线路保护简介
线路保护介绍

保护配置基本配置系统差异接地系统和不接地系统的差异分相保护和不分相保护的差异:不一致、单跳、单重电压的差异:电容电流和末端过电压、网架中心和重要程度功能介绍距离保护:距离元件采用比相式姆欧继电器,即由工作电压Uop 与极化电压Up 构成比相方程。
比相式距离继电器的通用动作方程为:009090<<-POPU U Arg式中:工作电压OP set U U I Z =-⨯,极化电压1P U U =-.对接地距离继电器,工作电压为:()set OP Z I K I U U ⨯⨯+-=ΦΦΦ03 对相间距离继电器,工作电压为:set OP Z I U U ⨯-=ΦΦΦΦΦΦ装置中三段式接地与相间距离继电器,在正序极化电压较高时由正序电压极化否则进入三相低压程序,此时采用记忆正序电压作为极化电压。
采用非记忆的正序电压作为极化电压,故障期间,正序电压主要由健全相电压形成,正序电压同故障前保持一致,继电器具有很好的方向性。
距离保护正方向故障动作特性应用于较短输电线路时,为了提高抗过渡电阻能力,极化电压中使用了接地距离偏移角如图中所示θ1,该定值可以由用户整定为0°, 15° 或 30°。
接地距离偏移角会使动作特性圆向第一象限移动。
虽然这可提高测量过渡电阻的能力,在高阻接地故障条件下保证很好的动作性能,但是如果在线路对侧存在助增电源的情况下,对于经过渡电阻接地的故障可能会出现超越现象。
为了防止超越,通常距离保护Ⅰ、Ⅱ段和零序电抗元件配合使用。
零序电抗工作电压: ()set OP Z I K I U U ⨯⨯+-=ΦΦΦ03极化电压:D P Z I U ⨯-=Φ0,式中D Z 为模拟阻抗,幅值为1,角度为78°。
比相方程为()000090390<⨯-⨯⨯+-<-ΦΦDsetZ I Z I K I U Arg低压距离继电器保护采用记忆电压作为极化电压,通过比较极化电压与工作电压之间的相位关系来判别是否满足动作条件。
线路保护调试方法

线路保护调试流程—保护带负荷向量检查
a) 测量电压、电流的幅值及相位关系。
b) 测量电流差动保护各组电流互感器的相位及 差动回路中的差电流(或差电压),以判明差动 回路接线的正确性及电流变比补偿回路的正确 性。所有差动保护(母线、变压器、发电机的 纵、横差等)在投入运行前,除测定相回路和 差回路外,还必须测量各中性线的不平衡电流、 电压,以保证装置和二次回路接线的正确性。
线路保护的调试方法—差动保护
(2)差动电流低值试验 仅投主保护压板,检查通道正常,加正常电压,
保护充电,直至“充电”灯亮; 加入1.05倍 Im/2单相电流,保护选相单跳,动作时间4060毫秒左右,此时为稳态二段差动继电器,加 入0.95倍Im/2单相电流 ,保护不动。Im为 “差动电流低定值”、“1.5Un/Xcl”中的高 值
(2)若同一被保护设备的各套保护装置皆接于同一电 流互感器二次回路,则按回路的实际接线,自电流互 感器引进的第一套保护屏的端子排上接入试验电流、 电压,以检验各套保护相互间的动作关系是否正确; 如果同一被保护设备的各套保护装置分别接于不同的 电流回路时,则应临时将各套保护的电流回路串联后 进行整组试验。
c) 对高频相差保护、导引线保护,须进行所在线 路两侧电流电压相别、相位一致性的检验。
线路保护的调试方法
保护调试应具备的条件 (1)被试保护屏所保护的一次设备主接线及相
关二次设备电气位置示意图、平面布置图 及 相关参数 (2)熟悉调试设备的原理 (3)熟悉被试保护屏组屏设计图纸 (4)熟悉试验仪器使用 (5)使用最新的定值 (6)作业指导书、标准化作业卡、原始记录
电力系统保护的基本组成

