和为零得出x 、y 的值是解题关键.25.老师在黑板上书写了一个正确的演算过程,随后用一张纸挡住了一个二次三项式,形式如下:+3(x ﹣1)=x 2﹣5x +1.(1)求所挡的二次三项式;(2)若x =﹣2,求所挡的二次三项式的值.解析:(1)x 2﹣8x +4;(2)24【分析】(1)根据“已知两个加数的和与其中的一个加数,求另一个加数用减法”,列出代数式并合并即可;(2)把x=-2代入(1)的结果,计算即可.【详解】(1)x 2﹣5x +1﹣3(x ﹣1)=x 2﹣5x +1﹣3x +3=x 2﹣8x +4;∴所挡的二次三项式为x 2﹣8x +4.(2)当x =﹣2时,x 2﹣8x +4=(﹣2)2﹣8×(﹣2)+4=4+16+4=24.【点睛】本题考查了整式的加减.根据加数与和的关系,列出求挡住的二次三项式的式子是解决本题的关键.26.我们将不大于2020的正整数随机分为两组.第一组按照升序排列得到121010a a a <<<,第二组按照降序排列得到121010b b b >>>, 求112210101010a b a b a b -+-++-的所有可能值.解析:1020100【分析】 由题意知,对于代数式的任何一项:|a k -b k |(k=1,2,…1010),较大的数一定大于1010,较小的数一定不大于1010,即可得出结论.【详解】解:(1)若a k ≤1010,且b k ≤1010,则a 1<a 2<…<a k ≤1010,1010≥b k >b k+1>…>b 1010,则a 1,a 2,…a k ,b k ,……,b 1010,共1011个数,不大于1010不可能;(2)若a k >1010,且b k >1010,则a 1010>a 1009>…>a k+1>a k >1010及b 1>b 2>…>b k >1010,则b 1,……,b k ,a k ……a 1010共1011个数都大于100,也不可能;∴|a1-b1|,……,|a1010-b1010|中一个数大于1010,一个数不大于1010,∴|a1-b1|+|a2-b2|+…+|a1010-b1010|=1010×1010=1020100.【点睛】本题考查数字问题,考查学生的计算能力,属于中档题.27.观察下列式子:0×2+1=12……①1×3+1=22……②2×4+1=32……③3×5+1=42……④……(1)第⑤个式子____,第⑩个式子_____;(2)请用含n(n为正整数)的式子表示上述的规律,并证明.解析:(1)4×6+1=52,9×11+1=102;(2)(n﹣1)(n+1)+1=n2;证明见解析.【分析】(1)根据已知等式中的规律即可得;(2)根据整数的平方等于前一个整数与后一个整数乘积与1的和可得,利用整理的运算法则即可验证.【详解】(1)第⑤个式子为4×6+1=52,第⑩个式子9×11+1=102;故答案为4×6+1=52,9×11+1=102;(2)第n个式子为(n﹣1)(n+1)+1=n2,证明:左边=n2﹣1+1=n2,右边=n2,∴左边=右边,即(n﹣1)(n+1)+1=n2.【点睛】本题主要考查数字的变化规律,解题的关键是根据已知等式得出(n﹣1)(n+1)+1=n2的规律,并熟练加以运用.28.设A=2x2+x,B=kx2-(3x2-x+1).(1)当x= -1时,求A的值;(2)小明认为不论k取何值,A-B的值都无法确定.小红认为k可以找到适当的数,使代数式A-B的值是常数.你认为谁的说法正确?请说明理由.解析:(1)A=1;(2)小红的说法正确,理由见解析.【解析】试题分析:(1)把x=-1代入A进行计算即可得;(2)先计算出A-B,根据结题即可得.试题(1)当x=-1时,A=2x2+x=2×(-1)2+(-1)=2-1=1;(2)小红的说法正确,理由如下:A-B=(2x2+x)-[kx2-(3x2-x+1)]=(5-k)x2+1,所以当k=5时,A-B=1,所以小红的说法是正确的.29.在数学活动课上,李老师设计了一个游戏活动,四名同学分别代表一种运算,四名同学可以任意排列,每次排列代表一种运算顺序,剩余同学中,一名学生负责说一个数,其他同学负责运算,运算结果既对又快者获胜,可以得到一个奖品.下面我们用四个卡片代表四名同学(如下):(1)列式,并计算:①3-经过A ,B ,C ,D 的顺序运算后,结果是多少?②5经过B ,C ,A ,D 的顺序运算后,结果是多少?(2)探究:数a 经过D ,C ,A ,B 的顺序运算后,结果是45,a 是多少? 