六年级下册数学导学案《幂的乘方》

合集下载

同底数幂的乘法(导学案段灵芝)

同底数幂的乘法(导学案段灵芝)

14.1.1《同底数幂的乘法》导学案英山县长冲中学 段灵芝一、新课导入:1.导入课题:宇宙飞船载人航天飞行是我国航天事业的伟大壮举。

它飞行的速度约为104米/秒,每天飞行时间约为105秒。

它每天约飞行了多少米?2.学习目标:(1)能根据乘方的意义推导同底数幂的乘法法则。

(2)能准确熟练地运用同底数幂的乘法法则进行计算.3.引导复习:(1)na 表示的意义是_________,这种运算的结果叫_____ ,其中a 叫做 _____________,n 是__________ ,(2)2×2×2=2( ) a ·a · a · a · a= a ( )二、分层学习: 第一层次学习:同底数幂的乘法法则1.自学指导:自学内容:课本P95页内容。

自学时间:8分钟自学方法:结合乘方的意义,运用从特殊→一般→特殊的思考方法。

自学参考提纲:(1)认真阅读问题1, 1015表示____________,103表示____________,18个10相乘写成幂的形式是_________。

(2)用问题1中的思路完成以下探究题目。

①25×22=( )×( )=( )= 2 ( )②a 3×a 2= ( )×( )=( )= a ( )③5m ·5n=( )×( )= 5 ( )④a m ·a n =( )( )=( )=a ( )(3)观察以上各等式:以上各式都是_______运算,各因式都是____的形式,各因式的底数_______,进行这种运算的方法是底数______,指数______。

(4)请你用一句话总结上述规律。

2.自学:认真看课本,结合自学指导进行自学。

3.助学:师助生:①引导学生复习回顾乘方的意义,②帮助学生理解同底数幂乘法的运算法则。

4.强化:(1)同底数幂的乘法使用的范围是幂的底数相同,且是相乘关系。

初中数学教学课例《幂的乘方》教学设计及总结反思

初中数学教学课例《幂的乘方》教学设计及总结反思

教材分析 过程。可先以具体Hale Waihona Puke 数为例,明确幂的乘方的意义,导出性
质,从具体到抽象的思想方法。
重点:1、幂的乘方运算法则;2、幂的乘方运算法则的
应用;
难点:1、理解幂的乘方运算法则的推理过程;2、运算
法则的应用;
1.知识与技能:掌握幂的运算法则;运用幂的运算法则
解决数学问题。
2.过程与方法:经历探索幂的乘方运算法则的过程,进 教学目标
(1)同义数幂相乘的运算法则:
aman=am+n(m,n 都是正整数)
注:(逆运算)am+n=aman(m,n 都是正整数)
(2)计算:
教学过程
①、22×23×24②、a2a2a2③、amamam 2.提出问题:一个正方体的棱长是 x,那么它的体积是
多少?
在上面的结论中,①当 x=10 时,体积是多少?
②如果它的棱长是 102,它的体积又是多少?(只表示
不计算)
③如果是 104 呢怎样计算?(只表示不计算)
3.探究:根据乘方的意义与同底数幂的乘法填空,看看 计算的结果有什么规律?
(1)(32)3=()×()×()=3() (2)(a2)3=()×()×()=a() (3)(am)3=()×()×()=a()(m 为正整数) 4.归纳: 对于任意底数 a 与任意正整数 m、n SHAPE\*MERGEFORMAT SHAPE\*MERGEFORMAT n 个 am 相乘 幂的乘方运算法则:(am)n=amn(m,n 都是正整数) 文字语言:幂的乘方,底数不变,指数相乘. 注:(逆运算)amn=(am)n=(an)m 5.应用及巩固: (1)例:计算: ①(103)5②(a4)2③(am)2④-(X4)3 解:①(103)5=103×5=1015②(a4)2=a4×4=a16 ③(am)2=am×2=a2m④-(x4)3=-x4×3=-x12 (2)下面计算是否正确?如有错误请改正。 ①x3x3=x2X3②x2+x2=x4③a4a2=a6 ④(a3)7=a10⑤(x5)3=x15⑥-(a3)4=a12 (3)例:把[(x+y)2]4 化成(x+y)n 的形式。

《同底数幂的乘法》教学案例(5篇)

《同底数幂的乘法》教学案例(5篇)