电力系统保护的基本组成电力系统保护是一个保障电力系统安全运行的重要环节,它的基本组成包括:一、发电厂保护发电厂保护是针对发电厂设备的一种保护形式,包括机组保护、变压器保护、发电机保护、汽轮机保护、水泵保护等。
它们都是在发生故障时,能够快速准确的判断故障的位置,并及时采取应急措施,以免造成更大的损失。
1.机组保护机组保护是针对发电机组的一种保护形式,主要保护目的是防止发电机组在运行中发生故障所带来的不良影响。
机组保护包括相间短路保护、过流保护、空载保护、支路保护、短路合闸保护等。
2.变压器保护变压器保护是针对变压器的一种保护形式,主要保护目的是防止变压器在运行中发生故障所带来的不良影响。
变压器保护包括过压保护、欠压保护、过载保护、短路保护、热故障保护等。
3.发电机保护发电机保护是针对发电机的一种保护形式,主要保护目的是防止发电机在运行中发生故障所带来的不良影响。
发电机保护包括停机保护、过载保护、重启保护、短路保护、欠压保护等。
4.汽轮机保护汽轮机保护是针对汽轮机的一种保护形式,主要保护目的是防止汽轮机在运行中发生故障所带来的不良影响。
汽轮机保护包括运行保护、过载保护、欠压保护、热故障保护等。
5.水泵保护水泵保护是针对水泵的一种保护形式,主要保护目的是防止水泵在运行中发生故障所带来的不良影响。
水泵保护包括水位保护、过载保护、欠压保护、热故障保护等。
二、线路保护线路保护是针对电力系统输电线路的一种保护形式,主要保护目的是防止线路在运行中发生故障所带来的不良影响。
线路保护包括短路保护、过载保护、欠压保护、相间短路保护、零序流保护、跳闸保护等。
1.短路保护短路保护是针对线路发生短路故障时的一种保护形式,主要保护目的是防止线路发生短路故障时造成的不良影响。
短路保护包括跳闸保护、延时跳闸保护、断流跳闸保护等。
2.过载保护过载保护是针对线路发生过载故障时的一种保护形式,主要保护目的是防止线路发生过载故障时造成的不良影响。
线路保护原理和范围

线路保护原理和范围线路保护是电力系统中非常重要的一项技术,它的主要目的是保护电力系统中的输电线路免受各种故障的损害。
线路保护的原理和范围涉及到多个方面,本文将对其进行详细介绍。
一、线路保护的原理线路保护的基本原理是通过监测电力系统中的电流和电压等参数,判断线路是否发生故障,并及时采取措施隔离故障区域,保护线路的正常运行。
线路保护系统通常由保护装置、互感器、测量装置和信号传输装置等组成。
1. 保护装置:负责监测电流和电压等信号,并根据预设的保护逻辑进行判断和操作。
保护装置通常采用微处理器技术,具有高速响应和精确判断的能力。
2. 互感器:用于将高电压和大电流变换成适合保护装置处理的低电压和小电流。
互感器主要包括电流互感器和电压互感器两种。
3. 测量装置:用于测量电力系统中的电流、电压、功率等参数,并将这些参数传输给保护装置进行判断。
测量装置通常具有高精度和抗干扰能力。
4. 信号传输装置:用于将保护装置判断的结果传输给断路器等执行机构,实现线路的隔离和保护。
线路保护的原理主要是根据故障发生时的电流和电压波形的异常变化来判断故障类型和位置。
根据故障类型的不同,线路保护通常可以分为短路保护、接地保护和过流保护等。
二、线路保护的范围线路保护的范围主要包括输电线路和配电线路两个方面。
1. 输电线路保护:输电线路通常是电力系统中电压等级较高的线路,用于将发电厂产生的电能传输到各个电网供应用户使用。
输电线路的保护范围一般包括线路的起点和终点,以及线路上的变电站、支线等。
输电线路的保护主要是为了保护线路本身和线路上的设备,确保电能的安全传输。
2. 配电线路保护:配电线路是将输电线路传输过来的电能供应到用户用电点的线路。
