2011验证快速电子的动量与动能的相对论关系

合集下载

相对论电子能量与动量关系

相对论电子能量与动量关系

实验2-4相对论电子的动能与动量关系的测量应用物理 09级杨天依 0910293•1、验证通过对快速电子的动量及动能的同时测定验证动量和动能之间的相对论关系;•2、了解β磁谱仪测量原理、闪烁记数器的使用方法及一些实验数据处理的思想方法。

•经典力学总结了低速物理的运动规律,它反映了牛顿的绝对时空观:认为时间和空间是两个独立的观念,彼此之间没有联系;同一物体在不同惯性参照系中观察到的运动学量(如坐标、速度)可通过伽利略变换而互相联系。

这就是力学相对性原理:一切力学规律在伽利略变换下是不变的。

•19 世纪末至20 世纪初,人们试图将伽利略变换和力学相对性原理推广到电磁学和光学时遇到了困难;实验证明对高速运动的物体伽利略变换是不正确的,实验还证明在所有惯性参照系中光在真空中的传播速度为同一常数。

在此基础上,爱因斯坦于1905 年提出了狭义相对论;并据此导出从一个惯性系到另一惯性系的变换方程即“洛伦兹变换”。

•洛伦兹变换下,静止质量为 m0,速度为v 的物体,狭义相对论定义的动量p 为:式中,m m v c =−=012/,/ββp m v mv=−=012βE mc =2200c m E =•狭义相对论中,质能关系式是•质点运动时遇有的总能量,当物体静止时v=0,物体的能量为称为静止能量;•两者之差为物体的动能Ek ,即E mc m c m c k =−=−−222200111()β•当β« 1时,可展开为•即得经典力学中的动量—能量关系E m c v c m c m v p m k =++−≈=00022222201121212()⋯E c p E 22202−=•这就是狭义相对论的动量与能量关系。

而动能与动量的关系为:•这就是我们要验证的狭义相对论的动量与动能的关系。

E E E c p m c m c k =−=+−02242020•对高速电子其关系如图所示,图中pc 用MeV 作单位,电子的m0c2=0.511MeV 。

近代物理实验

近代物理实验

2

而动能与能量的关系为: E
k
E E0 C 2 P 2 m0 c 4 m0 c 2
2
实验一 验证快速电子的动量与动 能的相对论关系

高速电子的狭义相对论的动量与动能的 关系如下图所示:
实验一 验证快速电子的动量与动 能的相对论关系

实验仪器
实验一 验证快速电子的动量与动 能的相对论关系
M
M
5 4 3 2 1
d
4 3 2 1
K-1 K
s

)

高反射膜
图2标准具的光路图
图3 等倾干涉花纹
实验四 塞曼效应

3、用法布里—珀罗标准具测量微小波长差的公式
L
)

f
D
图 4 干涉圆环花纹的入射 角 与圆环直径 D 的关系
图5 π成分的干涉花纹读数示意图
实验四 塞曼效应

实验二 夫兰克-赫兹实验

实验原理图
动态模拟图
实验二 夫兰克-赫兹实验

实验原理图简化图
实验二 夫兰克-赫兹实验
夫兰克-赫兹IA~UGK曲线图 对于氩,曲线上 相邻两峰(或谷)对应 的UGK之差,即为 原子的第一激发 电位。

实验二 夫兰克-赫兹实验

实验仪器
实验二 夫兰克-赫兹实验
实验内容 1.测量氩原子的第一激发电位。 2.描绘出夫兰克-赫兹管的阳极电流与加 速电压的关系曲线。 3.分析灯丝电压Vf、拒斥电压VP、控制栅 极极电压VG1等因素对F-H实验曲线的影 响。

实验原理: 设氩原子的基态能量为E1,第一激发态的 能量为E2,初速为零的电子在电位差为U0的 加速电场作用下,获得能量为eU0,具有这种 能量的电子与氩原子发生碰撞,当电子能量e U0 <E2 -E1时,电子与氩原子只能发生弹 性碰撞,由于电子质量比氩原子质量小得多, 电子能量损失很少。如果eU0 ≥E2-E1 =Δ E,则电子与氩原子会产生非弹性碰撞。氩原 子从电子中取得能量ΔE,而由基态跃迁到第 一激发态,eU0 =ΔE。相应的电位差即为氩 原子的第一激发电位。