《同底数幂的乘法》教学案例(5篇)(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如总结报告、心得体会、策划方案、合同协议、条据文书、竞聘演讲、心得体会、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as summary reports, insights, planning plans, contract agreements, documentary evidence, competitive speeches, insights, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please stay tuned!《同底数幂的乘法》教学案例(5篇)同底数幂的乘法(一)这次本店铺为您整理了5篇《《同底数幂的乘法》教学案例》,在大家参考的同时,也可以分享一下本店铺给您的好友哦。

初中数学《幂的乘方》教案3

初中数学《幂的乘方》教案3

《幂的乘方》教案3★新课标要求(一)知识与技能1.了解幂的乘方的运算性质,会进行幂的乘方运算;2.能利用幂的乘方的性质解决一些实际问题.(二)过程与方法1.学生通过阅读教材理解并掌握概念和法则,提高自主学习能力.2.通过学生思考、练习、讨论等过程,提高学生分析问题,解决问题及综合运用知识能力.(三)情感、态度与价值观1.学生在阅读概念及探究和运用法则过程中,培养勇于探索的精神,树立积极思考,克服困难的信心.2.加强学生团队及合作精神.★学情介绍1.学生已经学习了同底数幂的乘法,而且能够做出和课本上难度类似的题目,所以本节课的内容完全可以通过上一节的内容和有理数乘方的意义得到;2.作为现在的学生依靠计算机的比较多,导致计算能力较为薄弱,但本节课的内容简单的计算学生能够通过课堂练习和课后的复习掌握,因此要求学生对于幂的乘方的运算性质语言描述和字母表示能熟练说出,并会应用幂的乘方的运算性质解决简单的问题★教学重点了解幂的乘方的运算性质,会进行幂的乘方.★教学难点幂的乘方与同底数幂的乘法运算性质区别,发展推理能力和有条理的表达能力.★教学方法教师适当引导;学生自主学习,通过阅读教材、与同学讨论、交流获取知识.★教学过程(一)回忆时光问题1 a2表示什么?a表示什么?2表示什么?a n表示什么意义?问题2 大家能叙述同底数幂乘法运算性质问题1并用字母表示吗?问题3 我们能用同底数幂乘法的运算性质解决这个a2·a5·a n题目吗?问题4 若已知正方体的棱长为a,那么正方体的体积如何求?若正方体的棱长为102,你能计算它的体积吗?【设计意图】以上几个问题中幂的意义在本节中仍旧是法则推导的主要依据,其地位不可小觑,而同底数幂的乘法的推导过程,其中包含的算理知识在本节中仍是精神主旨,因而复习要细致.同时问题4是为了引入本节课.(二)新课导航1.(62)4=__·__·__·__ =6—+—+—+—=6—×—=6—我们大家能仿照上面的题目完成下面的计算吗?来试一下吧①a2)3②(a m)2 ③(a m)n问题5 我们能说出幂的乘方的运算性质吗?【设计意图】本环节的引入是从问题情境开始的,能够引起学生兴趣、好奇心、激发求知欲.在探索的过程中学生将逐步地体会幂的乘方运算的必要性,了解数学与现实世界的联系,鼓励学生根据米的意义,独立来完成这几个问题,应用前几个问题的目的,是夯实用幂的意义来处理这类问题的方法,让每个学生都能体会这种计算方法的实质.