非常详细的LTE信令流程

合集下载

LTE完整信令流程

LTE完整信令流程

LTE完整信令流程LTE(Long Term Evolution)是第四代移动通信技术,支持更快的数据传输速率和更低的延迟。

以下是LTE完整信令流程的详细说明:1.启动步骤:a. 手机(UE)向移动网络发送接入请求(RRC Connection Request)。

b. 基站选定一个可用的物理层资源来分配给UE,并向UE发送随机接入响应(RRC Connection Setup)。

2.认证和安全步骤:c.UE发起可选的移动设备认证过程,以验证自己的身份。

d. 完成认证后,移动网络发送键控信息(Ciphering Key)和完整性保护信息(Integrity Key)给UE,以确保数据传输的机密性和完整性。

3.配置NAS连接:a. 移动网络发送配置请求消息(NAS Signaling Connection Setup Request)给UE。

4.UE附着到移动网络:a. UE发送附着请求(Attach Request)消息给移动网络。

b. 移动网络向设备发送附着响应(Attach Accept)。

c. 向移动网络注册UE的位置信息(Update Location Request)。

d. 移动网络发送位置更新响应(Update Location Accept)给UE。

5.建立承载:a. UE发送承载请求(Bearer Setup Request)消息给移动网络。

b. 移动网络配置承载参数和QoS(Quality of Service),并发送承载确认(Bearer Setup Accept)给UE。

c. UE发送初始上下文建立(Initial Context Setup Request)消息给移动网络。

d. 移动网络发送初始上下文建立确认(Initial Context Setup Accept)给UE。

6.数据传输:a. UE发送数据请求(Data Request)给移动网络。

b. 移动网络将数据传输到目标UE的接收缓冲区,并发送数据确认(Data Acknowledgement)给源UE。

LTE信令流程范文

LTE信令流程范文

LTE信令流程范文LTE (Long-Term Evolution) 是一种无线通信技术标准,其信令流程主要包括以下步骤:接入过程、应用层链接建立过程、透明服务访问、移动性管理、数据传输和拆链过程。

下面将详细介绍每个步骤的信令流程。

1.接入过程:- 射频连续波激活:UE (User Equipment) 向基站发送射频连续波请求。

-射频连续波回应:基站收到请求后,向UE发送射频连续波回应。

-随机接入令牌:UE收到射频连续波回应后,发送随机接入令牌请求给基站。

-随机接入回应:基站为UE分配一个随机接入回应令牌。

-接入请求:UE使用随机接入回应令牌发送接入请求给基站。

-接入回应:基站收到接入请求后,向UE发送接入回应。

2.应用层链接建立过程:- 控制面链接建立请求:UE 向 Evolved Packet Core (EPC) 发送控制面链接建立请求。

-控制面链接建立回应:EPC返回控制面链接建立回应给UE。

-用户面链接建立请求:UE向EPC发送用户面链接建立请求。

-用户面链接建立回应:EPC返回用户面链接建立回应给UE。

3.透明服务访问:-有线级透明服务建立请求:UE向EPC发送有线级透明服务建立请求。

-有线级透明服务建立回应:EPC返回有线级透明服务建立回应给UE。

-无线级透明服务建立请求:UE向EPC发送无线级透明服务建立请求。

-无线级透明服务建立回应:EPC返回无线级透明服务建立回应给UE。

4.移动性管理:-S1接口切换请求:当UE从一个基站切换到另一个基站时,UE向EPC发送S1接口切换请求。

-S1接口切换回应:EPC返回S1接口切换回应给UE。

-X2接口切换请求:当UE在同一个基站内进行小区间切换时,UE向EPC发送X2接口切换请求。

-X2接口切换回应:EPC返回X2接口切换回应给UE。

5.数据传输:-数据发射请求:UE向EPC发送数据发射请求。

-数据发射回应:EPC返回数据发射回应给UE。

LTE主要信令和流程-比较详细

LTE主要信令和流程-比较详细


空中接口协议栈 TD-SCDMA和TD-LTE协议栈比较
TD-SCDMA
RRC C-plane signalling U-plane information control
TD-LTE
L3
Radio Bearers PDCP PDCP
用户平面
control
control
control control