解析:(1)①7;②206;(2)256a =或256a =-【分析】(1)把-3和5经过A ,B ,C ,D 的运算顺序计算即可;(2)根据已知条件列列出关于a 的方程计算即可;【详解】(1)①2[(3)2(5)]67-⨯--+=;②2[5(5)]26206--⨯+=;(2)()()226545a +--=,()2620a +=, 解得256a =或256a =-.【点睛】本题主要考查了规律型数字变化类,一元二次方程的求解,准确计算是解题的关键. 30.观察下列单项式-2x ,4x 2,-8x 3,16x 4,-32x 5,64x 6,…(1)分别指出单项式的系数和指数是怎样变化的?(2)写出第10个单项式;(3)写出第n 个单项式.解析:(1)见解析;(2)(-2)10x 10=1024x 10;(3)(-2)n x n .【分析】(1)根据单项式的次数与系数定义得出即可;(2)根据单项式系数与次数的变化得出一般性规律得出第10个单项式;(3)根据单项式系数与次数的变化得出一般性规律,进而得出第n 个单项式.【详解】(1)通过观察,系数为:-2,4=(-2)2,-8=(-2)3,16=(-2)4,-32=(-2)5指数分别是:1,2,3,4,5,6(2)第10个单项式为:(-2)10x 10=1024x 10;(3)第n 个单项式为:(-2)n x n .【点睛】本题考查了单项式的系数、次数以及数字变化规律,根据已知得出数字变化规律是解题关键.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
人教版七年级数学 第2章 整式的加减 拔高及易错题精选(全卷总分150分) 姓名 得分一、选择题(每小题4分,共40分)1.计算3a 3+a 3,结果正确的是( )A .3a 6B .3a 3C .4a 6D .4a 32.单项式 −21a 2n −1b 4 与 3a 2m b 8m 是同类项 , 则 (1+n )100⋅(1−m )102= ( )A .无法计算B .14C .4D .13.已知a 3b m +x n -1y 3m -1-a 1-s b n+1+x 2m -5y s+3n 的化简结果是单项式,那么mns=( )A. 6B. -6C. 12D. -12 4.若A 和B 都是五次多项式,则( )A. A +B 一定是多式B. A -B 一定是单项式C. A -B 是次数不高于5的整式D. A +B 是次数不低于5的整式5.a -b=5,那么3a +7+5b -6(a +31b)等于( )A. -7B. -8C. -9D. 106.随着服装市场竞争日益激烈,某品牌服装专卖店一款服装按原售价降价a 元后,再次打7折,现售价为b 元,则原售价为( )A .710b a +B .107ba +C .710ab + D .107a b +7.如图,阴影部分的面积是( )A. 211xyB. 213xy C .6xy D .3xy8.一个多项式A 与多项式B =2x 2-3xy -y 2的和是多项式C =x 2+xy +y 2,则A 等于( )A .x 2-4xy -2y 2B .-x 2+4xy +2y 2C .3x 2-2xy -2y 2D .3x 2-2xy9.当x =1时,ax +b +1的值为-2,则(a +b -1)(1-a -b)的值为( ) A .-16 B .-8 C .8 D .1610.一种商品进价为每件a 元,按进价增加25%出售,后因库存积压降价,按售价的九折出售,每件还盈利( )A. 0.125a 元B. 0.15a 元C. 0.25a 元D. 1.25a 元 二、填空题(每小题5分,共30分)11.单项式32423ab π-的系数是 ,次数是 .12.已知单项式23b c x y 与单项式22112m n x y +-的差是31n m ax y ++,则abc = .13.当x=1时,代数式ax 5+bx 3+cx+1=2017,当x=-1时,ax 5+bx 3+cx +1= . 14.已知3a b a b-=+,代数式2()4()3()a b a b a b a b +---+的值为 .15.已知a ,b ,c 在数轴上的位置如图所示,化简:|a -b|+|b +c|+|c -a|= .16.平移小菱形◇可以得到美丽的“中国结”图案,下面四个图案是由◇平移后得到的类似“中国结”的图案,按图中规律,第20个图案中,小菱形的个数是 .三、解答题(共80分)17.(8分)已知数轴有A 、B 、C 三点,位置如图,分别对应的数为x 、2、y ,若,BA=BC ,求4x+4y+30的值。
