高中数学椭圆性质92条热点结论

高中数学椭圆性质92条热点结论
高中数学椭圆性质92条热点结论

高中数学椭圆性质92条热点结论!高一到高三掌握,还愁没有方法?

“椭圆”是什么?小时候,我将它直观地理解成一个“压扁”或“拉长”的圆。因此,当我第一次在解析几何课本中看到椭圆的定义的时候,感觉世界观被颠覆了:平面上到两个定点的距离之和为一定值的点的轨迹……这是什么鬼?

接下来,课本就从这个定义出发,推出了椭圆的方程:我们熟悉的。这个方程和圆的方程很像,非常符合“拉长的圆”的感觉。方程推出来,自然是对的,但推导的过程不太直观,结果也有点反直觉。

今天清北学霸的师哥师姐给同学们整理了高中数学关于椭圆性质的92条结论,相信肯定会对同学们有所帮助!

建议同学家长打印出来,方便学习!

高中数学,对大部分同学,无疑是一大难关,同学们一定要攻克的!

毕竟,“短板效应”在学习甚至是高考中,都是很关键的。其实,对于高中生而言,掌握学习方法,明显要比"题海战术"的提分效果明显的多!

微信

2475026381

即刻添加就可免费领本文电子版,高考提分题型汇总记及思维导图!更多高效学习方法、快速解题技巧等着你哦!

清北学霸从实战中总结高考潜规则,解读出题规律,带你了解高考潜规则,学会逆向思维,一体化学习,掌握高分攻略,快速攻克考点、难点、易错点、薄弱点!

小编所有分享的资料都是免费的呦

椭圆的定义及几何性质

椭圆 【教学目标】(1)掌握椭圆的定义 (2)掌握椭圆的几何性质 (3)掌握求椭圆的标准方程 【教学重难点】(1)椭圆的离心率有关的问题 (2)椭圆焦点三角形面积的求法 【教学过程】 一、知识点梳理 知识点一:椭圆的定义 平面内一个动点到两个定点、的距离之和等于常数(),这个动点的轨迹叫椭圆。这两个定点叫椭圆的焦点,两焦点的距离叫作椭圆的焦距。 注意:若,则动点的轨迹为线段; 若,则动点的轨迹无图形。 知识点二:椭圆的标准方程 1.当焦点在轴上时,椭圆的标准方程:,其中; 2.当焦点在轴上时,椭圆的标准方程:,其中;注意: 1.只有当椭圆的中心为坐标原点,对称轴为坐标轴建立直角坐标系时,才能得到椭圆的标准方程; 2.在椭圆的两种标准方程中,都有和; 3.椭圆的焦点总在长轴上.当焦点在轴上时,椭圆的焦点坐标为,;当焦点在轴上时,椭圆的焦点坐标为,。 知识点三:椭圆的简单几何性质

椭圆的的简单几何性质 (1)对称性 对于椭圆标准方程,把x换成―x,或把y换成―y,或把x、y同时换 成―x、―y,方程都不变,所以椭圆是以x轴、y轴为对称轴的轴对称图形,且是以原点为对称中心的中心对称图形,这个对称中心称为椭圆的中心。 讲练结合: (2)范围 椭圆上所有的点都位于直线x=±a和y=±b所围成的矩形内,所以椭圆上点的坐标满足|x|≤a,|y|≤b。 (3)顶点 ①椭圆的对称轴与椭圆的交点称为椭圆的顶点。 ②椭圆(a>b>0)与坐标轴的四个交点即为椭圆的四个顶点,坐标分别为A1(―a,0), A2(a,0),B1(0,―b),B2(0,b)。 ③线段A1A2,B1B2分别叫做椭圆的长轴和短轴,|A1A2|=2a,|B1B2|=2b。a和b分别叫做椭圆的长半轴长和短半轴长。 (4)离心率 ①椭圆的焦距与长轴长度的比叫做椭圆的离心率,用e表示,记作。 ②因为a>c>0,所以e的取值范围是0<e<1。e越接近1,则c就越接近a,从而 越小,因此椭圆越扁;反之,e越接近于0,c就越接近0,从而b越接近于a,这时椭圆就越接近于圆。当且仅当a=b时,c=0,这时两个焦点重合,图形变为圆,方程为x2+y2=a2

椭圆的几何性质知识点归纳及典型例题及练习(付答案)

(一)椭圆的定义: 1、椭圆的定义:平面内与两个定点1F 、2F 的距离之和等于定长(大于12||F F )的点的轨迹叫做椭圆。这两个定点 1F 、2F 叫做椭圆的焦点,两焦点的距离12||F F 叫做椭圆的焦距。 对椭圆定义的几点说明: (1)“在平面内”是前提,否则得不到平面图形(去掉这个条件,我们将得到一个椭球面); (2)“两个定点”的设定不同于圆的定义中的“一个定点”,学习时注意区分; (3)作为到这两个定点的距离的和的“常数”,必须满足大于| F 1F 2|这个条件。若不然,当这个“常数”等于| F 1F 2|时,我们得到的是线段F 1F 2;当这个“常数”小于| F 1F 2|时,无轨迹。这两种特殊情况,同学们必须注意。 (4)下面我们对椭圆进行进一步观察,发现它本身具备对称性,有两条对称轴和一个对称中心,我们把它的两条对称轴与椭圆的交点记为A 1, A 2, B 1, B 2,于是我们易得| A 1A 2|的值就是那个“常数”,且|B 2F 2|+|B 2F 1|、|B 1F 2|+|B 1F 1|也等于那个“常数”。同学们想一想其中的道理。 (5)中心在原点、焦点分别在x 轴上,y 轴上的椭圆标准方程分别为: 22 22 2222 x y y x 1(a b 0),1(a b 0),a b a b +=>>+=>> 相同点是:形状相同、大小相同;都有 a > b > 0 ,2 2 2 a c b =+。 不同点是:两种椭圆相对于坐标系的位置不同,它们的焦点坐标也不同(第一个椭圆的焦点坐标为(-c ,0)和(c ,0),第二个椭圆的焦点坐标为(0,-c )和(0,c )。椭圆的 焦点在 x 轴上?标准方程中x 2项的分母较大;椭圆的焦点在 y 轴上?标准方程中y 2 项的分母较大。 (二)椭圆的几何性质: 椭圆的几何性质可分为两类:一类是与坐标系有关的性质,如顶点、焦点、中心坐标;一类是与坐标系无关的本身固有性质,如长、短轴长、焦距、离心率.对于第一类性质,只 要22 22x y 1(a b 0)a b +=>>的有关性质中横坐标x 和纵坐标y 互换,就可以得出2222 y x 1(a b 0)a b +=>>的有关性质。总结如下:

高考数学椭圆与双曲线的经典性质50条经典法则

椭圆与双曲线的对偶性质--(必背的经典结论) 高三数学备课组 椭 圆 1. 点P 处的切线PT 平分△PF 1F 2在点P 处的外角. 2. PT 平分△PF 1F 2在点P 处的外角,则焦点在直线PT 上的射影H 点的轨迹是以长轴为直径的圆,除去长轴的两个端点. 3. 以焦点弦PQ 为直径的圆必与对应准线相离. 4. 以焦点半径PF 1为直径的圆必与以长轴为直径的圆内切. 5. 若000(,)P x y 在椭圆22221x y a b +=上,则过0P 的椭圆的切线方程是00221x x y y a b +=. 6. 若000(,)P x y 在椭圆22221x y a b +=外 ,则过Po 作椭圆的两条切线切点为P 1、P 2,则切点弦P 1P 2的直线方程是00221x x y y a b +=. 7. 椭圆22 221x y a b += (a >b >0)的左右焦点分别为F 1,F 2,点P 为椭圆上任意一点12F PF γ∠=,则椭圆的焦点角形的面积 为122 tan 2 F PF S b γ ?=. 8. 椭圆22 221x y a b +=(a >b >0)的焦半径公式:10||MF a ex =+,20||MF a ex =-(1(,0)F c - , 2(,0)F c 00(,)M x y ). 9. 设过椭圆焦点F 作直线与椭圆相交 P 、Q 两点,A 为椭圆长轴上一个顶点,连结AP 和AQ 分别交相应于焦点F 的椭圆 准线于M 、N 两点,则MF ⊥NF. 10. 过椭圆一个焦点F 的直线与椭圆交于两点P 、Q, A 1、A 2为椭圆长轴上的顶点,A 1P 和A 2Q 交于点M ,A 2P 和A 1Q 交于 点N ,则MF ⊥NF. 11. AB 是椭圆22221x y a b +=的不平行于对称轴的弦,M ),(00y x 为AB 的中点,则2 2OM AB b k k a ?=-,即0 202y a x b K AB -=。 12. 若000(,)P x y 在椭圆22 221x y a b +=内,则被Po 所平分的中点弦的方程是2200002222x x y y x y a b a b +=+. 13. 若000(,)P x y 在椭圆22221x y a b +=内,则过Po 的弦中点的轨迹方程是22002222x x y y x y a b a b +=+. 双曲线 1. 点P 处的切线PT 平分△PF 1F 2在点P 处的内角. 2. PT 平分△PF 1F 2在点P 处的内角,则焦点在直线PT 上的射影H 点的轨迹是以长轴为直径的圆,除去长轴的两个端 点. 3. 以焦点弦PQ 为直径的圆必与对应准线相交. 4. 以焦点半径PF 1为直径的圆必与以实轴为直径的圆相切.(内切:P 在右支;外切:P 在左支) 5. 若000(,)P x y 在双曲线22221x y a b -=(a >0,b >0)上,则过0P 的双曲线的切线方程是00221x x y y a b -=. 6. 若000(,)P x y 在双曲线22 221x y a b -=(a >0,b >0)外 ,则过Po 作双曲线的两条切线切点为P 1、P 2,则切点弦P 1P 2 的直线方程是00221x x y y a b -=. 7. 双曲线22 221x y a b -=(a >0,b >o )的左右焦点分别为F 1,F 2,点P 为双曲线上任意一点12F PF γ∠=,则双曲线的焦 点角形的面积为122 t 2 F PF S b co γ ?=. 8. 双曲线22 221x y a b -=(a >0,b >o )的焦半径公式:(1(,0)F c - , 2(,0)F c 当00(,)M x y 在右支上时,10||MF ex a =+,20||MF ex a =-. 当00(,)M x y 在左支上时,10||MF ex a =-+,20||MF ex a =-- 9. 设过双曲线焦点F 作直线与双曲线相交 P 、Q 两点,A 为双曲线长轴上一个顶点,连结AP 和AQ 分别交相应于焦 点F 的双曲线准线于M 、N 两点,则MF ⊥NF. 10. 过双曲线一个焦点F 的直线与双曲线交于两点P 、Q, A 1、A 2为双曲线实轴上的顶点,A 1P 和A 2Q 交于点M ,A 2P 和 A 1Q 交于点N ,则MF ⊥NF.