高速运动电子的动量与动能关系

高速运动电子的动量与动能关系
高速运动电子的动与动能关系
一、实验目的
本实验将考察原子核衰变时所发射电子的动量与动能所满足的力学规律。实验中需认 真体会利用核技术方法实现动量、动能等力学量的同时测量这一实验设计的巧妙之处。
二、实验原理
1、 运动粒子动量与动能的关系 经 典 力 学 中 运 动 物 体 动 量 与 动 能 间 的 关 系 为 : Ek
三、实验内容
(1) 接通电源,将探测器高压调整到合适大小,预热约 20 分钟。 (2) 测量 137Cs 和 60Co 发射的光子的能谱,拟合出各光电峰的峰位。 (3) 利用光电峰的峰位数据对能谱仪进行能量定标。 (4) 开机械泵抽好真空后,改变闪烁探测器的位置,记录源与探测器的间距 2R 以及相应 位置处的电子能谱峰位。 在 19cm-35cm 范围选取八个不同位置分别测量出射电子的动 量和能量 (5) 记录磁感应强度 B 的值。计算上述数据对应动量和动能,画出实验曲线,并与经典力 学、相对论中的动量~动能理论曲线进行比较。 要求: 1. 60Co 右侧光电峰计数应大于 200,137Cs 右侧光电峰计数应大于 800
E 2 ) ,最小为 0.661MeV(137Cs) ,道址与能量近似成正比,因此为了防止 60Co 的 E 2 测量
超出我们的测量范围,137Cs 的光电峰道址位置位于 350 左右是比较合理的。
E 0.226 0.00763D(MeV )
137
Cs
60
Co 左
60
Co 右
能量/MeV 道址
0.661 348.6
1.17 624.4
1.33 720.7
用 origin 作图并拟合得到:
得到定标公式为:E=0.00181*道址+0.03268(MeV) 2. 测量电子的动量和能量关系 实验中磁感应强度 B=621.6Gs d/cm 道址 E/MeV 修正后的 E/MeV pc/MeV 9 161.7 11 274.4 13 380.4 15 491.8 17 585.8 19 696.5 21 807.4 23 926.8

相对论动量和动能的关系公式

相对论动量和动能的关系公式

相对论动量和动能的关系公式
相对论动量和动能的关系是现代物理的核心概念,也是语言资格考试中必不可少的考察内容。

该关系公式可以用下式来表示:
$ p=mv; E_{k}=\frac{1}{2}mv^{2} $
其中,p表示动量,m表示质量,v表示速度,Ek表示动能。

由上述公式可以看出,动量取决于质量与移动速度,它决定了物体在物理分析中所展现出来的动态运动。

而动能则体现出物体的运动能力,两者之间千丝万缕地相联系着。

概括起来,相对论动量和动能关系公式所表示的是动量与动能之间的变化,以及物体从静止到运动时,动量变化所引起动能的变化。

由此可见,物体的物理运动必须遵守相对论动量和动能的关系公式,而物体的动量和动能的变化又能够反映出物体的物理性质。

综上所述,相对论动量和动能的关系公式既重要又深刻,它表达出物体在运动过程中动量与动能的联系,并使物理学新的理论在实际应用中起中介作用,以帮助我们研究和解释宇宙中所有动态物体的运动原理。