18.(8分)先化简,再求值:2xy -21(4xy -8x 2y 2)+2(3xy -5x 2y 2), 其中x =31,y =-3.19.(8分)多项式a 2x 3+ax 2-4x 3+2x 2+x+1是关于x 的二次三项式,求a 2+21a +a 的值.20.(8分)已知多项式(2x 2+ax -y +6)-(bx 2-2x +5y -1). (1)若多项式的值与字母x 的取值无关,求a 、b 的值;(2)在(1)的条件下,先化简多项式2(a 2-ab +b 2)-(a 2+ab +2b 2),再求它的值.21.(8分)若代数式2x 2+3y+7的值为8,求代数式6x 2+9y+8的值.22.(10分)已知yx xy +=2,求代数式y xy x yxy x -+-+-3353的值。
23.(10分) 按如下规律摆放五角星:(1(224.(12分)在边长为a 的正方形的一角减去一个边长为的小正方形(a>b ),如图①① ② (1)由图①得阴影部分的面积为 .(2)沿图①中的虚线剪开拼成图②,则图②中阴影部分的面积为 .(3)由(1)(2)的结果得出结论: = . (4)利用(3)中得出的结论计算:20172-2016225.(12分)自我国实施“限塑令”起,开始有偿使用环保购物袋,为了满足市场需求,某厂家生产A 、B 两种款式的布质环保购物袋,每天生产4500个,两种购物袋的成本和售价如下表,若设每天生产A 种购物袋 x 个.(1)用含x 的整式表示每天的生产成本,并进行化简;(2)用含x 的整式表示每天获得的利润,并进行化简(利润=售价-成本); (3)当x =1500时,求每天的生产成本与每天获得的利润.人教版七年级数学 第2章 整式的加减 拔高及易错题精选参考答案一、选择题(每小题4分,共40分)1.计算3a 3+a 3,结果正确的是( D )A .3a 6B .3a 3C .4a 6D .4a 32.单项式 −21a 2n −1b 4 与 3a 2m b 8m 是同类项 , 则 (1+n )100⋅(1−m )102= ( B )A .无法计算B .14C .4D .13.已知a 3b m +x n -1y 3m -1-a 1-s b n+1+x 2m -5y s+3n 的化简结果是单项式,那么mns=( D )A. 6B. -6C. 12D. -12 4.若A 和B 都是五次多项式,则( C )A. A +B 一定是多式B. A -B 一定是单项式C. A -B 是次数不高于5的整式D. A +B 是次数不低于5的整式5.a -b=5,那么3a +7+5b -6(a +31b)等于( B )A. -7B. -8C. -9D. 106.随着服装市场竞争日益激烈,某品牌服装专卖店一款服装按原售价降价a 元后,再次打7折,现售价为b 元,则原售价为( A )A .710b a +B .107ba +C .710ab + D .107a b +7.如图,阴影部分的面积是( A )A. 211xyB. 213xy C .6xyD .3xy8.一个多项式A 与多项式B =2x 2-3xy -y 2的和是多项式C =x 2+xy +y 2,则A 等于( B )A .x 2-4xy -2y 2B .-x 2+4xy +2y 2C .3x 2-2xy -2y 2D .3x 2-2xy9.当x =1时,ax +b +1的值为-2,则(a +b -1)(1-a -b)的值为( A ) A .-16 B .-8 C .8 D .1610.一种商品进价为每件a 元,按进价增加25%出售,后因库存积压降价,按售价的九折出售,每件还盈利( A )A. 0.125a 元B. 0.15a 元C. 0.25a 元D. 1.25a 元二、填空题(每小题5分,共30分)11.单项式32423ab π-的系数是 382π- ,次数是 5 . 12.已知单项式23b c x y 与单项式22112m n x y +-的差是31n m ax y ++,则abc = 5 .13.当x=1时,代数式ax 5+bx 3+cx+1=2017,当x=-1时,ax 5+bx 3+cx +1= -2015 . 14.已知3a b a b-=+,代数式2()4()3()a b a b a b a b +---+的值为 2 .15.已知a ,b ,c 在数轴上的位置如图所示,化简:|a -b|+|b +c|+|c -a|= -2a .16.平移小菱形◇可以得到美丽的“中国结”图案,下面四个图案是由◇平移后得到的类似“中国结”的图案,按图中规律,第20个图案中,小菱形的个数是 800 .三、解答题(共80分)17.(8分)已知数轴有A 、B 、C 三点,位置如图,分别对应的数为x 、2、y ,若,BA=BC ,求4x+4y+30的值。