高中数学:椭圆知识点归纳总结及经典例题

椭 圆 1.椭圆的定义:把平面内与两个定点21,F F 的距离之和等于常数(大于21F F )的点的轨迹叫做椭圆.这两个定点叫做椭圆的焦点,两焦点的距离叫做焦距(设为2c). 2.椭圆的标准方程: 12222=+b y a x (a >b >0) 122 22=+b x a y (a >b >0) 焦点在坐标轴上的椭圆标准方程有两种情形,为了计算简便,可设方程为mx 2 +ny 2 =1(m>0,n>0)不必考虑焦点位置,求出方程 3.求轨迹方程的方法: 定义法、待定系数法、相关点法、直接法 . ,.2,,1的轨迹中点求线段段轴作垂线向从这个圆上任意一点半径为标原点已知一个圆的圆心为坐如图例M P P P P x P ''解:(相关点法)设点M(x, y),点P(x 0 , y 0 ), 则x =x 0, y = 2 0y 得x 0=x , y 0=2y. ∵x 02 +y 02 =4, 得x 2 +(2y)2 =4, 即.14 2 =+y x 所以点M 的轨迹是一个椭圆. 4.范围. x 2≤a 2,y 2≤b 2 ,∴|x|≤a ,|y|≤b . 椭圆位于直线x =±a 和y =±b 围成的矩形里. 5.椭圆的对称性 椭圆是关于y 轴、x 轴、原点都是对称的.坐标轴是椭圆的对称轴. 原点是椭圆的对称中心.椭圆的对称中心叫做椭圆的中心. 6.顶点 只须令x =0,得y =±b ,点B 1(0,-b)、B 2(0, b)是椭圆和y 轴的两个交点;令y =0,得x =±a ,点A 1(-a,0)、A 2(a,0)是椭圆和x 轴的两个交点.椭圆有四个顶点:A 1(-a, 0)、A 2(a, 0)、B 1(0, -b)、B 2(0, b).椭圆和它的对称轴的四个交点叫椭圆的顶点. 线段A 1A 2、B 1B 2分别叫做椭圆的长轴和短轴. 长轴的长等于2a. 短轴的长等于2b.a 叫做椭圆的 长半轴长.b 叫做椭圆的短半轴长. |B 1F 1|=|B 1F 2|=|B 2F 1|=|B 2F 2|=a . 在Rt △OB 2F 2中,|OF 2|2=|B 2F 2|2-|OB 2|2, 即c 2=a 2-b 2 . a A 1y O F 1F 2 x B 2 B 1 A 2c b y O F 1F 2x M c c x F 2 F 1 O y M c c y x P O P ' M

高考数学椭圆与双曲线重要规律定理

椭圆与双曲线性质--(重要结论) 清华附中高三数学备课组 椭 圆 1. 点P 处的切线PT 平分△PF 1F 2在点P 处的外角. 2. PT 平分△PF 1F 2在点P 处的外角,则焦点在直线PT 上的射影H 点的轨迹是以长轴为直径的圆,除去长轴的 两个端点. 3. 以焦点弦PQ 为直径的圆必与对应准线相离. 4. 以焦点半径PF 1为直径的圆必与以长轴为直径的圆内切. 5. 若000(,)P x y 在椭圆22221x y a b +=上,则过0P 的椭圆的切线方程是 002 2 1x x y y a b + =. 6. 若000(,)P x y 在椭圆 222 2 1x y a b + =外 ,则过Po 作椭圆的两条切线切点为P 1、P 2,则切点弦P 1P 2的直线方程 是 002 2 1x x y y a b + =. 7. 椭圆 222 2 1x y a b + = (a >b >0)的左右焦点分别为F 1,F 2,点P 为椭圆上任意一点12F PF γ∠=,则椭圆的焦点 角形的面积为1 2 2 tan 2 F P F S b γ ?=. 8. 椭圆 2 2 22 1x y a b + =(a >b >0)的焦半径公式: 10||M F a ex =+,20||M F a ex =-(1(,0)F c - , 2(,0)F c 00(,)M x y ). 9. 设过椭圆焦点F 作直线与椭圆相交 P 、Q 两点,A 为椭圆长轴上一个顶点,连结AP 和AQ 分别交相应于焦 点F 的椭圆准线于M 、N 两点,则MF ⊥NF. 10. 过椭圆一个焦点F 的直线与椭圆交于两点P 、Q, A 1、A 2为椭圆长轴上的顶点,A 1P 和A 2Q 交于点M ,A 2P 和A 1Q 交于点N ,则MF ⊥NF. 11. AB 是椭圆 222 2 1x y a b + =的不平行于对称轴的弦,M ),(00y x 为AB 的中点,则22 O M AB b k k a ?=- , 即0 2 02 y a x b K AB - =。 12. 若000(,)P x y 在椭圆222 2 1x y a b +=内,则被Po 所平分的中点弦的方程是 2 2 00002 2 2 2 x x y y x y a b a b + = + . 13. 若000(,)P x y 在椭圆 222 2 1x y a b +=内,则过Po 的弦中点的轨迹方程是22002 2 2 2 x x y y x y a b a b + = + . 双曲线 1. 点P 处的切线PT 平分△PF 1F 2在点P 处的内角. 2. PT 平分△PF 1F 2在点P 处的内角,则焦点在直线PT 上的射影H 点的轨迹是以长轴为直径的圆,除去长 轴的两个端点. 3. 以焦点弦PQ 为直径的圆必与对应准线相交. 4. 以焦点半径PF 1为直径的圆必与以实轴为直径的圆相切.(内切:P 在右支;外切:P 在左支) 5. 若000(,)P x y 在双曲线22221x y a b -=(a >0,b >0)上,则过0P 的双曲线的切线方程是 002 2 1x x y y a b - =. 6. 若000(,)P x y 在双曲线 222 2 1x y a b - =(a >0,b >0)外 ,则过Po 作双曲线的两条切线切点为P 1、P 2,则切点弦P 1P 2的直线方程是002 2 1x x y y a b -=. 7. 双曲线 222 2 1x y a b - =(a >0,b >o )的左右焦点分别为F 1,F 2,点P 为双曲线上任意一点12F PF γ∠=, 则双曲线的焦点角形的面积为1 2 2 t 2 F P F S b co γ ?=. 8. 双曲线 2 2 221x y a b -=(a >0,b >o )的焦半径公式:(1(,0)F c - , 2(,0)F c 当00(,)M x y 在右支上时,10||M F ex a =+,20||M F ex a =-. 当00(,)M x y 在左支上时,10||M F ex a =-+,20||M F ex a =-- 9. 设过双曲线焦点F 作直线与双曲线相交 P 、Q 两点,A 为双曲线长轴上一个顶点,连结AP 和AQ 分别 交相应于焦点F 的双曲线准线于M 、N 两点,则MF ⊥NF. 10. 过双曲线一个焦点F 的直线与双曲线交于两点P 、Q, A 1、A 2为双曲线实轴上的顶点,A 1P 和A 2Q 交于 点M ,A 2P 和A 1Q 交于点N ,则MF ⊥NF. 11. AB 是双曲线 222 2 1x y a b - =(a >0,b >0)的不平行于对称轴的弦,M ),(00y x 为AB 的中点,则 2 02y a x b K K AB OM = ?,即0 2 02 y a x b K AB = 。 12. 若000(,)P x y 在双曲线 222 2 1x y a b - =(a >0,b >0)内,则被Po 所平分的中点弦的方程是 2 2 00002 2 2 2 x x y y x y a b a b - = - . 13. 若000(,)P x y 在双曲线 222 2 1x y a b - =(a >0,b >0)内,则过Po 的弦中点的轨迹方程是 22002 2 2 2 x x y y x y a b a b - = - .

