长春特殊教育学院2011年高考 数学试题
2011年高考数学新课标卷及参考答案(新课标)

2011年普通高等学校招生全国统一考试理科数学第I 卷一、选择题: (1)复数212ii+-的共轭复数是( ) (A )35i - (B )35i (C )i - (D )i(2)下列函数中,既是偶函数又在+∞(0,)单调递增的函数是( )(A )3y x = (B) 1y x =+ (C )21y x =-+ (D) 2x y -= (3)执行右面的程序框图,如果输入的N 是6,那么输出的p 是( ) (A )120 (B )720 (C )1440 (D )5040(4)有3个兴趣小组,甲、乙两位同学各自参加其中一个小组,每位同学参加各个小组的可能性相同,则这两位同学参加同一个兴趣小组的概率为( )(A )13 (B )12 (C )23 (D )34(5)已知角θ的顶点与原点重合,始边与x 轴的正半轴重合,终边在直线2y x =上,则cos 2θ=( )(A )45- (B )35- (C )35 (D )45(6)在一个几何体的三视图中,正视图和俯视图如右图所示,则相应的俯视图可以为( )(7)设直线L 过双曲线C 的一个焦点,且与C 的一条对称轴垂直,L 与C 交于A ,B 两点,AB 为C 的实轴长的2倍,则C 的离心率为( )(A (B ) (C )2 (D )3(8)512a x x x x ⎛⎫⎛⎫+- ⎪⎪⎝⎭⎝⎭的展开式中各项系数的和为2,则该展开式中常数项为( )(A )-40 (B )-20 (C )20 (D )40(9)由曲线y =,直线2y x =-及y 轴所围成的图形的面积为( )(A )103 (B )4 (C )163(D )6 (10)已知a 与b 均为单位向量,其夹角为θ,有下列四个命题12:10,3P a b πθ⎡⎫+>⇔∈⎪⎢⎣⎭ 22:1,3P a b πθπ⎛⎤+>⇔∈⎥⎝⎦3:10,3P a b πθ⎡⎫->⇔∈⎪⎢⎣⎭ 4:1,3P a b πθπ⎛⎤->⇔∈ ⎥⎝⎦其中的真命题是( )(A )14,P P (B )13,P P (C )23,P P (D )24,P P(11)设函数()sin()cos()(0,)2f x x x πωϕωϕωϕ=+++><的最小正周期为π,且()()f x f x -=,则( )(A )()f x 在0,2π⎛⎫ ⎪⎝⎭单调递减 (B )()f x 在3,44ππ⎛⎫⎪⎝⎭单调递减 (C )()f x 在0,2π⎛⎫⎪⎝⎭单调递增(D )()f x 在3,44ππ⎛⎫⎪⎝⎭单调递增 (12)函数11y x=-的图像与函数2sin (24)y x x π=-≤≤的图像所有交点的横坐标之和等于( ) (A )2 (B) 4 (C) 6 (D)8 二、填空题:本大题共4小题,每小题5分。
长春大学2009年特殊教育学院招生考试数学试题纸(听障考生)

长春大学2009年特殊教育学院招生考试数学试题纸(听障考生)一、单项选择题(本题共7小题,每小题6分,共42分)1. 设集合 {}23<<-Z ∈=m m M ,{}31≤≤-Z ∈=n n N ,则 =N M ( )A.{}1,0B. {}1,0,1-C.{}2,1,0D. {}2,1,0,1-2. 在 ABC ∆中,B A >是 B A sin sin >成立的( )A. 充分而不必要条件B. 必要而不充分条件C. 充要条件D. 既不必要也不充分条件3. 设 10<<a ,则函数 )1(log -=x y a 的定义域是( )A. ]2,1(B. ),1(∞+C. ),2[∞+D.]2,(-∞4. 函数 )(1sin )(3R x x x x f ∈++=,若 2)(=a f ,则 )(a f -的值为( )A. 3B. 0C. 1-D. 2-5. 在数列 {}n a 中,103,a a 是方程 0532=--x x 的两根,若{}n a 是等差数列,则 =+85a a ( )A. 3B.5-C.13D.56. 函数 )1(11≥+-=x x y 的反函数是( )A. ()1222≤+-=x x x yB. ()1222≥+-=x x x yC. ()122≤-=x x x yD. ()122≥-=x x x y7. 下列函数中,在 ),(0-∞上为增函数的是( )A. 21x y -=B. x x y 22+=C. x y +=11 D. 1-=x x y二、填空题(本题共5小题,每小题6分,共30分)1. 已知 x x f 2sin )cos 1(=-,则 )(x f = 。