配电线路的保护范围一般包括变电站、配电线路的支线和用户用电点等。
配电线路的保护主要是为了保护线路本身和线路上的设备,确保电能的稳定供应。
线路保护的范围还包括对线路上的各种故障类型的保护。
常见的故障类型包括短路、接地故障和过流等。
线路保护文档

线路保护线路保护(Line protection)是指在电力系统中,针对输电线路的过载、短路等故障情况进行保护和控制的一种技术措施。
线路保护的主要目标是及时检测和判断输电线路上的故障,迅速切除故障部分并保护正常运行的线路,从而保证电力系统的安全稳定运行。
1. 线路保护的原理线路保护的原理包括故障检测、故障判据和故障切除。
故障检测是通过对线路上的电压、电流等信号进行实时监测和分析,识别出故障发生的位置;故障判据是依据预设的故障判据准则,将监测到的信号与准则进行比较,以判断是否发生了故障;故障切除是在判断发生故障后,通过控制器发出切除信号,将故障部分从电力系统中切除,以保护系统的正常运行。
线路保护通常采用集中式保护和分散式保护两种方式。
集中式保护是将多个保护装置安装在一个集中控制设备中进行管理和控制,适合于较大规模的电力系统;而分散式保护是将保护装置分散安装在接近被保护设备的位置,适合于中小型电力系统。
2. 线路保护的类型线路保护的类型主要包括过载保护、短路保护和接地保护。
2.1 过载保护过载保护是指在线路发生过载时及时切除故障部分,防止设备因长时间超负荷运行而损坏。
过载保护通常基于电流测量原理,监测线路上的电流,当电流超过额定值时,保护装置将发出切除信号。
过载保护还可以根据运行时间进行分时段保护,以适应负荷变化的需求。
2.2 短路保护短路保护是指在线路发生短路故障时迅速切除故障部分,阻止电流过大造成进一步损坏。
短路保护的原理是通过检测电流和电压异常变化来识别短路故障,当检测到短路时,保护装置会发出切除信号,将短路部分从电力系统中切除。
2.3 接地保护接地保护是指在线路发生接地故障时切除故障部分,避免电流通过人体等接地路径造成危害。
接地保护通常基于电阻测量原理,监测线路的接地电阻,当接地电阻超过预设值时,保护装置将发出切除信号。
接地保护还可以根据接地故障的类型进行差别保护,包括单相接地、双相接地和三相接地。
线路保护的配置和基本原理

线路保护的配置和基本原理
线路保护是电力系统中的一项重要技术,其配置和基本原理包括以下几个方面:
1. 保护配置:
a. 选择保护器:根据线路的特点和要求选择合适的保护器,常见的有过流保护器、距离保护器、差动保护器等。
b. 选择保护区域:确定需要保护的线路区域范围,一般是线路的起点和终点之间的区域。
c. 设定保护参数:配置保护器的动作参数,如过流保护器的额定电流、距离保护器的整定值等。
2. 基本原理:
a. 过电流保护:通过检测电流的大小来判断线路是否存在过电流故障,当电流超过设定值时,保护器会发出动作信号,切断故障部分。
b. 距离保护:通过测量线路的电气距离来判断故障的位置,当故障发生时,保护器会根据故障距离和设定值的比较结果决定是否动作。
c. 差动保护:通过比较线路两端的电流差异来判断是否存在故障,当差流超过设定值时,保护器会动作切断故障。
线路保护的基本原理是通过检测和判断线路的电流、电压等参数的异常情况来实现保护动作,及时切断故障,保护电力系统的安全运行。
不同类型的线路保护器
适用于不同类型的线路故障,通过合理配置和设置保护参数,可以提高电力系统的可靠性和安全性。
线路主保护介绍