而计算(4)题时,先让学生进行猜想,然后再来验证这样的一个字母表达的过程.探索的方式从特殊到一般,符合学生的认知规律,进而总结出幂的乘方法则,这是本节课的重点.(三)知识亮点幂的乘方的运算性质,即(a m)n=a mn(m、n都是正整数)辨析法则判断下面计算是否正确?若有误请改正(1)(x3)3=x6(2)a6·a4=a24注意1.公式中的底数a可以是具体的数,也可以是代数式.例如[(y-x)2]n2.幂的乘方中指数相乘,而同底幂的乘法中是指数相加【设计意图】让学生把幂的乘方和同底幂的乘法一块区别记忆,从而加深对幂的乘方的认识.学习记忆的方法有几种,单纯的记忆学生遗忘的可能性比较大,但通过学生自己探索的过程和对比同底幂的乘法过程,相信学生能够在自己的脑海中留下深刻的印象.(四)你争我抢例1计算(1)(102)3(2)(b5)5(3)(a n)3(4)-(x2)m(5)(y2)3·y(6)2(a2)6-(a3)4【设计意图】学生刚刚接触到新的运算法则时,往往会感到十分的生疏,或者说对它的感觉仍停留在“雾里看花”状态,怎样拔开迷雾见真相?这就需要一个过程,也就是对新知识从熟悉到熟练的过程,要达到这个目的一定要精选基本习题,所以在处理例题与随堂练习时,一定要“精心”,无论是基本习题,还是变化的习题,都要以透彻本节课的学习目标是否达成为最终目标.(五)应用提高例2 若甲球的半径是乙球的n倍,那么甲球的体积是乙球的多少倍?(六)联系拓广(1)a12=(a3)()=(a2)()=a3·a()=()3=()4(2)a2m=(a2)()=(a m)()=a2·a()【设计意图】学生在学习幂的乘方之后,应对同底数幂相乘和幂的乘方之间的关系进一步掌握.对个别学生可能有难度,但本题也是为了学生了解幂的乘方的逆向运算,培养学生的逆向思维能力而专门设计的.在解决以后的问题中,逆用幂的乘方和同底数幂的乘法的运算性质也很常见.(七)课堂小结谈一下你的收获,总结自己在课上出错的原因(八)样题检测计算(1)-[(x2)]3(2)(a)2·(a2)2 (3)x·x4-x2·x3(九)课后反思本节课的设计意图是让学生以“观察―归纳―概括”为主要线索,在自主探索与合作交流中获得知识,使不同层次的学生都能有所收获与发展.从本节课的教学反馈来看,创设的问题情境激发了学生浓厚的学习兴趣,在老师的引导下,学生时而轻松愉快,时而在观察、计算、思考、交流、总结,思维能力和有条理的语言表达能力得到培养.在亲身体验和探索中认识数学、解决问题,在小结中找出两者的区别,从本质上理解幂的乘方,合作精神得以培养,较好地完成了本节课的学习目标.让学生探究幂的乘方的性质时,发现有少部分学生不能进行必要的推理,而是直接使用教材的结论[幂的乘方,底数不变,指数相乘;用字母表示:(a m)n=a mn]来解决本节课的内容练习.直接借用结论来使用的学习怕有这样几种情形:(1)学生懒得动脑,做一个实足的“拿来主义”更为合算,这种情况日久会养成一个不愿动脑的习惯,习以为常,学生的推理能力会得到“退化”.(2)学生的数学基础比较差,不知从何入手,也不知如何进行推理——说理为什么?.这种情况的学生应得到数学基础较好的学生或老师必要的帮助或指导.我在指导学生学习幂的乘方时,对学生易混淆的式子或错误从各种性质的本质入手进行必要的区别,从而明确错误的原因何在.学生练习时,并没有鼓励学生直接套用公式(法则)进行解题,而是让他们说明每一步的理由.这样做的目的是让学生进一步体会乘方的意义和幂的意义.。