2. 31log 3log 55+ =。
3. 已知 31=+-x x ,则 22-+x x = 。
4. 已知数列 {}n a 的前 n 项和 n n S n 232-=,则 =n a 。
2011年辽宁省高考文科数学试卷及答案(word版)

2011年普通高等学校招全国统一考试(浙江卷)数 学(理科)本试卷分选择题和非选择题两部分。
全卷共4页,选择题部分1至2页,非选择题部分3至4页。
满分150分,考试时间120分钟。
请考生按规定用笔将所有试题的答案涂、写在答题纸上。
选择题部分(共2页)1. 答题前,考生务必将自己的姓名、准备考证号用黑色字迹的签字笔或钢笔分别填写在试卷个答题纸规定的位置上。
2. 每小题选出答案后,用2B 铅笔把答题纸上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。
不能答在试题卷上。
参考公式:如果事件,A B 互斥,那么柱体的体积公式()()()P A B P A P B +=+ v sh =如果事件,A B 相互独立,那么其中s 表示柱体的底面积,h 表示柱体的高 锥体的体积公式 13v sh = 一、选择题(本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
(1)设函数2,0,(),0.x x f x x x -≤⎧=⎨⎩ 若()4f α=,则实数α= (A ) —4或—2 (B ) —4或2 (C )—2或4 (D )—2或2(2)把负数z 的共轭复数记作i,i 为虚数单位。
若z=1+i,则(1)z z -+∙=(A )3i - (B )3i + (C )13i + (D)3(3)若某几何体的三视图如图所示,则这个几何体的直观图可以是 ()()()P A B P A P B ∙=∙(4)下列命题中错误的是(A )如果平面α⊥平面β,那么平面α内一定直线平行于平面β(B )如果平面α垂直于平面β,那么平面α内一定不存在直线垂直于平面β(C )如果平面α⊥平面γ,平面β⊥平面γ,l αβ⋂=,那么l ⊥平面γ(D )如果平面α⊥平面β,那么平面α内所有直线都垂直于平面β(5)设实数x 、y 是不等式组,若x 、y 为整数,则34x y +的最小值为 (A )14 (B )16 (C )17 (D )19(6)若02πα<<,02πβ-<<,1cos ()23πα+=,cos ()42πβ-=,则c o s ()2βα+=(A (B )(C (D ) (7)若a 、b 为实数,则“01ab <<”是“1a b <”或1b a >的 (A )充分二而不必要条件 (B )必要而不充分条件(C )充分必要条件 (D )既不充分也不必要条件(8)已知椭圆 221221x y C a b =+=(a >b >0)与双曲线 22214y C x =-=有公共的焦点,1C 的一条最近线与以2C 的长轴为直径的圆相交于,A B 来两点。
2011年普通高等学校招生全国统一考试高考数学教师精校版含详解辽宁文

2011年辽宁文一、选择题(共12小题;共60分)1. 已知集合A=x∣x>1,B=x∣−1<x<2,则A∩B= A. x∣−1<x<2B. x∣x>−1C. x∣−1<x<1D. x∣1<x<22. i为虚数单位,1i +1i3+1i5+1i7= A. 0B. 2iC. −2iD. 4i3. 已知向量a=2,1,b=−1,k,a⋅2a−b=0,则k= A. −12B. −6C. 6D. 124. 已知命题p:∃n∈N,2n>1000,则¬p为 A. ∀n∈N,2n≤1000B. ∀n∈N,2n>1000C. ∃n∈N,2n≤1000D. ∃n∈N,2n<10005. 若等比数列a n满足a n a n+1=16n,则公比为 A. 2B. 4C. 8D. 166. 若函数f x=x2x+1x−a为奇函数,则a= A. 12B. 23C. 34D. 17. 