2011验证快速电子的动量与动能的相对论关系 实验报告

2011验证快速电子的动量与动能的相对论关系 实验报告

验证快速电子的动量与动能的相对论关系 实验报告摘 要:本实验通过对快速电子的动量值及动能的同时测定来验证动量和动能之间的相对论关系。

同时实验者将从中学习到β磁谱仪测量原理、闪烁记数器的使用方法及一些实验数据处理的思想方法。

关键词:电子的动量 电子的动能 相对论关系 β磁谱仪引 言:1905年,阿尔伯特·爱因斯坦的《论运动物体的电动力学》首次提出了崭新的时间空间理论——狭义相对论。

其在1915年左右发表的一系列论文中给出了广义相对论最初的形式。

相对论和量子力学的提出给物理学带来了革命性的变化,它们共同奠定了近代物理学的基础。

相对论极大的改变了人类对宇宙和自然的“常识性”观念,提出了“同时的相对性”、“四维时空”、“弯曲时空”等全新的概念。

不过近年来,人们对于物理理论的分类有了一种新的认识——以其理论是否是决定论的来划分经典与非经典的物理学,即“非古典的=量子的”。

在这个意义下,相对论仍然是一种经典的理论。

本实验通过对快速电子的动量值及动能的同时测定,验证其动能与动量的关系,同时了解半圆聚焦β磁谱仪的工作原理。

实验方案:一、理论依据在经典力学中,动量表达式为p =m v 。

在狭义相对论中,在洛伦兹变换下,静止质量为m 0,相对论性质量为m ,速度为v 的物体,狭义相对论定义的动量p 为:p m v m v=-=012β式中m m v c=-=012/,/ββ。

狭义相对论中,质能关系式E mc =2是质点运动时遇有的总能量,当物体静止时v=0,物体的能量为E 0=m 0c 2称为静止能量;两者之差为物体的动能E k ,即E mc m c m c k =-=--222200111()β当β« 1时,可展开为E m c v cm c m vpm k =++-≈=00022222201121212()即得经典力学中的动量—能量关系。

E c p E 22202-=这就是狭义相对论的动量与能量关系。

验证快速电子的动量与动能的相对论关系

验证快速电子的动量与动能的相对论关系

验证快速电子的动量与动能的相对论关系在物理学的广袤领域中,对微观粒子行为的研究一直是极为重要的课题。

其中,快速电子的动量与动能之间的关系更是相对论物理学中的关键内容。

我们先来理解一下什么是动量和动能。

动量,简单来说,是物体的质量和速度的乘积。

在经典物理学中,对于低速运动的物体,动量等于质量乘以速度,动能则等于二分之一乘以质量乘以速度的平方。

然而,当涉及到快速电子这样的微观粒子,以接近光速的速度运动时,经典物理学的理论就不再适用,需要引入相对论的观点。

相对论告诉我们,随着物体运动速度的增加,其质量不再是恒定不变的,而是会增加。

这种质量的增加会对动量和动能的关系产生深刻的影响。

为了验证快速电子的动量与动能的相对论关系,我们需要进行一系列的实验和理论分析。

在实验方面,常用的方法是利用高能粒子加速器产生高速运动的电子束。

通过精确测量电子的速度和能量,我们可以得到它们的动量和动能的数据。

这些测量通常需要极其精密的仪器和技术。

例如,使用磁场来偏转电子束,从而根据偏转的程度计算电子的动量;利用能量探测器来测量电子的能量,进而推算出动能。

在理论分析中,我们依据爱因斯坦的相对论公式。

相对论动量的表达式为$p = mv /\sqrt{1 v^2 / c^2}$,其中$m$是电子的静止质量,$v$是电子的速度,$c$是真空中的光速。

相对论动能的表达式则为$E_k = mc^2(\frac{1}{\sqrt{1 v^2 /c^2}} 1)$。

将实验测量得到的数据与理论公式计算的结果进行对比,就可以验证相对论关系是否成立。

如果实验结果与相对论的理论预测相符,那就强有力地证明了相对论在描述快速电子行为方面的正确性。

但实际的验证过程并非一帆风顺。

实验中存在着各种误差和不确定性因素。

比如,电子束的均匀性、测量仪器的精度、外界干扰等,都可能影响实验结果的准确性。

为了减小误差,科学家们需要采取一系列的措施。

多次重复实验以获得更可靠的统计结果,对测量仪器进行校准和优化,控制实验环境以减少外界干扰等等。

验证相对论关系实验报告

验证相对论关系实验报告

验证相对论关系实验报告 Prepared on 22 November 2020验证快速电子的动量与动能的相对论关系实验报告摘要:实验利用β磁谱仪和NaI(Tl)单晶γ闪烁谱仪,通过对快速电子的动量值及动能的同时测定来验证动量和动能之间的相对论关系。