更高的用户数据速率
更高的频谱效率(降低每比特成本) 更低的时延(包括连接建立时延和传输时延)
– 控制平面时延大大降低,小于100ms(Idle->Active) – 用户平面端到端单向时延<5ms(IP层以下、系统空载)

• • • •
更灵活的频谱使用 简化的网络体系架构 无缝切换(包括不同的无线接入技术之间) 合理的终端功耗
CELL_DCH
Release RRC Connection Establish RRC Connection
CELL_FACH out of service in service
• 由于传输信道数量的减少, LTE中只包含两个协议状 态,相对于3G大大简化 • 3G中只有在CELL_DCH 才发生切换,其它状态都 支持UE自主的移动性; • 协议流程的简化 • 更低的时延 • 更多的切换
DL-SCH
Downlink Transport channels
RACH UL-SCH
Uplink Transport channels
由于没有CS域,LTE上下行都只 有共享信道,不再有专用信道; 传输信道的数量大大减少
• 更少的协议状态 • 协议结构大大简化,只有一个 MAC实体

非常详细的LTE信令流程

非常详细的LTE信令流程

LTE信令流程目录第一章协议层与概念 (7)1.1控制面与用户面 (7)1.2接口与协议 (7)1.2.1................................. N AS协议(非接入层协议) 81.2.2................................. R RC层(无线资源控制层) 81.2.3............................ P DCP层(分组数据汇聚协议层) 91.2.4................................. R LC层(无线链路控制层) 101.2.5..................................... M AC层(媒体接入层) 111.2.6......................................... P HY层(物理层) 121.3空闲态和连接态 (13)1.4网络标识 (15)1.5承载概念 (16)第二章主要信令流程 (18)2.1 开机附着流程 (18)2.2随机接入流程 (21)2.3 UE发起的service request流程 (26)2.4寻呼流程 (28)2.5切换流程 (29)2.5.1 切换的含义及目的 (29)2.5.2 切换发生的过程 (30)2.5.3 站内切换 (30)2.5.4 X2切换流程 (31)2.5.5 S1切换流程 (34)2.5.6 异系统切换简介 (36)2.6 CSFB流程 (36)2.6.1 CSFB主叫流程 (37)2.6.2 CSFB被叫流程 (38)2.6.3 紧急呼叫流程 (40)2.7 TAU流程 (41)2.7.1 空闲态不设置“ACTIVE”的TAU流程 (42)2.7.2 空闲态设置“ACTIVE”的TAU流程 (43)2.7.3 连接态TAU流程 (43)2.8专用承载流程 (44)2.8.1 专用承载建立流程 (44)2.8.2 专用承载修改流程 (46)2.8.3 专用承载释放流程 (48)2.9去附着流程 (49)2.9.1 关机去附着流程 (49)2.9.1 非关机去附着流程 (50)2.10 小区搜索、选择和重选 (51)2.10.1 小区搜索流程 (51)2.10.1 小区选择流程 (51)2.10.3 小区重选流程 (52)第三章异常信令流程 (57)3.1 附着异常流程 (57)3.1.1 RRC连接失败 (57)3.1.2 核心网拒绝 (58)3.1.3 eNB未等到Initial context setup request消息 (58)3.1.4 RRC重配消息丢失或eNB内部配置UE的安全参数失败 (58)3.2 ServiceRequest异常流程 (58)3.2.1 核心网拒绝 (58)3.2.2 