已知F是抛物线y2=x的焦点,A,B是该抛物线上的两点,∣AF∣+∣BF∣=3,则线段AB的中点到y轴的距离为 A. 34B. 1 C. 54D. 748. 一个正三棱柱的侧棱长和底面边长相等,体积为23,它的三视图中的俯视图如图所示,左视图是一个矩形,则这个矩形的面积是 A. 4B. 23C. 2D. 39. 执行下面的程序框图,如果输入的n是4,则输出的p是 A. 8B. 5C. 3D. 210. 已知球的直径SC=4,A,B是该球球面上的两点,AB=2,∠ASC=∠BSC=45∘,则棱锥S−ABC的体积为 A. 33B. 233C. 433D. 53311. 函数f x的定义域为R,f−1=2,对任意x∈R,fʹx>2,则f x>2x+4的解集为 A. −1,1B. −1,+∞C. −∞,−1D. −∞,+∞12. 已知函数f x=A tanωx+φ ω>0,∣φ∣<π2,y=f x的部分图象如图,则fπ24= A. 2+3B. 3C. 33D. 2−3二、填空题(共4小题;共20分)13. 已知圆C经过A5,1,B1,3两点,圆心在x轴上,则C的方程为.14. 调查了某地若干户家庭的年收入x(单位:万元)和年饮食支出y(单位:万元),调查显示年收入x与年饮食支出y具有线性相关关系,并由调查数据得到y对x的回归直线方程:y=0.254x+0.321.由回归直线方程可知,家庭年收入每增加1万元,年饮食支出平均增加万元.15. S n为等差数列a n的前n项和,S2=S6,a4=1,则a5=.16. 已知函数f x=e x−2x+a有零点,则a的取值范围是.三、解答题(共8小题;共104分)17. △ABC的三个内角A,B,C所对的边分别为a,b,c,a sin A sin B+b cos2A=2a.;(1)求ba(2)若c2=b2+3a2,求B.PD.18. 如图,四边形ABCD为正方形,QA⊥平面ABCD,PD∥QA,QA=AB=12(1)证明:PQ⊥平面DCQ;(2)求棱锥Q−ABCD的体积与棱锥P−DCQ的体积比值.19. 某农场计划种植某种新作物,为此对这种作物的两个品种(分别称为品种甲和品种乙)进行田间试验.选取两大块地,每大块地分成n小块地,在总共2n小块地中,随机选n小块地种植品种甲,另外n小块地种植品种乙.x1−x2+x2−x2+⋯+x n−x2,其中x为样附:样本数据x1,x2,⋯,x n的样本方差s2=1n本平均数.(1)假设n=2,求第一大块地都种植品种甲的概率;(2)试验时每大块地分成8小块,即n=8,试验结束后得到品种甲和品种乙在各小块地上的每公顷产量(单位:kg/hm2)如下表:品种甲403397390404388400412406品种乙419403412418408423400413分别求品种甲和品种乙每公顷产量的样本平均数和样本方差;根据试验结果,你应该种植哪一品种?20. 设函数f x=x+ax2+b ln x,曲线y=f x过P1,0,且在P点处的切线斜率为2.(1)求a,b的值;(2)证明:f x≤2x−2.21. 如图,已知椭圆C1的中心在原点O,长轴左、右端点M,N在x轴上,椭圆C2的短轴为MN,且C1,C2的离心率都为e.直线l⊥MN,l与C1交于两点,与C2交于两点,这四点按纵坐标从大到小依次为A、B、C、D.(1)设e=12,求∣BC∣与∣AD∣的比值;(2)当e变化时,是否存在直线l,使得BO∥AN ?并说明理由.22. 如图,A,B,C,D四点在同一圆上,AD的延长线与BC的延长线交于E点,且EC=ED.(1)证明:CD∥AB;(2)延长CD到F,延长DC到G,使得EF=EG,证明:A,B,G,F四点共圆.23. 在平面直角坐标系xOy中,曲线C1的参数方程为x=cosφy=sinφ(φ为参数),曲线C2的参数方程为x=a cosφy=b sinφ(a>b>0,φ为参数).在以O为极点,x轴的正半轴为极轴的极坐标系中,射线l:θ=α与C1,C2各有一个交点,当α=0时,这两个交点间的距离为2,当α=π2时,这两个交点重合.(1)分别说明C1,C2是什么曲线,并求出a与b的值;(2)设当α=π4时,l与C1,C2的交点分别为A1,B1,当α=−π4时,l与C1,C2的交点分别为A2,B2,求四边形A1A2B2B1的面积.24. 已知函数f x=∣x−2∣−∣x−5∣.(1)证明:−3≤f x≤3;(2)求不等式f x≥x2−8x+15的解集.