解:结合图形可知BA =2-x ,BC =y -2.∵BA=BC , ∴2-x =y -2, ∴x +y =4,∴4x +4y +30=4(x +y)+30=4×4+30=46. 18.(8分)先化简,再求值:2xy -21(4xy -8x 2y 2)+2(3xy -5x 2y 2), 其中x =31,y =-3.解:原式=2xy -2xy +4x 2y 2+6xy -10x 2y 2=6xy -6x 2y 2.当x =31,y =-3时,原式=6×31×(-3)-6×(31)2×(-3)2=-6-6=-12. 19.(8分)多项式a 2x 3+ax 2-4x 3+2x 2+x+1是关于x 的二次三项式,求a 2+21a +a 的值.解:∵多项式a 2x 3+ax 2-4x 3+2x 2+x+1是关于x 的二次三项式 ∴(a 2-4)=0∴a=±2 又∵a+2≠0 ∴a≠-2 ∴a=2∴a 2+21a +a=22+221+2=4+41+2=42520.(8分)已知多项式(2x 2+ax -y +6)-(bx 2-2x +5y -1).(1)若多项式的值与字母x 的取值无关,求a 、b 的值;(2)在(1)的条件下,先化简多项式2(a 2-ab +b 2)-(a 2+ab +2b 2),再求它的值. 解:(1)原式=2x 2+ax -y +6-bx 2+2x -5y +1=(2-b)x 2+(a +2)x -6y +7.因为多项式的值与字母x 的取值无关,所以a +2=0,2-b =0,解得a =-2,b =2. (2)原式=2a 2-2ab +2b 2-a 2-ab -2b 2=a 2-3ab.当a =-2,b =2时,原式=4-3×(-2)×2=16. 21.(8分)若代数式2x 2+3y+7的值为8,求代数式6x 2+9y+8的值. 解:∵2x 2+3y+7=8∴2x 2+3y=1∴6x 2+9y+8=3(2x 2+3y)+8=3×1+8=11. 22.(10分)已知yx xy +=2,求代数式y xy x yxy x -+-+-3353的值。
解:∵yx xy+=2 ∴xy=2(x+y) ∴y xy x y xy x -+-+-3353=xy y x xy y x 3533+---+=xy y x xy y x 3)(5)(3++--+=)(23)()(25)(3y x y x y x y x +⨯++-+⨯-+ =)(6)()(10)(3y x y x y x y x +++-+-+ =)(5)(7y x y x ++-=57- 23.(10分) 按如下规律摆放五角星:(1(2 解:(1)观察发现,第1个图形五角星的个数是,1+3=4,第2个图形五角星的个数是,1+3×2=7, 第3个图形五角星的个数是,1+3×3=10, 第4个图形五角星的个数是,1+3×4=13, …依此类推,第n 个图形五角星的个数是,1+3×n=3n+1; (2)令3n+1=2017, 解得:n=672故第672个图案恰好含有2017个五角星.24.(12分)在边长为a 的正方形的一角减去一个边长为的小正方形(a>b ),如图①① ②(1)由图①得阴影部分的面积为 .(2)沿图①中的虚线剪开拼成图②,则图②中阴影部分的面积为 .(3)由(1)(2)的结果得出结论: = . (4)利用(3)中得出的结论计算:20172-20162解:(1)图①阴影部分的面积为a 2-b 2.(2)图②阴影部分的面积为(2a+2b)(a -b)÷2=(a+b)(a -b). (3)由(1)(2)可得出结论:a 2-b 2=(a+b)(a -b). (4)20172-20162=(2017+2016)(2017-2016)=4033.25.(12分)自我国实施“限塑令”起,开始有偿使用环保购物袋,为了满足市场需求,某厂家生产A 、B 两种款式的布质环保购物袋,每天生产4500个,两种购物袋的成本和售价如下表,若设每天生产A 种购物袋 x 个.(1)用含x 的整式表示每天的生产成本,并进行化简;(2)用含x 的整式表示每天获得的利润,并进行化简(利润=售价-成本); (3)当x =1500时,求每天的生产成本与每天获得的利润. 解:(1)2x +3(4500-x)=-x +13500,即每天的生产成本为(-x +13500)元.(2)(2.3-2)x +(3.5-3)(4500-x)=-0.2x +2250,即每天获得的利润为(-0.2x+2250)元.(3)当x=1 500时,每天的生产成本:-x+13500=-1500+13 500=12000元;每天获得的利润:-0.2x+2250=-0.2×1500+2 250=1950(元).。