同时介绍了β磁谱仪测量原理、NaI(Tl)单晶γ闪烁谱仪的使用方法及一些实验数据处理的思想方法。

关键词:电子的动量电子的动能相对论效应β磁谱仪闪烁记数器。

引言:经典力学总结了低速的宏观的物理运动规律,它反映了牛顿的绝对时空观,却在高速微观的物理现象分析上遇见了极大的困难。

随着20世纪初经典物理理论在电磁学和光学等领域的运用受阻,基于实验事实,爱因斯坦提出了狭义相对论,给出了科学而系统的时空观和物质观。

为了验证相对论下的动量和动能的关系,必须选取一个适度接近光束的研究对象。

β-的速度几近光速,可以为我们研究高速世界所利用。

本实验我们利用源90Sr—90Y射出的具有连续能量分布的粒子和真空、非真空半圆聚焦磁谱仪测量快速电子的动量和能量,并验证快速电子的动量和能量之间的相对论关系。

实验方案:一、实验内容1测量快速电子的动量。

2测量快速电子的动能。

3验证快速电子的动量与动能之间的关系符合相对论效应。

二、实验原理经典力学总结了低速物理的运动规律,它反映了牛顿的绝对时空观:认为时间和空间是两个独立的观念,彼此之间没有联系;同一物体在不同惯性参照系中观察到的运动学量(如坐标、速度)可通过伽利略变换而互相联系。

这就是力学相对性原理:一切力学规律在伽利略变换下是不变的。

19世纪末至20世纪初,人们试图将伽利略变换和力学相对性原理推广到电磁学和光学时遇到了困难;实验证明对高速运动的物体伽利略变换是不正确的,实验还证明在所有惯性参照系中光在真空中的传播速度为同一常数。

在此基础上,爱因斯坦于1905年提出了狭义相对论;并据此导出从一个惯性系到另一惯性系的变换方程即“洛伦兹变换”。

验证快速电子的动量与动能的相对论关系实验报告

验证快速电子的动量与动能的相对论关系实验报告

验证快速电子的动量与动能的相对论关系实验报告摘要:实验是验证快速电子的动量与动能的相对论关系,本实验是通过对快速电子的动量值及动能的同时测定来验证动量和动能之间的相对论关系;同时了解β磁谱仪测量原理、闪烁记数器的使用方法及一些实验数据处理的思想方法。

通过实验过程完成实验内容,得到实验结果,获得实验体会。

关键字:动量动能相对论β磁谱仪闪烁探测器定标引言:动量和能量是描述物体或粒子运动状态的两个特征参量,在低速运动时,它们之间的关系服从经典力学,但运动速度很高时,却是服从相对论力学。

相对论力学理论是由伟大的科学家爱因斯坦建立的。

19世纪末到20世纪初期,相继进行了一些新的实验,如著名迈克尔逊—莫雷实验、运动电荷辐射实验、光行差实验等,这些实验的结果不能完全被经典力学和伽利略变换所解释,为解决这一矛盾,爱因斯坦于1905年创立了狭义相对论。

基于相对论的原理,可以解释所有这些实验结果,同时对低速运动的物体,相对论力学能过渡到经典力学。

原子核发生β衰变时,放出高速运动的电子,其运动规律应服从相对论力学。

通过测量电子的动能与动量,并分析二者之间的关系,可以达到加深理相对论理论的目的。

正文:1905年,阿尔伯特·爱因斯坦的《论运动物体的电动力学》首次提出了崭新的时间空间理论——狭义相对论。

其在1915年左右发表的一系列论文中给出了广义相对论最初的形式。

相对论和量子力学的提出给物理学带来了革命性的变化,它们共同奠定了近代物理学的基础。

相对论极大的改变了人类对宇宙和自然的“常识性”观念,提出了“同时的相对性”、“四维时空”、“弯曲时空”等全新的概念。

不过近年来,人们对于物理理论的分类有了一种新的认识——以其理论是否是决定论的来划分经典与非经典的物理学,即“非古典的=量子的”。

在这个意义下,相对论仍然是一种经典的理论。

本实验通过对快速电子的动量值及动能的同时测定,验证其动能与动量的关系,同时了解半圆聚焦β磁谱仪的工作原理。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