14.1.2幂的乘方教案

14.1.2幂的乘方教案

14.1.2幂的乘方教案第一篇:14.1.2幂的乘方教案§14.1.2幂的乘方【学习目标】1、掌握幂的乘方计算公式.2、熟练应用幂的乘方公式解决问题.【预习检测】1、同底数幂的乘法法则是_____________________ 用公式如何表示_____________________________2、5×5=534();a×a=a344();a+a=______.3443、根据乘方的意义,a表示3个_____相乘,即a=___×____×____.那么(a)表示3个_____相乘,即(a)=___×____×____.二、问题导学:问题1.根据乘方的意义及同底数幂的乘法填空: 32 33()m3m3(1)(2)= 2×2 = 22322(m是正整数);(2)(3)= 3×3 ×3= 323222()(3)(a)= a×a ×a = a(4)(a)= a×a ×a = a问题2.归纳幂的乘方计算公式: mnm3mmm()()(a)=___________________________=__________三、自主反馈:1.(a)=______________;a×a =___________;2.计算:(1)(10)(2)(5)(3)(a)(4)(a)解:(1)(10)=10×_______=10(2)(3)(4)353()35433m33232四、典型例题:探究1、计算:(1):-(x)(2): [(-x)] 4343探究2、计算:(1): t2⋅(t3)2(2):探究3(如何进行公式的逆运算?)1.已知2n=3,则23n=(2n)()=_____=______.2.已知an=5, 则a2n=____________________________.3.已知am=2, an=3,则am+n =_______________________;amn=_______________________;a2m+3n=_______________________.五、归纳小结: 1.幂的乘方 2.公式的逆运用.(x⋅x2⋅x3)4六、课堂作业: 1.判断下列计算正误:358(1)(a)= a···············()(2)a·a = a·············()(3)a+a = a·············()(4)(a)·a = a·············()2.下列运算正确的是()33332644A.(x)= x·x B.(x)=(x)34 264862C.(x)=(x)D.(x)=(x)23 494 483 515 3.计算(-x)的结果是()556 6A.-x B.x C.-x D.x 234.下列计算错误的是()55254m2m2A.(a)= a B.(x)=(x)2m m2 2m 2mC.x=(-x)D.a=(-a)5.在下列各式的括号内, 应填入b的是()12 8126A.b=()B.b =()123 122C.b =()D.b =()46.计算填空(1).(2)=__________=___________.(2).(6)=__________=___________.(3).(-2)=__________=___________.(4).(a)=__________.(5).若x=3,则x=________.2 3(6).b·b·b=________.m2m32m5 347.计算:(1).(10)(2).(-x)32(3).-(xm)5(5).(x·x2·x3)48、(1).已知3n=5,求32n.(2).已知am=3, an=5,分别求am+n;(4).(a2)3·a5(6).[(y2)3] 4amn ;am+2n.第二篇:《1.2幂的乘方与积的乘方》教案《1.2幂的乘方与积的乘方》教案一、教学目标:1.知识与技能:了解积的乘方的运算性质,并能解决一些实际问题.2.过程与方法:经历探索积的乘方运算性质的过程,进一步体会幂的意义,发展推理能力和有条理的表达能力.3.情感与态度:体会学习数学的兴趣,培养学习数学的信心,感受数学的内在美.二、教学重难点:重点:积的乘方运算性质:(ab)n= anbn(n是正整数).难点:幂的运算性质的综合运用及混合运算.三、教学过程设计:本节课设计了几个教学环节:复习回顾、探索交流、知识扩充、公式逆用、课堂小结、布置作业.复习回顾活动内容:复习前几节课学习的有关幂的三个知识点.1.幂的意义:a⨯a⨯Λ⨯a=a 1424434n个an2.同底数幂的乘法运算法则am⋅an=am+n(m、n为正整数)3.幂的乘方运算法则(am)n=amn(m、n都是正整数)探索交流活动内容:地球可以近似地看做是球体,如果用V,r 分别代表球的体积和半径,那么V=43πr.地球的半径约为6×103 km,它的体积大约是多少立方千米?3本环节是这节课最为重要的环节之一,充分借助教材提供的求地球体积的情境,引导学生思考“(6×103)3等于多少”,同时分析这种运算的特征,展开对“积的乘方”运算的探索,教师还可以在课上可以对直接学生进行升级式提问:(1)根据幂的意义,(ab)3表示什么?(2)为了计算(化简)算式ab·ab·ab,可以应用乘法的交换律和结合律.又可以把它写成什么形式?(3)由(ab)3=a3b3 出发,你能想到更为一般的公式吗?活动目的:经历了前两节课的探究,在本课中可以启发学生自主从具体特殊的数字问题到抽象的字母,新的挑战更会激起学生学习的兴趣,达到更好的学习效果.知识扩充活动内容:积的乘方的运算法则:(ab)n=anbn 积的乘方,等于每一因数乘方的积.公式拓展:三个或三个以上的积的乘方,是否也具有上面的性质?怎样用公式表示?进一步探讨出答案(abc)n=an·bn·cn 课堂小结活动内容:师生互相交流本堂课上应该掌握的积的乘方的特征,教师对课堂上发现的学生掌握不好的地方给以强调.布置作业1.完成课本习题1.2的1、2.2.拓展作业:你能用几何图形直观的解释(3b)2=9b2吗?第三篇:幂的乘方教案14.1.2 幂的乘方【学习目标】1.经历探索幂的乘方的运算性质的过程,发展推理能力和数学语言的表述能力,体会从特殊到一般,从具体到抽象的思想方法;2.理解幂的乘方的运算性质、幂的乘方与同底数幂的乘法的区别与联系,能运用性质进行简单的计算.一、复习:1.回顾同底数幂的乘法:aman=am+n(m,n都是正整数)2.计算:(1)a4·a4·a4;(2)x3·x3·x3·x3。