eNB建立承载失败 (58)3.3 承载异常流程 (59)3.3.1核心网拒绝 (59)3.3.2 eNB本地建立失败(核心网主动发起的建立) (59)3.3.3 eNB未等到RRC重配完成消息,回复失败 (60)3.3.4 UE NAS层拒绝 (60)3.3.5上行直传NAS消息丢失 (60)第四章系统消息解析 (60)4.1 系统消息 (61)4.2 系统消息解析 (62)4.2.1 MIB (Master Information Block)解析 (62)4.2.2 SIB1 (System Information Block Type1)解析 (63)4.2.3 SystemInformation消息 (69)第五章信令案例解析 (81)5.1实测案例流程 (82)5.2 流程中各信令消息解析 (85)5.2.1 RRC_CONN_REQ:RRC连接请求 (85)5.2.2 RRC_CONN_SETUP:RRC连接建立 (87)5.2.3 RRC_CONN_SETUP_CMP:RRC连接建立完成 (96)5.2.4 S1AP_INITIAL_UE_MSG:初始直传消息 (97)5.2.5 S1AP_INITIAL_CONTEXT_SETUP_REQ:初始化文本建立请求 (101)5.2.6 RRC_UE_CAP_ENQUIRY:UE能力查询 (107)5.2.7 RRC_UE_CAP_INFO:UE能力信息 (108)5.2.8 S1AP_UE_CAPABILITY_INFO_IND:UE能力信息指示 (119)5.2.9 RRC_SECUR_MODE_CMD:RRC安全模式命令 (132)5.2.10 RRC_CONN_RECFG:RRC连接重配置 (133)5.2.11 RRC_SECUR_MODE_CMP:RRC安全模式完成 (141)5.2.12 RRC_CONN_RECFG_CMP:RRC连接重配置完成 (141)5.2.13 S1AP_INITIAL_CONTEXT_SETUP_RSP:初始化文本建立完成.. 142 5.2.14 S1AP_ERAB_MOD_REQ:ERAB修改请求 (144)5.2.15 RRC_DL_INFO_TRANSF:RRC下行直传消息 (147)5.2.16 S1AP_ERAB_MOD_RSP:ERAB修改完成 (148)5.2.17 RRC_CONN_RECFG:RRC连接重配置 (150)5.2.18 RRC_UL_INFO_TRANSF:RRC上行直传消息 (161)5.2.19 S1AP_UL_NAS_TRANS:上行NAS直传消息 (162)5.2.20 RRC_CONN_RECFG_CMP:RRC连接重配置完成 (164)5.2.21 RRC_CONN_RECFG:RRC连接重配置 (165)5.2.22 RRC_CONN_RECFG_CMP:RRC连接重配置完成 (168)5.2.23 RRC_MEAS_RPRT:RRC测量报告 (169)5.2.24 RRC_UL_INFO_TRANSF:RRC上行信息传输 (171)5.2.25 S1AP_UL_NAS_TRANS:上行NAS信息传输 (172)5.2.26 S1AP_UE_CONTEXT_MOD_REQ:UE文本更改请求 (174)5.2.27 S1AP_UE_CONTEXT_MOD_RSP:UE文本更改响应 (176)5.2.28 RRC_CONN_REL:RRC连接释放 (177)5.2.29 S1AP_UE_CONTEXT_REL_REQ:UE文本释放请求 (180)5.2.30 S1AP_UE_CONTEXT_REL_CMD:UE文本释放命令 (181)5.2.31 S1AP_UE_CONTEXT_REL_CMP:UE文本释放完成 (183)概述本文通过对重要概念的阐述,为信令流程的解析做铺垫,随后讲解LTE中重要信令流程,让大家熟悉各个物理过程是如何实现的,其次通过异常信令的解读让大家增强对异常信令流程的判断,再次对系统消息的解析,让大家了解系统消息的特点和携带的内容。