答案第一部分1. D2. A3. D4. A5. B【解析】因为a n a n+1=16n,所以a1a2=16,a2a3=162,后式除以前式,得q=±4,又因为a1a2=a12q=16>0,所以q>0,所以q=4.6. A 【解析】因为函数f x=x2x+1x−a 为奇函数,所以函数的定义域关于原点对称,解得a=12.7. C 【解析】由抛物线定义可知,AB中点到准线的距离为∣AF∣+∣BF∣2=32,故其到y轴的距离为3 2−14=54.8. B 【解析】提示:由体积求得底面边长为2.9. C 【解析】第3次循环后结束循环,此时p=3,s=2,t=3,k=4.10. C【解析】由SC为直径,∠ASC=∠BSC=45∘,得△ASC和△BSC都是等腰直角三角形.由SC=4,得SA=SB=AC=BC=22.因为球心O是SC的中点,所以SC⊥OA,SC⊥OB,从而SC⊥平面OAB.因为OA=OB=AB=2,所以△OAB为正三角形.因此,棱锥S−ABC的体积为V=1SC⋅S△OAB=1×4×3×22=43.11. B 【解析】令 x=f x−2x−4,则 ʹx=fʹx−2,由题可知 ʹx>0,故 x单增,又 −1=f−1−2=0,所以解集为−1,+∞.12. B 【解析】提示:f x=tan2x+π4.第二部分13. x−22+y2=1014. 0.25415. −116. −∞,2ln2−2【解析】fʹx=e x−2,当x<ln2时,fʹx<0,f x单调递减,当x>ln2时,fʹx>0,所以f x 单调递增,要使函数f x有零点,则f x min=f ln2=2−2ln2+a≤0,则a≤2ln2−2.第三部分17. (1)由正弦定理得,sin2A sin B+sin B cos2A=2sin A,即sin B sin2A+cos2A=2sin A.故sin B=A,所以ba=2.(2)由余弦定理和c2=b2+3a2,得cos B=1+3 a.由(1)知b2=2a2,故c2=2+3 a2.可得cos2B=12.又b<c,所以cos B>0,故cos B=22,所以B=45∘.18. (1)由条件知PDAQ为直角梯形.∵QA⊥平面ABCD,∴平面PDAQ⊥平面ABCD,交线为AD.又四边形ABCD为正方形,DC⊥AD,∴DC⊥平面PDAQ,可得PQ⊥DC.在直角梯形PDAQ中可得DQ=PQ=22 PD,则PQ⊥QD.又QD∩DC=D,所以PQ⊥平面DCQ.(2)设AB=a.由题设知AQ为棱锥Q−ABCD的高,所以棱锥Q−ABCD的体积V1=1a3.由(1)知PQ为棱锥P−DCQ的高,而PQ=2a,△DCQ的面积为22a2,所以棱锥P−DCQ的体积V2=1a3.故棱锥Q−ABCD的体积与棱锥P−DCQ的体积比值为1.19. (1)设第一大块地中的两小块地编号为1,2,第二大块地中的两小块地编号为3,4.令事件A= "第一大块地都种品种甲".从4小块地中任选2小块地种植品种甲的基本事件共6个:1,2,1,3,1,4,2,3,2,4,3,4.而事件A包含1个基本事件:1,2,所以P A =1.(2)品种甲的每公顷产量的样本平均数和样本方差分别为:x 甲=1403+397+390+404+388+400+412+406=400,s 甲2=1832+ −3 2+ −10 2+42+ −12 2+02+122+62=57.25;品种乙的每公顷产量的样本平均数和样本方差分别为:x 乙=18 419+403+412+418+408+423+400+413=412,s 乙2=18 72+ −9 2+02+62+ −4 2+112+ −12 2+12=56.由以上结果可以看出,品种乙的样本平均数大于品种甲的样本平均数,且品种乙的样本方差小于品种甲的样本方差,故应选择种植品种乙. 20. (1)fʹ x =1+2ax +b.由已知条件得f 1 =0,fʹ 1 =2,即1+a =0,1+2a +b =2,解得a =−1,b =3.(2)f x 的定义域为 0,+∞ ,由(1)知f x =x −x 2+3ln x ,设g x =f x − 2x −2=2−x −x 2+3ln x ,则gʹ x =−1−2x +3x =− x −1 2x +3 ,当0<x <1时,gʹ x >0;当x >1时,gʹ x <0.