人教版《同底数幂的乘法》教案

人教版《同底数幂的乘法》教案

最新人教版《同底数幂的乘法》教案一、教学目标:1. 让学生理解同底数幂的乘法概念,掌握同底数幂相乘的法则。

2. 培养学生运用同底数幂的乘法解决实际问题的能力。

3. 提高学生的数学思维能力和运算能力。

二、教学内容:1. 同底数幂的乘法定义及法则。

2. 幂的乘方与积的乘方。

3. 实数范围内同底数幂的乘法运算。

4. 应用题解答。

三、教学重点与难点:1. 重点:同底数幂的乘法法则及其应用。

2. 难点:幂的乘方与积的乘方的运算规律。

四、教学方法:1. 采用问题驱动法,引导学生主动探究同底数幂的乘法规律。

2. 运用案例分析法,让学生在实际问题中运用同底数幂的乘法。

3. 采用小组讨论法,培养学生的团队合作精神。

4. 利用多媒体辅助教学,提高教学效果。

五、教学过程:1. 导入新课:复习幂的基本概念,引导学生思考同底数幂的乘法问题。

2. 讲解同底数幂的乘法法则,通过示例让学生理解并掌握规律。

3. 练习巩固:布置一些同底数幂的乘法题目,让学生独立完成,检验掌握情况。

4. 讲解幂的乘方与积的乘方,引导学生发现运算规律。

5. 应用拓展:给出一些实际问题,让学生运用同底数幂的乘法解决问题。

7. 布置作业:布置一些有关同底数幂的乘法的练习题,巩固所学知识。

六、教学评价:1. 通过课堂提问、练习册和课后作业评估学生对同底数幂乘法的理解程度。

2. 观察学生在解决实际问题时是否能正确运用同底数幂的乘法法则。

3. 分析学生的练习和考试情况,评估学生对幂的乘方与积的乘方运算规律的掌握。

七、教学资源:1. 教学PPT或黑板,用于展示同底数幂的乘法规则和示例。

2. 练习册和习题,用于学生练习和巩固知识点。

3. 教学软件或多媒体材料,用于辅助解释和展示复杂的数学概念。

4. 实物模型或图示,帮助学生直观理解幂的概念。

八、教学进度安排:1. 第一课时:介绍同底数幂的乘法定义及法则。

2. 第二课时:讲解幂的乘方与积的乘方,并进行相关练习。

3. 第三课时:应用同底数幂的乘法解决实际问题。

鲁教版数学六年级下册6.2《幂的乘方与积的乘方》教学设计

鲁教版数学六年级下册6.2《幂的乘方与积的乘方》教学设计

鲁教版数学六年级下册6.2《幂的乘方与积的乘方》教学设计一. 教材分析《幂的乘方与积的乘方》是鲁教版数学六年级下册第6.2节的内容。

本节内容是在学生掌握了有理数的乘方的基础上进行的,是进一步深化幂的运算规则,培养学生对幂的运算能力,为学习初中数学打下基础。

本节课的主要内容是让学生掌握幂的乘方与积的乘方的运算法则,并能够灵活运用。

二. 学情分析六年级的学生已经掌握了有理数的乘方,对幂的概念和运算规则有一定的了解。

但是,对于幂的乘方与积的乘方的运算法则,还需要进一步的引导和讲解。

此外,学生的数学思维能力和解决问题的能力有待提高。

三. 教学目标1.理解幂的乘方与积的乘方的运算法则。

2.能够运用幂的乘方与积的乘方的运算法则进行计算。

3.提高学生的数学思维能力和解决问题的能力。

四. 教学重难点1.幂的乘方与积的乘方的运算法则。

2.灵活运用幂的乘方与积的乘方的运算法则解决问题。

五. 教学方法1.讲解法:对幂的乘方与积的乘方的运算法则进行详细的讲解,让学生理解和掌握。

2.案例分析法:通过具体的案例,让学生理解和运用幂的乘方与积的乘方的运算法则。

3.练习法:通过课堂练习和课后作业,巩固学生对幂的乘方与积的乘方的运算法则的理解和运用。

六. 教学准备1.PPT课件:制作幂的乘方与积的乘方的运算法则的PPT课件。

2.教学案例:准备一些典型的幂的乘方与积的乘方的运算案例。

3.练习题:准备一些幂的乘方与积的乘方的运算练习题。

七. 教学过程1.导入(5分钟)通过复习有理数的乘方,引导学生回顾幂的概念和运算规则。

然后,提出本节课的主要学习内容:幂的乘方与积的乘方。

2.呈现(15分钟)利用PPT课件,展示幂的乘方与积的乘方的运算法则。

通过详细的讲解,让学生理解和掌握运算法则。

3.操练(15分钟)让学生通过课堂练习,运用幂的乘方与积的乘方的运算法则进行计算。