验证快速电子的动量与动能的相对论关系摘要:本实验通过对快速电子的动量值及动能的同时测定来验证动量和动能之间的相对论关系。

同时实验者将从中学习到β磁谱仪测量原理、闪烁记数器的使用方法及一些实验数据处理的思想方法。

关键词:电子的动量电子的动能相对论效应β磁谱仪闪烁记数器引言:相对论的基本假设是相对性原理,即物理定律与参照系的选择无关。

狭义相对论和广义相对论的区别是,前者讨论的是匀速直线运动的参照系(惯性参照系)之间的物理定律,后者则推广到具有加速度的参照系中(非惯性系),并在等效原理的假设下,广泛应用于引力场中。

相对论和量子力学是现代物理学的两大基本支柱。

经典物理学基础的经典力学,不适用于高速运动的物体和微观领域。

相对论解决了高速运动问题;量子力学解决了微观亚原子条件下的问题。

相对论颠覆了人类对宇宙和自然的“常识性”观念,提出了“时间和空间的相对性”、“四维时空”、“弯曲空间”等全新的概念。

狭义相对论提出于1905年,广义相对论提出于1915年[爱因斯坦在1915年末完成广义相对论的创建工作,在1916年初正式发表相关论文]。

本实验通过对快速电子的动量值及动能的同事测定,验证其动能与动量的关系,同时了解半圆聚焦β磁谱仪的工作原理。

实验方案:一、实验内容1测量快速电子的动量。

2测量快速电子的动能。

3验证快速电子的动量与动能之间的关系符合相对论效应。

二、实验原理经典力学总结了低速物理的运动规律,它反映了牛顿的绝对时空观:认为时间和空间是两个独立的观念,彼此之间没有联系;同一物体在不同惯性参照系中观察到的运动学量(如坐标、速度)可通过伽利略变换而互相联系。

这就是力学相对性原理:一切力学规律在伽利略变换下是不变的。

19世纪末至20世纪初,人们试图将伽利略变换和力学相对性原理推广到电磁学和光学时遇到了困难;实验证明对高速运动的物体伽利略变换是不正确的,实验还证明在所有惯性参照系中光在真空中的传播速度为同一常数。

在此基础上,爱因斯坦于1905年提出了狭义相对论;并据此导出从一个惯性系到另一惯性系的变换方程即“洛伦兹变换”。

洛伦兹变换下,静止质量为m0,速度为v的物体,狭义相对论定义的动量p为:p m v m v=-=012β(5—1)式中m m v c=-=012/,/ββ。

相对论的能量E 为:E m c =2(5—2)这就是著名的质能关系。

mc 2是运动物体的总能量,当物体静止时v=0,物体的能量为E 0=m 0c 2称为静止能量;两者之差为物体的动能E k ,即E m cm cm c k =-=--222200111()β(5—3)当β« 1时,式(5—3)可展开为E m c v cm cm vpm k =++-≈=00022222201121212() (5—4)即得经典力学中的动量—能量关系。

由式(5—1)和(5—2)可得:Ec pE 22202-= (5—5)这就是狭义相对论的动量与能量关系。

而动能与动量的关系为:E E E c pm cm ck =-=+-02242020 (4─6)这就是我们要验证的狭义相对论的动量与动能的关系。

对高速电子其关系如图所示,图中pc 用MeV 作单位,电子的m 0c 2=0.511MeV 。

式(5—4)可化为:E p c m cp ck ==⨯1220511222220.以利于计算。

四.实验装置及方法实验装置主要由以下部分组成:①真空、非真空半圆聚焦β磁谱仪;②β放射源90Sr —90Y(强度≈1毫居里),定标用γ放射源137Cs 和60Co(强度≈2微居里);③200μmAl 窗NaI(Tl)闪烁探头;④数据处理计算软件;⑤高压电源、放大器、多道脉冲幅度分析器。