所以g x在0,1单调递增,在1,+∞单调递减.而g1=0,故当x>0时,g x≤0,即f x≤2x−2.21. (1)因为C1,C2的离心率相同,故依题意可设C1:x2a2+y2b2=1a>b>0,C2:b2y24+x22=1,设直线l:x=t∣t∣<a,分别与C1、C2的方程联立,求得A t,aa2−t2,B t,ba2−t2.当e=12时,b=3 a,分别用y A、y B表示A、B的纵坐标,可知∣BC∣:∣AD∣=2∣y B∣A=b22=3.(2)t=0时的l不符合题意.t≠0时,BO∥AN,当且仅当k BO=k AN,即b a a2−t2=aba2−t2,解得t=−ab2a2−b2=−1−e2e2⋅a,因为∣t∣<a,且0<e<1,所以1−e2e2<1,解得22<e<1.综上,得当0<e≤22时,不存在直线l,使得BO∥AN;当22<e<1时,存在直线l,使得BO∥AN.22. (1)因为EC=ED,所以∠EDC=∠ECD.因为A,B,C,D四点在同一圆上,所以∠EDC=∠EBA.故∠ECD=∠EBA.所以CD∥AB.(2)由(1)知,AE=BE,因为EF=EG,故∠EFD=∠EGC,从而∠FED=∠GEC.连接AF,BG,则△EFA≌△EGB,故∠FAE=∠GBE.又CD∥AB,∠EDC=∠ECD,所以∠FAB=∠GBA.由(1)中结论CD∥AB可得∠AFG+∠FAB=180∘,所以∠AFG+∠GBA=180∘.故A,B,G,F四点共圆.23. (1)C1是圆,C2是椭圆.当α=0时,射线l与C1,C2交点的直角坐标分别为1,0,a,0.因为这两点间的距离为2,所以a=3.当α=π2时,射线l与C1,C2交点的直角坐标分别为0,1,0,b.因为这两点重合,所以b=1.(2)C1,C2的普通方程分别为x2+y2=1,x2+y2=1.当α=π4时,射线l与C1交点A1的横坐标为x=22,与C2交点B1的横坐标为xʹ=31010.当α=−π4时,射线l与C1,C2的两个交点A2,B2分别与A1,B1关于x轴对称,因此四边形A1A2B2B1的面积为2xʹ+2x xʹ−x2= 2 5.24. (1)f x=∣x−2∣−∣x−5∣=−3,x≤2,2x−7,2<x<5, 3,x≥5,当2<x<5时,−3<2x−7<3,所以−3≤f x≤3.(2)由(1)可知,当x≤2时,f x≥x2−8x+15的解集为空集;当2<x<5时,f x≥x2−8x+15的解集为x∣5−3≤x<5;当x≥5时,f x≥x2−8x+15的解集为x∣5≤x≤6.综上,不等式f x≥x2−8x+15的解集为x∣5−3≤x≤6.。
2011年高考试题——数学文(辽宁卷)精校版

2011年普通高等学校招生全国统一考试(辽宁卷)数 学(供文科考生使用)第Ⅰ卷一.选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中.只有一项是符合题目要求的.(1)已知集合A={x 1x >},B={x 2x 1-<<}},则A I B=(A ) {x 2x 1-<<}} (B ){x 1-x >} (C ){x 1x 1-<<}} (D ){x 2x 1<<}}(2)i 为虚数单位,(A )0 (B )2i (C )-2i (D )4i(3)已知向量a=(2,1),b=(-1,k ),a ·(2a-b )=0,则k(A )-12 (B )-6 (C )6 (D )12(4)已知命题P :∃n ∈N ,2n >1000,则⌝p 为(A )∀n ∈N ,2n ≤1000 (B )∀n ∈N ,2n >1000(C )∃n ∈N ,2n ≤1000 (D )∃n ∈N ,2n <1000(5)若等比数列{a n }满足a n a n+1=16n ,则公比为(A )2 (B )4 (C )8 (D )16(6)若函数f (x )=))((a -x 1x 2x +为奇函数,则a= (A )21 (B )32 (C )43 (D )1 (7)已知F 是抛物线y 2=x 的焦点,A ,B 是该抛物线上的两点,3B F AF =+,则线段AB 的中点到y 轴的距离为(A )43 (B )1 (C )45 (D )47 (8)一个正三棱柱的侧棱长和底面边长相等,体积为32,它的三视图中的俯视图如右图所示,左视图是一个矩形,则这个矩形的面积是(A )4 (B )32 (C )2 (D )3(9)执行右面的程序框图,如果输入的n 是4,则输出的P 是(A) 8(B) 5(C) 3(D) 2(10)已知球的直径SC=4,。