LTE基本信令流程

LTE基本信令流程

LTE基本信令流程LTE(Long Term Evolution)基本信令流程主要包括接入过程、数据传输过程和释放过程。

下面将详细介绍每个过程的信令流程。

一、接入过程(RRC连接建立过程):1. 手机发起连接请求:手机向基站发送RRC连接请求信令(RRC Connection Request),并指定连接的原因(例如寻呼、位置更新等)。

2. 基站分配临时C-RNTI:基站接收到连接请求信令后,为手机分配临时C-RNTI(Cell Radio Network Temporary Identifier),并向手机发送RRC连接允许信令(RRC Connection Setup)。

4. 确认建立连接:基站接收到RRC连接确认信令后,向手机发送RRC连接重新配置信令(RRC Connection Reconfiguration),并携带基站的系统配置信息。

二、数据传输过程:1. 上行数据传输:手机向基站发送上行数据传输请求信令(UL Data Transfer Request),并携带上行数据(例如语音、视频或其他应用数据)。

2. 数据传输:基站接收到上行数据传输请求信令后,将上行数据转发到核心网,并向手机发送上行数据传输确认信令(UL Data Transfer Acknowledgement)。

3.下行数据传输:基站向手机发送下行数据(例如网页、视频流等)。

4. 数据接收确认:手机接收到下行数据后,向基站发送下行数据传输确认信令(DL Data Transfer Acknowledgement)。

三、释放过程:1. 释放请求:手机或基站发起释放请求,向对方发送RRC连接释放请求信令(RRC Connection Release)。

3.释放完成:发起方接收到释放确认信令后,释放连接。

除了上述基本信令流程外,LTE还包括以下一些重要的信令流程:1.小区:手机在上电或小区切换时,需要进行小区以找到合适的基站。

LTE常见信令流程总结

LTE常见信令流程总结

LTE常见信令流程总结LTE(Long-Term Evolution)是一种用于移动通信网络的标准,是4G通信技术的一种。

LTE信令流程是指在LTE网络中,设备之间进行通信所涉及的各种信令过程。

在LTE网络中,设备之间的通信主要包括连接建立、数据传输、连接释放等过程,在这些过程中需要经过一系列的信令流程来完成。

LTE信令流程可以分为以下几个主要部分:1.接入过程:接入过程是指设备连接到LTE网络的过程。

在接入过程中,设备首先进行初始接入,即与LTE基站进行随机接入的过程。

接入成功后,设备会进行UE同步和小区选择,确定要连接的LTE基站。

接入过程中的主要信令包括RRC连接建立、测量报告等。

2.连接建立:连接建立是指设备在LTE网络中建立到目标设备的连接的过程。

在连接建立过程中,设备需要先进行RRC连接建立,然后进行UE安全功能的激活,最后进行RAB建立,确保通信质量。

连接建立过程中的主要信令包括RRC连接请求、RRC连接建立等。

3.数据传输:数据传输是LTE网络中最常见的通信过程。

在数据传输过程中,设备通过LTE网络进行数据的发送和接收。

数据传输过程中的主要信令包括PDCP数据传输、RLC数据传输、MAC数据传输等。

4.连接释放:连接释放是指设备在LTE网络中释放连接的过程。

在连接释放过程中,设备需要发送连接释放请求,等待对方设备确认后释放连接。

连接释放过程中的主要信令包括RRC连接释放等。

除了上述主要的信令流程外,LTE网络中还涉及到一些其他重要的信令流程,如小区选择过程、测量报告过程、切换过程、重定向过程等。

这些信令流程都是为了保证LTE网络中设备之间的通信质量和稳定性。

总的来说,LTE网络中的信令流程是为了保证设备之间能够进行有效的通信,并提供高质量的通信服务。

通过了解和掌握LTE网络中的信令流程,可以更好地理解LTE网络的工作原理和特点,更好地进行LTE网络的优化和管理。

同时,随着LTE技术的不断发展和完善,LTE网络中的信令流程也将会不断地进行更新和改进,以适应不断变化的通信需求和用户要求。

lte信令流程

lte信令流程

lte信令流程LTE信令流程。

LTE(Long Term Evolution)是第四代移动通信技术的缩写,它在提供更高数据传输速率、更低延迟和更好的覆盖范围方面具有显著优势。

LTE网络中的信令流程是指移动设备和基站之间进行通信时所涉及的信令交换过程。

下面将介绍LTE信令流程的主要内容。

1. 接入过程。

当移动设备需要接入LTE网络时,首先会发送接入请求给附近的基站。

基站收到请求后,会向移动设备发送接入许可。

移动设备收到许可后,会进行随机接入过程,选择一个随机接入时隙,并发送接入请求。

基站收到请求后,会分配一个临时的标识给移动设备,确认接入成功。

2. 呼叫建立过程。

在LTE网络中,呼叫建立过程是指移动设备与网络之间建立通话或数据传输连接的过程。

当移动设备需要发起呼叫时,会向基站发送呼叫请求。

基站收到请求后,会向核心网发送呼叫请求,并等待核心网的响应。

核心网在收到呼叫请求后,会进行用户身份验证和授权,并向基站发送呼叫建立请求。

基站收到建立请求后,会向移动设备发送建立请求,建立通话或数据传输连接。

3. 手over过程。

在移动通信中,手over是指移动设备在通话或数据传输过程中由一个基站切换到另一个基站的过程。

在LTE网络中,手over过程分为两种情况,硬切换和软切换。

硬切换是指移动设备在通话或数据传输过程中突然切换到另一个基站,而软切换是指移动设备在通话或数据传输过程中平滑地切换到另一个基站。

无论是硬切换还是软切换,移动设备在切换过程中都需要与原基站和目标基站进行信令交换,以确保通话或数据传输的连续性。

4. 释放过程。

当通话或数据传输结束时,移动设备会向基站发送释放请求。

基站收到请求后,会向核心网发送释放请求,并等待核心网的响应。

核心网在收到释放请求后,会进行用户鉴权和计费,并向基站发送释放请求。

基站收到释放请求后,会向移动设备发送释放请求,结束通话或数据传输连接。

以上就是LTE信令流程的主要内容。

通过对接入过程、呼叫建立过程、手over过程和释放过程的介绍,我们可以更好地理解LTE 网络中移动设备和基站之间的信令交换过程,为LTE网络的优化和问题排查提供参考。

LTE网络信令流程

LTE网络信令流程

LTE网络信令流程LTE(Long Term Evolution)是一种4G无线通信技术,为用户提供高速数据传输、低延迟和更好的用户体验。

LTE的信令流程包括以下几个方面:1.接入过程:- UE (User Equipment,即终端设备) 向eNodeB (Evolved Node B,即基站) 发送接入请求。