β源射出的高速β粒子经准直后垂直射入一均匀磁场中(B V ⊥),粒子因受到与运动方向垂直的洛伦兹力的作用而作圆周运动。

如果不考虑其在空气中的能量损失(一般情况下为小量),则粒子具有恒定的动量数值而仅仅是方向不断变化。

粒子作圆周运动的方程为:d p d te v B=-⨯ (5—7)e 为电子电荷,v 为粒子速度,B 为磁场强度。

由式(5—1)可知p=mv ,对某一确定的动量数值P ,其运动速率为一常数,所以质量m 是不变的,故d p d tmd v d t=,且d vd tvR=2所以 p eBR = (5—8)式中R 为β粒子轨道的半径,为源与探测器间距的一半。

在磁场外距β源X 处放置一个β能量探测器来接收从该处出射的β粒子,则这些粒子的能量(即动能)即可由探测器直接测出,而粒子的动量值即为:p e B R e B X ==∆/2。

由于β源38903990Sr Y -(0~2.27MeV)射出的β粒子具有连续的能量分布(0~2.27MeV),因此探测器在不同位置(不同∆X)就可测得一系列不同的能量与对应的动量值。

这样就可以用实验方法确定测量范围内动能与动量的对应关系,进而验证相对论给出的这一关系的理论公式的正确性。

三、实验步骤1. 检查仪器线路连接是否正确,然后开启高压电源,开始工作;2. 打开60C o γ定标源的盖子,移动闪烁探测器使其狭缝对准60C o 源的出射孔并开始记数测量;3. 调整加到闪烁探测器上的高压和放大数值,使测得的60C o 的1.33MeV 峰位道数在一个比较合理的位置(建议:在多道脉冲分析器总道数的50%~70%之间,这样既可以保证测量高能β粒子(1.8~1.9MeV)时不越出量程范围,又充分利用多道分析器的有效探测范围);4. 选择好高压和放大数值后,稳定10~20分钟;5. 正式开始对NaI(Tl)闪烁探测器进行能量定标,首先测量60C o 的γ能谱,等1.33MeV 光电峰的峰顶记数达到1000以上后(尽量减少统计涨落带来的误差),对能谱进行数据分析,记录下1.17和1.33MeV 两个光电峰在多道能谱分析器上对应的道数CH 3、CH 4; 6. 移开探测器,关上60C o γ定标源的盖子,然后打开137C sγ定标源的盖子并移动闪烁探测器使其狭缝对准137C s源的出射孔并开始记数测量,等0.661MeV 光电峰的峰顶记数达到1000后对能谱进行数据分析,记录下0.184MeV 反散射峰和0.661 MeV 光电峰在多道能谱分析器上对应的道数CH 1、CH 2; 7. 关上137C sγ定标源,打开机械泵抽真空(机械泵正常运转2~3分钟即可停止工作);8. 盖上有机玻璃罩,打开β源的盖子开始测量快速电子的动量和动能,探测器与β源的距离∆X 最近要小于9cm 、最远要大于24cm ,保证获得动能范围0.4~1.8MeV 的电子; 9. 选定探测器位置后开始逐个测量单能电子能峰,记下峰位道数CH 和相应的位置坐标X ; 10. 全部数据测量完毕后关闭β源及仪器电源,进行数据处理和计算。

四、数据处理1.真空状态下P 与∆X 的关系的合理表述由于工艺水平的限制,磁场的非均匀性(尤其是边缘部分)无法避免,直接用p e B R e B X ==∆/2来求动量将产生一定的系统误差;因此需要采取更为合理的方式来表述P 与∆X 的关系。