A.,B 是该球球面上的两点,AB=2,∠ASC=∠BSC=45°,则棱锥S-ABC 的体积为(A )33 (B)233(C) 43 (D)53 (11)函数f (x )的定义域为R ,f (-1)=2,对任意x R ∈,f (x )>2,则f(x)>2x+4的解集为(A )(-1,1) (B)(-1,+∞ (C)(-∞,-1) (D)(-∞,+∞)(12)已知函数f (x )=Atan(x ωϕ+)(02πωϕ>,<),Y=f(x)的部分图像如图,则24πf ()=(A )3 3(C) 33(D)23 第Ⅱ卷本卷包括必考题和选考题两部分。
2011年全国各地高考数学试题及解答分类汇编大全(07 数系的扩充与复数的引入)

2011年全国各地高考数学试题及解答分类汇编大全(07数系的扩充与复数的引入)一、选择题:1. (2011安徽文、理)设 i 是虚数单位,复数ai i1+2-为纯虚数,则实数a 为( ) (A )2 (B) -2 (C) 1-2 (D) 121.A 【解析】本题主要考察复数的乘法运算和复数的概念。
法一:()()()()()ai i ai a a i i i i 1+2+1+2-+2+1==2-2-2+5g 为纯虚数,所以,a a 2-=0=2; 法二:()i a i ai i i-1+=2-2-为纯虚数,所以a =2,答案为A. 法三: 设()ai bi b R i1+∈2-=,则1+(2)2ai bi i b bi =-=+,所以1,2b a ==.故选A. 【技巧点拨】复数运算乘法是本质,除法中的分母“实化”也是乘法,同时注意提取公因式,因式分解等变形技巧的运用。
2. (2011北京文、理)复数212i i-=+ ( ) (A)i (B )i - (C)4355i -- (D)4355i -+ 2.【答案】A2.【解析】:22i 2(i 2)(12i)2242(1)2412i (12i)(12i)1414(1)i i i i i i i ---------+====++----,选A 。
3. (2011福建理) i 是虚数单位,若集合S=}{1.0.1-,则( ) A.i S ∈ B.2i S ∈ C. 3i S ∈ D.2S i ∈ 3.解析:由21i S =-∈得选项B 正确。
4. (2011福建文) i 是虚数单位1+i 3等于( )A.iB.-iC.1+i D .1-i4. 解析:1+i 3=1-I ,答案应选D 。
5.(2011广东文)设复数z 满足1iz =,其中i 为虚数单位,则z =( )A .i -B .iC .1-D .15. 解析:(A ).1()i z i i i i -===-⨯-6.(2011广东理)设复数z 满足(1)2i z +=,其中i 为虚数单位,则z =( )A .1i +B .1i -C .22i +D .22i -解析:(B ).22(1)11(1)(1)i z i i i i -===-++-7. (2011湖北理)i 为虚数单位,则=⎪⎭⎫⎝⎛-+201111i i ( )A.i -B.1-C.iD.17.【答案】A7. 解析:因为()i i i i i =-+=-+221111,所以i i i i i i -====⎪⎭⎫ ⎝⎛-++⨯3350242011201111,故选A .8.(2011湖南文、理)若,,a b R i ∈为虚数单位,且()a i i b i +=+,则( )A.1,1a b == B.1,1a b =-= C.1,1a b ==- D.1,1a b =-=-8.答案:C8. 解析:因()1a i i ai b i +=-+=+,根据复数相等的条件可知1,1a b ==-。
2011年普通高等学校招生全国统一考试高考数学教师精校版含详解全国新课标理