- eNodeB为UE分配临时标识(Temporary Mobile Subscriber Identity)。

- UE使用临时标识与eNodeB进行认证。

- 认证通过后,eNodeB为UE分配一个唯一的长期标识(Permanent Mobile Subscriber Identity)。

- UE通过接收到的参数,建立与eNodeB的关联,并向eNodeB发送最终接入请求。

- eNodeB将UE的接入请求转发到Mobility Management Entity (MME)。

2.切换过程:- UE在与当前eNodeB的通信中发现信号差或质量下降时,会发送切换请求。

- 当前eNodeB将切换请求发送给MME。

- MME负责查找可用的目标eNodeB,并向目标eNodeB发送切换申请。

- 目标eNodeB评估并验证切换请求。

- 目标eNodeB将切换响应发送给MME,MME将其转发给UE。

- UE收到切换响应后,与目标eNodeB建立新的连接,并与当前eNodeB断开连接。

3.建立和释放数据连接:- UE发送数据连接请求给eNodeB。

- eNodeB将请求发送给MME。

- MME确定UE的上下文信息,并将该信息转发给目标Serving Gateway(S-GW)。

- S-GW分析数据连接请求,并选择合适的Packet Data Network Gateway(P-GW)。

-S-GW将数据连接请求转发给P-GW。

-P-GW向UE发送数据连接响应。

-UE使用该响应设置与P-GW的数据连接。

-数据连接建立后,UE和P-GW之间可以进行数据传输。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

LTE信令流程目录第一章协议层与概念 (7)1.1控制面与用户面 (7)1.2接口与协议 (7)1.2.1................................. N AS协议(非接入层协议) 81.2.2................................. R RC层(无线资源控制层) 81.2.3............................ P DCP层(分组数据汇聚协议层) 91.2.4................................. R LC层(无线链路控制层) 101.2.5..................................... M AC层(媒体接入层) 111.2.6......................................... P HY层(物理层) 121.3空闲态和连接态 (13)1.4网络标识 (15)1.5承载概念 (16)第二章主要信令流程 (18)2.1 开机附着流程 (18)2.2随机接入流程 (21)2.3 UE发起的service request流程 (26)2.4寻呼流程 (28)2.5切换流程 (29)2.5.1 切换的含义及目的 (29)2.5.2 切换发生的过程 (30)2.5.3 站内切换 (30)2.5.4 X2切换流程 (31)2.5.5 S1切换流程 (34)2.5.6 异系统切换简介 (36)2.6 CSFB流程 (36)2.6.1 CSFB主叫流程 (37)2.6.2 CSFB被叫流程 (38)2.6.3 紧急呼叫流程 (40)2.7 TAU流程 (41)2.7.1 空闲态不设置“ACTIVE”的TAU流程 (42)2.7.2 空闲态设置“ACTIVE”的TAU流程 (43)2.7.3 连接态TAU流程 (43)2.8专用承载流程 (44)2.8.1 专用承载建立流程 (44)2.8.2 专用承载修改流程 (46)2.8.3 专用承载释放流程 (48)2.9去附着流程 (49)2.9.1 关机去附着流程 (49)2.9.1 非关机去附着流程 (50)2.10 小区搜索、选择和重选 (51)2.10.1 小区搜索流程 (51)2.10.1 小区选择流程 (51)2.10.3 小区重选流程 (52)第三章异常信令流程 (57)3.1 附着异常流程 (57)3.1.1 RRC连接失败 (57)3.1.2 核心网拒绝 (58)3.1.3 eNB未等到Initial