教师巡回指导,解答学生的疑问。

4.巩固(10分钟)通过一些典型的案例,让学生运用幂的乘方与积的乘方的运算法则进行计算。

《幂的乘方》

《幂的乘方》

04
幂的乘方的计算方法与技巧
幂的乘方的计算方法
底数不变,指数相乘
幂的乘方时,底数不变,指数相乘。即 $(a^m)^n = a^{m times n}$。
幂的乘方与积的乘方
幂的乘方与积的乘方运算法则不同,幂的乘方时底数不变,指数相乘;而积的乘 方时,每个因式分别乘方,再把所得的幂相乘。即 $(ab)^n = a^n times b^n$ 。
• 幂的乘方运算规则的推导意义在于它揭示了幂的乘方运算与指 数运算之间的内在联系。通过幂的乘方运算规则的推导,我们 可以更好地理解指数运算的性质和规律,进一步加深对幂的理 解和掌握。同时,幂的乘方运算规则也是后续学习指数运算法 则的基础,对于数学学习和应用具有重要意义。
03
幂的乘方的性质与定理
幂的乘方的性质
幂的乘方运算规则的证明方法
证明方法一
利用指数的性质进行证明。根据指数的性质,$a^m times a^n = a^{m+n}$ ,因此,$(a^m)^n = a^m times a^m times ldots times a^m = a^{m+m+...+m} = a^{m times n}$。
证明方法二
利用幂的定义进行证明。根据幂的定义,$(a^m)^n$可以表示为$(a^m) times (a^m) times ldots times (a^m)$(共$n$个$a^m$相乘),因此, $(a^m)^n = a^{m+m+...+m} = a^{m times n}$。
幂的乘方运算规则的推导意义
幂的乘方时底数不变
幂的乘方时,底数保持不变,只对指 数进行相乘。
幂的乘方时指数相乘
幂的乘方时,指数之间进行相乘,而 不是相加或相减。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1
幂的乘方导学案
学习目标:
1、学习探索幂的乘方的运算性质的过程,进一步体会幂的意义,发展推理能力和有条理的表达能力。

2、学习幂的乘方的运算性质,学会运用“幂的乘方”法则进行运算。

3、熟练掌握幂的乘方法则和同底数幂相乘的法则的区别及这两个法则的混合运用。

学习过程:
一、 复习巩固、交流预习 (10分)
1.同底数幂的乘法法则(表达式) (1)7233⨯ = (2)3=m
a ,4=n a ,n m a +2 =
2、幂32
的三次方怎么表示? 3、试一试
(1) 42)6( (2) 32)(a (3) 2
)(m a 二、互助探究(10分)
1、根据乘方的意义及同底数幂的乘法填空: (1) (23)2
=23
×23
= ;
(2) (32)3= × × = ; (3) (a 3)5= × × × = 。

观察结果中幂的指数与原式中幂的指数及乘方的指数,猜想它们之间有什么关系?结果中的底数与原式的底数之间有什么关系? 3、猜想:n
m a )(=
幂的乘方的意义(表达式)
语言描述: 三、分层提高(15分)
1.、判断下面计算是否正确?如果有错误请改正: (1) (x 3)3 = x 6 ; (2)a 6 · a 4 = a 24 .
2.计算:
(1) (103)3 ; (2) -(a 2)5 ;
(3) (x 3)4 · x 2 ; (4) [(-x)2 ]3
3.若2a =3, 2b =5, 2c =30,试用a,b 表示出c.
四、总结归纳(3分)
1、 幂的乘方性质用语言表达为______________________________.
2、 同底数幂相乘与幂的乘方的区别:前者是指数_______,后者是指数____. 五、巩固反馈(7分)
1、计算: (1) (-a)2 · (a 2)2; (2) x · x 4 – x 2 · x 3 .
(3)- p · (- p)4 ; (4) (x 4) - (x 3)8.
2.、乙球的半径为 3 cm, 则乙球的体积V 乙= cm 3;甲球的半径是乙球的10倍,则甲球的体积V 甲= cm 3 . 甲球体积 = 乙球体积
3、若84=2x , 求x 的值.。

相关文档
最新文档