设粒子的真实径迹为aob ,位移ds 与Y 轴的夹角为θ,如上图所示;则ds 在X 轴上的投影为sin θ⋅ds 。

显然有:∆x ds ds=⋅≈⋅⎰⎰sin sin θθπθ01()θπ1≈ (5—9)又因为d s R d =⋅θ以及eB P R /=,(其中R 、B 分别为ds 处的曲率半径和磁场强度),则有:∆X P e Bd P eBd =⋅⋅=⋅⎰⎰sin sin θθθθππ( 真空中P 为定值) (5─10)所以有:P e X Bd Be X=⋅=⎰∆∆/sin θθπ12(112BBd =⋅⎰s in θθπ) (5─11)把1B 改写成:⎰⎰⋅⋅=ππθθθθ0sin /sin 1d d BB,则物理含义更为明显:即B /1为粒子在整个路径上的磁场强度的倒数以各自所处位置处的位移与Y 轴夹角的正弦为权重的加权平均值。

显然,B 相当于均匀磁场下公式p e B R e B X ==∆/2中的磁场强度B ;即只要求出B ,就能更为确切地表述P 与∆X 的关系,进而准确地确定粒子的动量值。

实际计算操作中还需要把求积分进一步简化为求级数和;即可把画在磁场分布图上直径为∆X 的半圆弧作N 等分(间距取10毫米左右为宜),依此读出第i 段位移所在处的磁场强度B i ,再注意到:θπi N i =-()1以及∆θπi N =,则最后求和可以得到:1121212111B B d NNi B NNi B i Ni ii N≈''⋅'≈-=-==∑⎰∑s in s in [()]/s in [()]/θθπππππ(5─12)所以:P N e xNi B ii N=-=∑∆ππsin [()]/11(5─13)2.β粒子动能的测量β粒子与物质相互作用是一个很复杂的问题,如何对其损失的能量进行必要的修正十分重要。

①β粒子在Al 膜中的能量损失修正在计算β粒子动能时还需要对粒子穿过Al 膜(220μm :200μm 为NaI(Tl)晶体的铝膜密封层厚度,20μm 为反射层的铝膜厚度)时的动能予以修正,计算方法如下。

设β-粒子在Al 膜中穿越∆x 的动能损失为∆E ,则:∆∆E d E d x x=ρρ (5—14)其中d E d x ρ(d Ed x ρ<0)是Al 对β-粒子的能量吸收系数,(ρ是Al 的密度),d Ed x ρ是关于E 的函数,不同E 情况下d E d x ρ的取值可以通过计算得到。

可设d E d x K E ρρ=(),则∆E=K(E)∆x ;取∆x →0,则β-粒子穿过整个Al 膜的能量损失为:⎰+=-dx xdxE K E E )(12 (5─15);即⎰+-=dx xdxE K EE )(21 (5─16)其中d 为薄膜的厚度,E 2为出射后的动能,E 1为入射前的动能。

由于实验探测到的是经Al 膜衰减后的动能,所以经公式(4─9)可计算出修正后的动能(即入射前的动能)。

下表列出了根据本计算程序求出的入射动能E 1和出射动能E 2之间的对应关系:E 1(MeV) E 2(MeV) E 1(MeV) E 2(MeV) E 1(MeV) E 2(MeV) 0.317 0.200 0.887 0.800 1.489 1.400 0.360 0.250 0.937 0.850 1.536 1.450 0.404 0.300 0.988 0.900 1.583 1.500 0.451 0.350 1.039 0.950 1.638 1.550 0.497 0.400 1.090 1.000 1.685 1.600 0.545 0.450 1.137 1.050 1.740 1.650 0.595 0.500 1.184 1.100 1.787 1.700 0.640 0.550 1.239 1.150 1.834 1.750 0.690 0.600 1.286 1.200 1.889 1.800 0.740 0.650 1.333 1.250 1.936 1.850 0.790 0.700 1.388 1.300 1.991 1.900 0.8400.7501.4351.3502.0381.950②β粒子在有机塑料薄膜中的能量损失修正此外,实验表明封装真空室的有机塑料薄膜对β存在一定的能量吸收,尤其对小于0.4MeV 的β粒子吸收近0.02MeV 。

相关文档
最新文档