纵联保护是线路的主保护,因为要比较线路两端电流的大小及相位,所以需要把线路两端的信号通道连接起来;纵联保护按信号通道的不同又分为:高频保护、微波保护、光纤保护及导引线保护;纵联距离和纵联零序就是高频保护~你们厂应该是专用光纤通道~主时钟形式的~上面的两个保护分别是线路相间和接地故障的主保护~没别的意思~而距离保护只是线路的后备保护~纵联保护是比较两侧电气量的保护.用距离元件判断故障是本侧还是对侧.光纤保护是本侧故障发信,高频闭锁保护就停信,再与对侧传过来的信号进行比较.决定跳闸与否.一般每侧的保护范围都是超范围的.两侧共同判断,保护线路全长距离保护只是判断本侧.在保护范围内即可根据控制字设置情况进行动作,一般一段保护范围为线路全长的80%纵联保护就是线路保护的主保护,包含纵联距离,方向,差动等等;距离保护是线路保护的后备保护;纵联距离和距离保护的特性是基本相同的,不同的地方在于纵联距离的出口需要本侧和对侧保护都开放才行,而后备距离保护的出口只需要本侧保护开放就可以;在大短路电流接地系统中发生接地故障后,就有零序电流、零序电压和零序功率出现,利用这些电气量构成保护接地短路的继电保护装置统称为零序保护;三相电流平衡时,没有零序电流,不平衡时产生零序电流,零序保护就是用零序互感器采集零序电流,当零序电流超过一定值综合保护中设定,综和保护接触器吸合,断开电路;零序电流互感器内穿过三根相线矢量和零线;正常情况下,四根线的向量和为零,零序电流互感器无零序电流;当人体触电或者其他漏电情况下:四根线的向量和不为零,零序电流互感器有零序电流,一旦达到设定值,则保护动作跳闸;分段零序一段:①躲过下一段线路出口处单相或者两相接地短路时候出现的最大零序电流;②躲开断路器三相触头不同期合闸时候所出现的最大零序电流;两者比较取最大零序二段:与下一段线路的一段配合,即是躲过下段线路的第一段保护范围末端接地短路时,通过本保护装置的最大零序电流;零序二段的灵敏系数要大于,不满足的话要与下一段线路的二段配合,时限再抬高一个等级;零序三段:①与下一段线路的三段配合;②躲开下一段线路出口处相间短路时所出现的最大不平衡电流;两者比较取最大;零序三段的灵敏系数要大于2近后备;灵敏系数要大于远后备接地距离两者的区别两者的区别主要在于采用的电气量不同, 接地距离保护是利用短路电压和电流的比值,即测量阻抗的变化来区分系统的故障与正常运行状态;而零序保护利用的是接地故障时产生的零序电流分量;这是两者在原理上的最主要区别;但是,两者从保护的配合上来看,都是属于阶段式的保护,即都需要各保护区的上下级配合;再一点,从保护的性能来分析;应该说,在不发生单相接地时,零序电流分量是不会出现的,所以零序电流保护具有较高的灵敏性;但在上下级的配合时,限时零序电流速断保护零序II段的灵敏性可能不满足要求,这时可采用接地距离保护;这也就是说接地零序保护的灵敏性高于电流保护可以看到,距离保护利用了短路时的两个电气量,自然比单一的电流保护要灵敏;所以保护的配备上,一般距离保护作为了主保护,那么电流保护都是作为后备保护的,即在线路发生故障时,首先距离保护动作,零序保护作为后备可能动作;两者的联系接地距离保护与零序电流保护配合才能构成完整的接地保护 ;接地距离保护的最大优点是瞬时段的保护范围固定,不受系统运行方式变化影响;接地距离三段保护难以反映高阻抗接地故障;零序电流保护则以保护高电阻故障为主要任务;注意问题1当电流回路断线时,可能造成保护误动作;这是一般较灵敏的保护的共同弱点,需要在运行中注意防止;就断线机率而言,它比距离保护电压回路断线的机率要小得多;如果确有必要,还可以利用相邻电流互感器零序电流闭锁的方法防止这种误动作;2当电力系统出现不对称运行时,也要出现零序电流,例如变压器三相参数不同所引起的不对称运行,单相重合闸过程中的两相运行,三相重合闸和手动合闸时的三相断路器不同