2011年全国新课标理一、选择题(共12小题;共60分)1. 复数2+i1−2i的共轭复数是 A. −35i B. 35i C. −i D. i2. 下列函数中,既是偶函数,又在0,+∞单调递增的函数是 A. y=x3B. y=∣x∣+1C. y=−x2+1D. y=2−∣x∣3. 执行如图的程序框图,如果输入的N是6,那么输出的p是 A. 120B. 720C. 1440D. 50404. 有3个兴趣小组,甲、乙两位同学各自参加其中一个小组,每位同学参加各个小组的可能性相同,则这两位同学参加同一个兴趣小组的概率为 A. 13B. 12C. 23D. 345. 已知角θ的顶点与原点重合,始边与x轴的正半轴重合,终边在直线y=2x上,则cos2θ= A. −45B. −35C. 35D. 456. 在一个几何体的三视图中,正视图和俯视图如下图所示,则相应的侧视图可以为 A. B.C. D.7. 设直线l过双曲线C的一个焦点,且与C的一条对称轴垂直,l与C交于A,B两点,∣AB∣为C的实轴长的2倍,则C的离心率为 A. B. C. 2 D. 38. x+ax 2x−1x5的展开式中各项系数的和为2,则该展开式中常数项为 A. −40B. −20C. 20D. 409. 由曲线y=x,直线y=x−2及y轴所围成的图形的面积为 A. 103B. 4 C. 163D. 610. 已知a与b均为单位向量,其夹角为θ,有下列四个命题:p1:∣∣a+b∣∣>1⇔θ∈0,2π3p2:∣∣a+b∣∣>1⇔θ∈2π3,πp3:∣∣a−b∣∣>1⇔θ∈0,π3p4:∣∣a−b∣∣>1⇔θ∈π3,π其中的真命题是 A. p1,p4B. p1,p3C. p2,p3D. p2,p411. 设函数f x=sinωx+φ+cosωx+φ ω>0,∣φ∣<π2的最小正周期为π,且f−x=f x,则 A. f x在0,π2单调递减 B. f x在π4,3π4单调递减C. f x在0,π2单调递增 D. f x在π4,3π4单调递增12. 函数y=11−x的图象与函数y=2sinπx−2≤x≤4的图象所有交点的横坐标之和等于 A. 2B. 4C. 6D. 8二、填空题(共4小题;共20分)13. 若变量x,y满足约束条件3≤2x+y≤96≤x−y≤9,则z=x+2y的最小值为.14. 在平面直角坐标系xOy中,椭圆C的中心为原点,焦点F1、F2在x轴上,离心率为22,过F1的直线l 交C于A、B两点,且△ABF2的周长为16,那么C的方程为.15. 已知矩形ABCD的顶点都在半径为4的球O的球面上,且AB=6,BC=23,则棱锥O−ABCD的体积为.16. 在△ABC中,B=60∘,AC=3,则AB+2BC的最大值为.三、解答题(共8小题;共104分)17. 等比数列a n的各项均为正数,且2a1+3a2=1,a32=9a2a6.(1)求数列a n的通项公式;(2)设b n=log3a1+log3a2+⋯+log3a n,求数列1b n的前n项和.18. 如图,四棱锥P−ABCD中,底面ABCD为平行四边形,∠DAB=60∘,AB=2AD,PD⊥底面ABCD.(1)证明:PA⊥BD;(2)若PD=AD,求二面角A−PB−C的余弦值.19. 某种产品的质量以其质量指标值衡量,质量指标值越大表明质量越好,且质量指标值大于或等于102的产品为优质品.现用两种新配方(分别称为A配方和B配方)做试验,各生产了100件这种产品,并测量了每件产品的质量指标值,得到了下面试验结果:A配方的频数分布表指标值分组90,9494,9898,102102,106106,110频数82042228B配方的频数分布表指标值分组90,9494,9898,102102,106106,110频数412423210(1)分别估计用A配方,B配方生产的产品的优质品率;(2)已知用B配方生产一件产品的利润y(单位:元)与其质量指标值t的关系式为y=−2,t<94,2,94≤t<102,4,t≥102.从用B配方生产的产品中任取一件,其利润记为X(单位:元),求X的分布列及数学期望.(以实验结果中质量指标值落入各组的频率作为一件产品的质量指标值落入相应组的概率)20. 在平面直角坐标系xOy中,已知点A0,−1,B点在直线y=−3上,M点满足MB∥OA,MA⋅AB=MB⋅BA,M点的轨迹为曲线C.(1)求C的方程;(2)P为C上的动点,l为C在P点处的切线,求O点到l距离的最小值.21. 已知函数f x=a ln xx+1+bx,曲线y=f x在点1,f1处的切线方程为x+2y−3=0.