椭圆的一个几何性质和在物理学中的应用

椭圆的几何性质和在物理学中的应用 1 几何性质 为了思路清晰简明,我们采用罗列命题的方式叙述椭圆的几何性质,但这又不是简单的罗列,各命题间是有紧密地联系的。 定义1:椭圆是到两个定点(焦点)的距离和等于定长(2a )的点的轨迹。 命题1:椭圆外一点到椭圆两焦点的距离和大于椭圆上一点到两焦点的距离和。 【证明】:如图1所示,M 是椭圆外任一点,1MF 和2MF 分别是该点到两焦点1F 和2F 的距离。由于M 在椭圆之外,所以我们总能够在椭圆上找到一点N ,使此点在21F MF ?内。所以总有a NF NF MF MF 22121=+>+。 下面我们证明命题1中用到的关于三角形的一个命题。 命题2:三角形内一点到两个顶点的距离和小于第三个顶点到这两个顶点的距离和。 【证明】:如图,M 是ABC ?中任一点,我们要证明的是CB CA BM AM +<+。 延长AM 与BC 交于D 点。 在ADC ?中,由于两边之和大于第三边,有MD AM CD CA +>+; 在BDM ?中,由于两边之和大于第三边,有MB MD DB >+。 上面两式相加有CB CA BM AM +<+,命题得证。 命题3:椭圆内一点到两焦点的距离和小于椭圆上一点到两焦点的距离和。 图3 图1 A B C M D 图2

【证明】:如图3所示,我们总能够在椭圆上找一点N ,使M 位于21F NF ?内。由命题2可知命题正确。 我们可以说,椭圆的外部是这样的点的集合,它到椭圆的两个焦点的距离之和大于2a ;椭圆的内部是这样的点的集合,它到椭圆的两个核糖点的距离之和小于2a ;椭圆上的点到两个焦点的距离之和恰为2a 。 定义2:与椭圆只有一个公共点的直线称为椭圆的切线。 命题4:椭圆的切线不可能通过椭圆内的任何一点。 【证明】:假设切线可过椭圆内一点,则必与椭圆交于两点,这与该线为椭圆的切线相矛盾。 命题5:构成椭圆的切线的点的集合中,切点是到两个焦点的距离和最小的点。 【证明】:切点在圆上,因此到两焦点距离和为2a ,切线上其它点都在椭圆外,因此到两焦点的距离和大于2a ,命题得证。 命题6:直线与直线上到两定点的距离和最小的点跟该两点的连线成等角。 【证明】:如图4所示,设PQ 是任一直线,1F 和2F 是任意的两个点(在直线的同一侧)。我们总可以在直线上找一点M ,使此点到两点1F 和2F 的距离的和最小。方法如下 如图3所示,做1F 关于PQ 的对称点3F ,连结32F F 与PQ 交于M 点,则M 点为所求点。原因是简单的,如图5所示,任意在PQ 上取另一点1M ,则此点到两定点1F 、2F 的距离和大于M 到这两定点的距离和。由对称可知,角1PMF =角3PMF ,而角3PMF 与角2 QMF 互为对顶角。所以角1PMF =角2QMF ,命题得证。 命题7:椭圆的切线跟切点和焦点的两条连线成等角。 【证明】:因为切点是切线上所有点到两点的距离之和最小的点,由命题6知切线跟切点和焦点的两条连线成等角。 命题8:切线的垂线平分两焦点与切点连线所成的角。 【证明】:如图6所示,1F 与2F 是椭圆的两个焦点,M 是椭圆上任一点,PQ 是过M 点的切线,MN 是的21MF F ∠的平分线。则有,PQ MN ⊥。 F 1 F 2 P 图4 F 1 F 2 P 图5 F