期,母线倒闸操作时断路器与隔离开关并联过程或断路器正常环并运行情况下,由于隔离开关或断路器接触电阻三相不一致而出现零序环流,以及空投变压器时产生的不平衡励磁涌流,特别是在空投变压器所在母线有中性点接地变压器在运行中的情况下,可能出现较长时间的不平衡励磁涌流和直流分量等等,都可能使零序电流保护启动;3地理位置靠近的平行线路,当其中一条线路故障时,可能引起另一条线路出现感应零序电流,造成反方向侧零序方向继电器误动作;如确有此可能时,可以改用负序方向继电器,来防止上述方向继电器误判断;4由于零序方向继电器交流回路平时没有零序电流和零序电压,回路断线不易被发现;当继电器零序电压取自电压互感器开口三角侧时,也不易用较直观的模拟方法检查其方向的正确性,因此较容易因交流回路有问题而使得在电网故障时造成保护拒绝动作和误动作;零序保护就是利用零序电流使继电器动作来指示接地故障线路的一种保护;对于架空线路,一般采用由三个电流互感器接成零序电流滤过器的接线方式,三相电流互感器的二次电流相量相加后流入继电器;当三相对称运行时,流入继电器的电流等于零,只有当不对称运行时如发生单相接地零序电流才流过继电器,当零序电流流过继电器时,继电器动作并发出信号;对于电缆线路的单相接地保护,一般采用零序电流互感器保护,二次线圈绕在互感器的铁芯上,并接到电流继电器上,在正常运行及三相对称短路时,在零序互感器二次侧由三相电流产生的三相磁通相量之和为零,即在互感中没有感应出零序电流,继电器不动作,当发生单相接地时,就有接地电容电流通过,此电流在二次侧感应出零序电流,零序电流流过继电器使继电器动作并发出信号;。
直流线路保护的原理是什么

直流线路保护的原理是什么直流线路保护是指在直流电力系统中,通过各种保护装置和控制策略,实现对直流电力线路的安全可靠运行的一种措施。
直流线路保护的原理是通过检测和快速切除故障电流,以保护线路的设备和保证电力系统的安全运行。
下面我将详细介绍直流线路保护的原理及其主要保护装置。
一、直流线路的故障类型直流电力系统中的故障可以分为短路故障和地线故障两种类型。
短路故障是指直流系统中两个相间点之间出现的故障,常见于连接线路的绝缘损坏或设备内部元件故障;地线故障是指直流系统中任意一个相间点与地之间出现的故障,常见于设备绝缘损坏或设备与地之间的可控的接触。
二、直流线路保护的策略1. 短路故障保护短路故障保护主要是通过电气间隙或电路断开器实现,保护装置可根据故障电流的大小和故障位置进行故障检测和切除操作。
(1)过电流保护:通过检测线路中的电流,当电流超过额定值时,认为发生了短路故障,保护装置将快速切除故障点附近的电路。
(2)差动保护:采用电流互感器测量直流线路两端的电流,将两端电流的差值与额定值进行比较,当差值超过设定值时,判断为短路故障,保护装置将切除故障电路。
(3)电弧保护:通过检测弧光或弧电压,当弧光或弧电压超过设定值时,判断发生电弧故障,保护装置将切除故障电路。
2. 地线故障保护地线故障保护主要是通过控制绝缘损坏或设备与地间的接触来实现,保护装置可根据故障电流和故障位置进行保护动作。
(1)电气绝缘保护:通过对线路绝缘性能的监测,当绝缘损坏时,保护装置将切除故障电路。
(2)微分保护:采用电压互感器测量直流线路两端电压,将两端电压的差值与额定值进行比较,当差值超过设定值时,判断为地线故障,保护装置将切除故障电路。
(3)接地保护:通过检测设备与地之间的接触电阻,当接触电阻超过设定值时,判断为地线故障,保护装置将切除故障电路。
三、直流线路保护装置直流线路保护装置是实现直流线路保护的重要设备,主要由故障检测单元、保护动作单元和信号处理单元组成,具有高速、精确、可靠等特点。