context setup request消息 (58)3.1.4 RRC重配消息丢失或eNB内部配置UE的安全参数失败 (58)3.2 ServiceRequest异常流程 (58)3.2.1 核心网拒绝 (58)3.2.2 eNB建立承载失败 (58)3.3 承载异常流程 (59)3.3.1核心网拒绝 (59)3.3.2 eNB本地建立失败(核心网主动发起的建立) (59)3.3.3 eNB未等到RRC重配完成消息,回复失败 (60)3.3.4 UE NAS层拒绝 (60)3.3.5上行直传NAS消息丢失 (60)第四章系统消息解析 (60)4.1 系统消息 (61)4.2 系统消息解析 (62)4.2.1 MIB (Master Information Block)解析 (62)4.2.2 SIB1 (System Information Block Type1)解析 (63)4.2.3 SystemInformation消息 (69)第五章信令案例解析 (81)5.1实测案例流程 (82)5.2 流程中各信令消息解析 (85)5.2.1 RRC_CONN_REQ:RRC连接请求 (85)5.2.2 RRC_CONN_SETUP:RRC连接建立 (87)5.2.3 RRC_CONN_SETUP_CMP:RRC连接建立完成 (96)5.2.4 S1AP_INITIAL_UE_MSG:初始直传消息 (97)5.2.5 S1AP_INITIAL_CONTEXT_SETUP_REQ:初始化文本建立请求 (101)5.2.6 RRC_UE_CAP_ENQUIRY:UE能力查询 (107)5.2.7 RRC_UE_CAP_INFO:UE能力信息 (108)5.2.8 S1AP_UE_CAPABILITY_INFO_IND:UE能力信息指示 (119)5.2.9 RRC_SECUR_MODE_CMD:RRC安全模式命令 (132)5.2.10 RRC_CONN_RECFG:RRC连接重配置 (133)5.2.11 RRC_SECUR_MODE_CMP:RRC安全模式完成 (141)5.2.12 RRC_CONN_RECFG_CMP:RRC连接重配置完成 (141)5.2.13 S1AP_INITIAL_CONTEXT_SETUP_RSP:初始化文本建立完成.. 142 5.2.14 S1AP_ERAB_MOD_REQ:ERAB修改请求 (144)5.2.15 RRC_DL_INFO_TRANSF:RRC下行直传消息 (147)5.2.16 S1AP_ERAB_MOD_RSP:ERAB修改完成 (148)5.2.17 RRC_CONN_RECFG:RRC连接重配置 (150)5.2.18 RRC_UL_INFO_TRANSF:RRC上行直传消息 (161)5.2.19 S1AP_UL_NAS_TRANS:上行NAS直传消息 (162)5.2.20 RRC_CONN_RECFG_CMP:RRC连接重配置完成 (164)5.2.21 RRC_CONN_RECFG:RRC连接重配置 (165)5.2.22 RRC_CONN_RECFG_CMP:RRC连接重配置完成 (168)5.2.23 RRC_MEAS_RPRT:RRC测量报告 (169)5.2.24 RRC_UL_INFO_TRANSF:RRC上行信息传输 (171)5.2.25 S1AP_UL_NAS_TRANS:上行NAS信息传输 (172)5.2.26 S1AP_UE_CONTEXT_MOD_REQ:UE文本更改请求 (174)5.2.27 S1AP_UE_CONTEXT_MOD_RSP:UE文本更改响应 (176)5.2.28 RRC_CONN_REL:RRC连接释放 (177)5.2.29 S1AP_UE_CONTEXT_REL_REQ:UE文本释放请求 (180)5.2.30 S1AP_UE_CONTEXT_REL_CMD:UE文本释放命令 (181)5.2.31 S1AP_UE_CONTEXT_REL_CMP:UE文本释放完成 (183)概述本文通过对重要概念的阐述,为信令流程的解析做铺垫,随后讲解LTE中重要信令流程,让大家熟悉各个物理过程是如何实现的,其次通过异常信令的解读让大家增强对异常信令流程的判断,再次对系统消息的解析,让大家了解系统消息的特点和携带的内容。