新课标人教A版高中数学全部知识点归纳总结

高三第一轮复习资料(注意保密) 引言 1.课程内容: 必修课程由5个模块组成: 必修1:集合、函数概念与基本初等函数(指、对、幂函数) 必修2:立体几何初步、平面解析几何初步。必修3:算法初步、统计、概率。 必修4:基本初等函数(三角函数)、平面向量、三角恒等变换。 必修5:解三角形、数列、不等式。 以上是每一个高中学生所必须学习的。 上述内容覆盖了高中阶段传统的数学基础知识和基本技能的主要部分,其中包括集合、函数、数列、不等式、解三角形、立体几何初步、平面解析几何初步等。不同的是在保证打好基础的同时,进一步强调了这些知识的发生、发展过程和实际应用,而不在技巧与难度上做过高的要求。 此外,基础内容还增加了向量、算法、概率、统计等内容。 选修课程有4个系列: 系列1:由2个模块组成。 选修1—1:常用逻辑用语、圆锥曲线与方程、 导数及其应用。 选修1—2:统计案例、推理与证明、数系的扩 充与复数、框图 系列2:由3个模块组成。 选修2—1:常用逻辑用语、圆锥曲线与方程、 空间向量与立体几何。 选修2—2:导数及其应用,推理与证明、数系 的扩充与复数 选修2—3:计数原理、随机变量及其分布列, 统计案例。 系列3:由6个专题组成。 选修3—1:数学史选讲。 选修3—2:信息安全与密码。 选修3—3:球面上的几何。 选修3—4:对称与群。 选修3—5:欧拉公式与闭曲面分类。选修3—6:三等分角与数域扩充。 系列4:由10个专题组成。 选修4—1:几何证明选讲。 选修4—2:矩阵与变换。 选修4—3:数列与差分。 选修4—4:坐标系与参数方程。 选修4—5:不等式选讲。 选修4—6:初等数论初步。 选修4—7:优选法与试验设计初步。 选修4—8:统筹法与图论初步。 选修4—9:风险与决策。 选修4—10:开关电路与布尔代数。 2.重难点及考点: 重点:函数,数列,三角函数,平面向量,圆锥曲线,立体几何,导数 难点:函数、圆锥曲线 高考相关考点: ⑴集合与简易逻辑:集合的概念与运算、简易逻 辑、充要条件 ⑵函数:映射与函数、函数解析式与定义域、 值域与最值、反函数、三大性质、函 数图象、指数与指数函数、对数与对 数函数、函数的应用 ⑶数列:数列的有关概念、等差数列、等比数 列、数列求和、数列的应用 ⑷三角函数:有关概念、同角关系与诱导公式、 和、差、倍、半公式、求值、化 简、证明、三角函数的图象与性 质、三角函数的应用 ⑸平面向量:有关概念与初等运算、坐标运算、 数量积及其应用 ⑹不等式:概念与性质、均值不等式、不等式 的证明、不等式的解法、绝对值不 等式、不等式的应用 ⑺直线和圆的方程:直线的方程、两直线的位 置关系、线性规划、圆、 直线与圆的位置关系 ⑻圆锥曲线方程:椭圆、双曲线、抛物线、直 线与圆锥曲线的位置关系、 轨迹问题、圆锥曲线的应用

高中数学椭圆的几何性质

一. 教学内容: 椭圆的几何性质 二. 教学目标: 通过椭圆标准方程的讨论,使学生掌握椭圆的几何性质,能正确地画出椭圆的图形,并了解椭圆的一些实际应用. 通过对椭圆的几何性质的教学,培养学生分析问题和解决实际问题的能力. 使学生掌握利用方程研究曲线性质的基本方法,加深对直角坐标系中曲线与方程的关系概念的理解,这样才能解决随之而来的一些问题,如弦、最值问题等. 三. 重点、难点: 重点:椭圆的几何性质及初步运用. 难点:椭圆离心率的概念的理解. 四. 知识梳理 1、几何性质 (1)范围,即|x|≤a,|y|≤b,这说明椭圆在直线x=±a和直线y=±b所围成的矩形里.注意结合图形讲解,并指出描点画图时,就不能取范围以外的点.(2)对称性 把x换成-x,或把y换成-y,或把x、y同时换成-x、-y时,方程都不变,所以图形关于y轴、x轴或原点对称 (3)顶点 在中,须令x=0,得y=±b,点B1(0,-b)、B2(0,b)是椭圆和y轴的两个交点;令y=0,得x=±a,点A1(-a,0)、A2(a,0)是椭圆和x轴的两个交点.椭圆有四个顶点A1(-a,0)、A2(a,0)、B1(0,-b)、B2(0,b). ①线段A1A2、线段B1B2分别叫椭圆的长轴和短轴,它们的长分别等于2a和2b; ②a、b的几何意义:a是长半轴的长,b是短半轴的长; (4)离心率 教师直接给出椭圆的离心率的定义: 椭圆的焦距与长轴的比 椭圆的离心率e的取值范围:∵a>c>0,∴0<e<1. 当e接近1时,c越接近a,从而b越接近0,因此椭圆越扁; 当e接近0时,c越接近0,从而b越接近a,因此椭圆接近圆;

高中数学---椭圆知识点小结

高二数学椭圆知识点 1、椭圆的第一定义:平面内一个动点P 到两个定点1F 、2F 的距离之和等于常数 )2(2121F F a PF PF >=+ ,这个动点P 的轨迹叫椭圆.这两个定点叫椭圆的焦点,两焦点的距离叫作椭 圆的焦距. 注意:若)(2121F F PF PF =+,则动点P 的轨迹为线段21F F ;若)(2121F F PF PF <+,则动点P 的轨 迹无图形. 2、椭圆的标准方程 1).当焦点在x 轴上时,椭圆的标准方程:12222=+b y a x )0(>>b a ,其中2 22b a c -=; 2).当焦点在y 轴上时,椭圆的标准方程:12222=+b x a y )0(>>b a ,其中2 22b a c -=; 3、椭圆:122 22=+b y a x )0(>>b a 的简单几何性质 (1)对称性:对于椭圆标准方程122 22=+b y a x )0(>>b a :是以x 轴、y 轴 为对称轴的轴对称图形,并且是以原点为对称中心的中心对称图形,这个对 称中心称为椭圆的中心。 (2)范围:椭圆上所有的点都位于直线a x ±=和b y ±=所围成的矩形内,所以椭圆上点的坐标满足a x ≤,b y ≤。 (3)顶点:①椭圆的对称轴与椭圆的交点称为椭圆的顶点。②椭圆 122 22=+b y a x )0(>>b a 与坐标轴的四个交点即为椭圆的四个顶点,坐标分别为)0,(1a A -,)0,(2a A ,),0(1b B -,),0(2b B 。 ③线段21A A ,21B B 分别叫做椭圆的长轴和短轴,a A A 221=,b B B 221=。a 和b 分别叫做椭圆的长半轴长和短半轴长。 (4)离心率:①椭圆的焦距与长轴长度的比叫做椭圆的离心率,用e 表示,记作a c a c e == 22。②因为)0(>>c a ,所以e 的取值范围是)10(<

高考数学椭圆与双曲线的经典性质技巧归纳总结

椭圆的定义、性质及标准方程 高三数学备课组 刘岩老师 1. 椭圆的定义: ⑴第一定义:平面内与两个定点12F F 、的距离之和等于常数(大于12F F )的点的轨迹叫做椭圆。这两个定点叫做椭圆的焦点,两焦点的距离叫做椭圆的焦距。 ⑵第二定义:动点M 到定点F 的距离和它到定直线l 的距离之比等于常数 )10(<>=+b a b y a x 中心在原点,焦点在x 轴上 )0(12 2 22>>=+b a b x a y 中心在原点,焦点在y 轴上 图形 范围 x a y b ≤≤, x b y a ≤≤, 顶点 ()()()() 12120000A a A a B b B b --,、,,、, ()()()() 12120000A a A a B b B b --,、,,、, 对称轴 x 轴、y 轴; 长轴长2a ,短轴长2b ; 焦点在长轴上 x 轴、y 轴; 长轴长2a ,短轴长2b ; 焦点在长轴上 焦点 ()()1200F c F c -,、, ()()1200F c F c -,、, 焦距 )0(221>=c c F F )0(221>=c c F F 离心率 )10(<<= e a c e )10(<<= e a c e 准线 2 a x c =± 2 a y c =±

椭圆的标准方程及其几何性质(供参考)

椭圆的标准方程及其几何性质 1. 椭圆定义: (1)第一定义:平面内与两个定点21F F 、的距离之和为常数|)|2(222F F a a >的动点P 的轨迹叫椭圆,其中两个定点21F F 、叫椭圆的焦点. 当21212F F a PF PF >=+时, P 的轨迹为椭圆 ; ; 当21212F F a PF PF <=+时, P 的轨迹不存在; 当21212F F a PF PF ==+时, P 的轨迹为 以21F F 、为端点的线段 (2)椭圆的第二定义:平面内到定点F 与定直线l (定点F 不在定直线l 上)的距离之比是常数e (10<>=+b a b y a x 的位置关系: 当12222>+b y a x 时,点P 在椭圆外; 当12222>+b y a x 时,点P 在椭圆内; 当12222=+b y a x 时,点P 在椭圆上; 4.直线与椭圆的位置关系 直线与椭圆相交0>??;直线与椭圆相切0=??;直线与椭圆相离0

高二数学椭圆的知识点整理

第1讲 课题:椭圆 课 型:复习巩固 上课时间:2013年10月3日 教学目标: (1)了解圆锥曲线的来历; (2)理解椭圆的定义; (3)理解椭圆的两种标准方程; (4)掌握椭圆离心率的计算方法; (5)掌握有关椭圆的参数取值范围的问题; 教学重点:椭圆方程、离心率; 教学难点:与椭圆有关的参数取值问题; 知识清单 一、椭圆的定义: (1) 椭圆的第一定义:平面内与两定点21F F 、的距离和等于常数 ()a 2(大于21F F )的点的轨迹叫做椭圆. 说明:两个定点叫做椭圆的焦点; 两焦点间的距离叫做椭圆的焦距()c 2. (2) 椭圆的第二定义:平面上到定点的距离与到定直线的距离之 比为常数e ,当10<>=+F F a a PF PF ; (){} .02,22121>>=+=F F a a PF PF P M 三、椭圆的标准方程: 焦点在x 轴: ()0122 22>>=+b a b y a x ; 焦点在y 轴: ()0122 22>>=+b a b x a y . 说明:a 是长半轴长,b 是短半轴长,焦点始终在长轴所在的数轴上,且满足 .222c b a += 四、二元二次方程表示椭圆的充要条件 方程()B A C B A C By Ax ≠=+均不为零,且、、22表示椭圆的条件:

上式化为12 2=+C By C Ax ,122=+B C y A C x .所以,只有C B A 、、同号,且B A ≠时,方程表示椭圆;当 B C A C >时,椭圆的焦点在x 轴上;当B C A C <时,椭圆的焦点在y 轴上. 五、椭圆的几何性质(以()0122 22>>=+b a b y a x 为例) 1. 范围: 由标准方程可知,椭圆上点的坐标()y x ,都适合不等式 1,122 22≤≤b y a x ,即b y a x ≤≤,说明椭圆位于直线a x ±=和b y ±=所围成的矩形里(封闭曲线).该性质主要用于求最值、轨迹检验等问题. 2.对称性:关于原点、x 轴、y 轴对称,坐标轴是椭圆的对称轴,原点是椭圆的对称中心。 3.顶点(椭圆和它的对称轴的交点) 有四个: ()()()().,0B ,0B 0,0,2121b b a A a A 、、、-- 4. 长轴、短轴:21A A 叫椭圆的长轴,a a A A ,221=是长半轴长;21B B 叫椭圆的短轴,b b B B ,221=是短半轴长. 5.离心率 (1)椭圆焦距与长轴的比a c e = ,()10,0<<∴>>e c a (2)22F OB Rt ?,2 22 22 22OF OB F B +=, 即222c b a +=.这是椭圆的特征三角形,并且22cos B OF ∠的值是椭圆的离心率.(3)椭圆的圆扁程度由离心率的大小确定,与焦点所在的坐标轴无关.当e 接近于1时,c 越接近于a ,从而22c a b -=越小,椭圆越扁;当e 接近于0时,c 越接近于0,从而22c a b -=越大,椭圆越接近圆;当0=e 时,b a c ==,0,两焦点重合,图形是圆. 6.通径(过椭圆的焦点且垂直于长轴的弦),通径长为a b 2 2.

高中数学椭圆的经典知识总结

高中数学椭圆的经典知识总结 椭圆知识点总结 1. 椭圆的定义:1,2 (1)椭圆:焦点在x 轴上时12222=+b y a x (222a b c =+)?{ cos sin x a y b ??==(参数方程,其中?为参数),焦点在y 轴上时22 22b x a y +=1(0a b >>)。方程22Ax By C +=表示椭圆的充要条件是什么? (ABC ≠0,且A ,B ,C 同号,A ≠B )。 2. 椭圆的几何性质: (1)椭圆(以122 22=+b y a x (0a b >>)为例):①范围:,a x a b y b -≤≤-≤≤;②焦点:两个 焦点(,0)c ±;③对称性:两条对称轴0,0x y ==,一个对称中心(0,0),四个顶点(,0),(0,)a b ±±,其中长轴长为2a ,短轴长为2b ;④准线:两条准线2a x c =±; ⑤离心率:c e a =,椭圆?01e <<, e 越小,椭圆越圆;e 越大,椭圆越扁。⑥通径2 2b a 2.点与椭圆的位置关系:(1)点00(,)P x y 在椭圆外?2200 221x y a b +>; (2)点00(,)P x y 在椭圆上?220 220b y a x +=1; (3)点00(,)P x y 在椭圆内?2200 221x y a b +< 3.直线与圆锥曲线的位置关系: (1)相交:0?>?直线与椭圆相交;(2)相切:0?=?直线与椭圆相切; (3)相离: 0?

椭圆与双曲线的对偶性质92条

椭圆与双曲线的对偶性质92条 椭 圆 1.12||||2PF PF a += 2.标准方程:22 221x y a b += 3.11 || 1PF e d =< 4.点P 处的切线PT 平分△PF 1F 2在点P 处的外角. 5.PT 平分△PF 1F 2在点P 处的外角,则焦点在直线PT 上的射影H 点的轨迹是以长轴为直径的圆,除去长轴的两个端点. 6.以焦点弦PQ 为直径的圆必与对应准线相离. 7.以焦点半径PF 1为直径的圆必与以长轴为直径的圆切. 8.设A 1、A 2为椭圆的左、右顶点,则△PF 1F 2在边PF 2(或PF 1)上的旁切圆,必与A 1A 2所在的直线切于A 2(或A 1). 9.椭圆22 221x y a b +=(a >b >o )的两个顶点为1(,0)A a -,2(,0)A a ,与y 轴平行的直线交椭 圆于P 1、P 2时A 1P 1与A 2P 2交点的轨迹方程是22 221x y a b -=. 10.若000(,)P x y 在椭圆22 221x y a b +=上,则过0P 的椭圆的切线方程是00221x x y y a b +=. 11.若000(,)P x y 在椭圆22 221x y a b +=外 ,则过Po 作椭圆的两条切线切点为P 1、P 2,则切点弦 P 1P 2的直线方程是00221x x y y a b +=. 12.AB 是椭圆22 221x y a b +=的不平行于对称轴且过原点的弦,M 为AB 的中点,则 2 2OM AB b k k a ?=-. 13.若000(,)P x y 在椭圆22 221x y a b +=,则被Po 所平分的中点弦的方程是 22 00002222x x y y x y a b a b +=+. 14.若000(,)P x y 在椭圆22 221x y a b +=,则过Po 的弦中点的轨迹方程是22002222x x y y x y a b a b +=+. 15.若PQ 是椭圆22 221x y a b +=(a >b >0)上对中心直角的弦,则 122222 121111(||,||)r OP r OQ r r a b +=+==. 16.若椭圆22 221x y a b +=(a >b >0)上中心直角的弦L 所在直线方程为1Ax By +=(0)AB ≠,

椭圆的几何性质及综合问题汇总(供参考)