最后通过实测信令内容讲解,说明消息的重要信元字段。

第一章协议层与概念1.1控制面与用户面在无线通信系统中,负责传送和处理用户数据流工作的协议称为用户面;负责传送和处理系统协调信令的协议称为控制面。

用户面如同负责搬运的码头工人,控制面就相当于指挥员,当两个层面不分离时,自己既负责搬运又负责指挥,这种情况不利于大货物处理,因此分工独立后,办事效率可成倍提升,在LTE网络中,用户面和控制面已明确分离开。

1.2接口与协议接口是指不同网元之间的信息交互时的节点,每个接口含有不同的协议,同一接口的网元之间使用相互明白的语言进行信息交互,称为接口协议,接口协议的架构称为协议栈。

在LTE中有空中接口和地面接口,相应也有对应的协议和协议栈。

图1 子层、协议栈与流图2 子层运行方式LTE系统的数据处理过程被分解成不同的协议层。

简单分为三层结构:物理层、数据链路层L2和网络层。

图1阐述了LTE系统传输的总体协议架构以及用户面和控制面数据信息的路径和流向。

用户数据流和信令流以IP包的形式进行传送,在空中接口传送之前,IP 包将通过多个协议层实体进行处理,到达eNodeB后,经过协议层逆向处理,再通过S1/X2接口分别流向不同的EPS实体,路径中各协议子层特点和功能如下:1.2.1NAS协议(非接入层协议)处理UE和MME之间信息的传输,传输的内容可以是用户信息或控制信息(如业务的建立、释放或者移动性管理信息)。

它与接入信息无关,只是通过接入层的信令交互,在UE 和MME之间建立起了信令通路,从而便能进行非接入层信令流程了。

NAS层功能如下:会话管理:包括会话建立、修改、释放及QoS协商用户管理:包括用户数据管理,以及附着、去附着安全管理:包括用户与网络之间的鉴权及加密初始化计费1.2.2RRC层(无线资源控制层)RRC层是支持终端和eNodeB间多种功能的最为关键的信令协议。

RRC的功能包括:广播NAS层和AS层的系统消息寻呼功能(通过PCCH逻辑信道执行)RRC连接建立、保持和释放,包括UE与E-UTRAN之间临时标识的分配、信令无线承载的配置安全功能,包括密钥管理端到端无线承载的建立、修改与释放移动性管理,包括UE测量报告,以及为了小区间和RAT间移动性进行的报告控制、小区间切换、UE小区选择与重选、切换过程中的RRC上下文传输等MBMS业务通知,以及MBMS业务无线承载的建立、修改与释放QoS管理功能UE测量上报及测量控制NAS消息的传输NAS消息的完整性保护1.2.3PDCP层(分组数据汇聚协议层)负责执行头压缩以减少无线接口必须传送的比特流量。

头压缩机制基于ROHC。

在接收端,PDCP协议将负责执行解密及解压缩功能。

对于一个终端每个无线承载有一个PDCP实体。

一个PDCP实体是关联控制平面还是用户平面,主要取决于它为哪种无线承载携带数据。

PDCP层在控制面对RRC和NAS层消息进行完整性校验,在用户面不进行完整性校验。

PDCP层功能IP包头压缩与解压缩数据与信令的加密信令的完整性保护。

1.2.4RLC层(无线链路控制层)负责分段与连接、重传处理,以及对高层数据的顺序传送。

RLC层以无线承载的方式为PDCP层提供服务,其中,每个终端的每个无线承载配置一个RLC实体。

主要目的是将数据交付给对端的RLC实体。

所以RLC提出了三种模式:透明模式(Transparent Mode,TM)、非确认模式(Unacknowledged Mode,UM)和确认模式(Acknowledged Mode,AM)。

TM模式最简单,它对于上层数据不进行任何改变,这种模式典型地被用于BCCH或PCCH 逻辑信道的传输,该方式不需对RLC层进行任何特殊的处理。

相关文档
最新文档