椭圆的几何性质 一、概念及性质 1.椭圆的“范围、对称性、顶点、轴长、焦距、离心率及范围、a ,b ,c 的关系”; 2.椭圆的通经: 3.椭圆的焦点三角形的概念及面积公式: 4.椭圆的焦半径的概念及公式:主要用来求离心率的取值范围,对于此问题也可以用下列性质求解:c a PF c a +≤≤-1. 5.直线与椭圆的位置关系: 6.椭圆的中点弦问题: 【注】:椭圆的几何性质是高考的热点,高考中多以小题出现,试题难度一般较大,高考对椭圆几何性质的考查主要有以下三个命题角度: (1)根据椭圆的性质求参数的值或范围; (2)由性质写椭圆的标准方程; (3)求离心率的值或范围. 题型一:根据椭圆的性质求标准方程、参数的值或范围、离心率的值或范围. 【典例1】求适合下列条件的椭圆的标准方程: (1)经过点)2,0(),0,3(--Q P ;(2)长轴长等于20,离心率等于 53. 【典例2】求椭圆400251622=+y x 的长轴和短轴长、离心率、焦点坐标和顶点坐标. 【典例3】已知A ,P ,Q 为椭圆C :)0(122 22>>=+b a b y a x 上三点,若直线PQ 过原点,且直线AP ,AQ 的斜率之积为2 1-,则椭圆C 的离心率为( ) A.22 B.21 C.42 D.4 1 【练习】(1)已知椭圆x 2a 2+y 2 b 2=1(a >b >0)的一个焦点是圆x 2+y 2-6x +8=0的圆心,且短轴长为8,则椭圆的左顶点为( ) A .(-3,0) B .(-4,0) C .(-10,0) D .(-5,0) (2)椭圆x 29+y 24+k =1的离心率为45 ,则k 的值为( ) A .-21 B .21 C .-1925或21 D .1925 或21 (3)设椭圆C :x 2a 2+y 2 b 2=1(a >b >0)的左,右焦点为F 1,F 2,过F 2作x 轴的垂线与C 相交于A ,B 两点,F 1B 与y 轴相交于点D ,若AD ⊥F 1B ,则椭圆C 的离心率等于________. 【典例4】已知F 1,F 2为椭圆x 2a 2+y 2 b 2=1(a >b >0)的左,右焦点,P 为椭圆上任意一点,且215PF PF =,则该椭圆的离心率的取值范围是 练习:如图,把椭圆116 252 2=+y x 的长轴AB 分成8等份,过每个分点作x 轴的垂线交椭圆的上半部分与P 1,P 2,…,P 7七个点,F 是椭圆的一个焦点,则721PF PF PF +++ =

椭圆方程及性质的应用

椭圆方程及性质的应用 教学目标 1.掌握直线与椭圆的位置关系.(重点) 2.通过一元二次方程根与系数关系的应用,解决有关椭圆的简单综合问题.(重点) 3.能利用椭圆的有关性质解决实际问题.(难点) 教材整理1 点与椭圆的位置关系 设点P(x0,y0),椭圆x2 a2+ y2 b2=1(a>b>0). (1)点P在椭圆上?x20 a2+ y20 b2=1;(2)点P在椭圆内? x20 a2+ y20 b2<1; (3)点P在椭圆外?x20 a2+ y20 b2>1. 课堂练习 已知点(2,3)在椭圆x2 m2+ y2 n2=1上,则下列说法正确的是________ ①点(-2,3)在椭圆外②点(3,2)在椭圆上 ③点(-2,-3)在椭圆内④点(2,-3)在椭圆上【解析】由椭圆的对称性知点(2,-3)也在椭圆上.【答案】④ 教材整理2 直线与椭圆的位置关系 1.直线与椭圆的位置关系及判定 直线y=kx+m与椭圆x2 a2+ y2 b2=1(a>b>0)联立 ?? ? ?? y=kx+m, x2 a2+ y2 b2=1, 消去y得一个 一元二次方程.

2.弦长公式 设直线y =kx +b 与椭圆的交点坐标分别为A (x 1,y 1),B (x 2,y 2),则|AB |=1+k 2|x 1-x 2|= 1+1 k 2·|y 1-y 2|. 判断(正确的打“√”,错误的打“×”) (1)点P (2,1)在椭圆x 24+y 2 9=1的内部.( ) (2)过椭圆外一点一定能作两条直线与已知椭圆相切.( ) (3)过点A (0,1)的直线一定与椭圆x 2 +y 2 2=1相交.( ) (4)长轴是椭圆中最长的弦.( ) 【答案】 (1)× (2)√ (3)√ (4)√ 例题分析 (1)若直线mx +ny =4和⊙O :x 2+y 2=4没有交点,则过点P (m ,n )的直线与椭圆x 29+y 2 4=1的交点个数为( ) A.2个 B.至多一个 C.1个 D.0个 (2)已知椭圆4x 2+y 2=1及直线y =x +m ,问m 为何值时,直线与椭圆相切、相交? 【精彩点拨】 利用几何法判断直线与椭圆的位置关系. 【自主解答】 (1)若直线与圆没有交点,则d = 4m 2 +n 2 >2, ∴m 2+n 2<4,即m 2+n 24<1.∴m 29+n 24<1,∴点(m ,n )在椭圆的内部,故直 线与椭圆有2个交点. 【答案】 A (2)将y =x +m 代入4x 2+y 2=1, 消去y 整理得5x 2+2mx +m 2-1=0. Δ=4m 2-20(m 2-1)=20-16m 2.

相关文档
最新文档