(1)求a,b的值;(2)如果当x>0,且x≠1时,f x>ln xx−1+kx,求k的取值范围.22. 如图,D,E分别为△ABC的边AB,AC上的点,且不与△ABC的顶点重合.已知AE的长为m,AC的长为n,AD,AB的长是关于x的方程x2−14x+mn=0的两个根.(1)证明:C,B,D,E四点共圆;(2)若∠A=90∘,且m=4,n=6,求C,B,D,E所在圆的半径.23. 在直角坐标系xOy中,曲线C1的参数方程为x=2cosα,y=2+2sinα,(α为参数),M是C1上的动点,P点满足OP=2OM,P点的轨迹为曲线C2.(1)求C2的方程;(2)在以O为极点,x轴的正半轴为极轴的极坐标系中,射线θ=π3与C1的异于极点的交点为A,与C2的异于极点的交点为B,求∣AB∣.24. 设函数f x=∣x−a∣+3x,其中a>0.(1)当a=1时,求不等式f x≥3x+2的解集;(2)若不等式f x≤0的解集为x∣x≤−1,求a的值.答案第一部分 1. C 【解析】2+i 1−2i= 2+i 1+2i1−2i 1+2i=5i 5=i2. B3. B【解析】写出每一次循环后的k 和p 的值,第六次循环后k =6和p =720,此时不满足k <N ,退出循环.4. A 【解析】记3个兴趣小组分别为1,2,3,甲参加1组记为"甲1 ",则基本事件为 " 甲1,乙1;甲1,乙2;甲1,乙3;甲2,乙1;甲2,乙2;甲2,乙3;甲3,乙1;甲3,乙2;甲3,乙3 ",共9个.记事件A 为 " 甲、乙两位同学参加同一个兴趣小组 ",其中事件A 有 "甲1,乙1;甲2,乙2;甲3,乙3 ",共3个.因此P A =39=13. 5. B6. D 【解析】此几何体为组合体,由半个圆锥和一个三棱锥组合而成.7. B8. D【解析】因为 x +ax 2x −1x 5的展开式中各项的系数和为2,所以令x =1,得a +1=2,从而a =1.2x −1x 5的展开式中的第r +1项为T r +1=C 5r 2x 5−r −1x r=C 5r 25−r −1 r x 5−2r . 当r =2时,为含x 的项;r =3时,为含x −1的项,所以展开式中的常数项为C 52⋅23−C 53⋅22=40.9. C【解析】因为直线y =x −2与y = x 的交点坐标为 4,2 ,所以所求面积为x−x +2 d x 40= 23x 32−12x 2+2x ∣∣∣04=163.10. A【解析】用p 1举例,若∣a +b∣>1,则两边平方可得2cos θ+2>1,解得0≤θ<2π3,反之也能推得成立,所以充分性和必要性都成立,p 1是真命题;同理可以证明p 4正确. 11. A 【解析】f x = 2sin ωx +φ+π4 ,所以ω=2. 又因为f x 为偶函数,所以φ+π4=π2+kπ,k ∈Z ,又∣φ∣<π2,所以φ=π4, 所以f x = 2sin 2x +π2 = 2cos2x . 12. D 【解析】如图,两个函数的图象有8个交点,且两个函数的图象都关于点 1,0 对称,故横坐标之和为8. 第二部分13. −614. x216+y28=115. 8316. 2【解析】由正弦定理AB sin C =ACsin B=BCsin A,得AB=2sin C,BC=2sin A.所以AB+2BC=2sin C+4sin A=2sin C+4sin120∘−C=4sin C+23cos C=27sin C+φ.所以AB+2BC的最大值为27.第三部分17. (1)设数列a n的公比为q,由a32=9a2a6,得a32=9a42,所以q2=19.由条件可知q>0,故q=13.由2a1+3a2=1,得2a1+3a1q=1,所以a1=13.故数列a n的通项公式为a n=13n.(2)结合(1)可得b n=log3a1+log3a2+⋯+log3a n=−1+2+⋯+n=−n n+12.故1 n =−2=−21−1.所以1 1+12+⋯+1n=−21−12+12−13+⋯+1n−1n+1=−2n n+1.所以数列1b n 的前n项和为−2nn+1.18. (1)因为∠DAB=60∘,AB=2AD,由余弦定理得BD=3AD,从而BD2+AD2=AB2,故BD⊥AD.又PD⊥底面ABCD,可得BD⊥PD.所以BD⊥平面PAD.故PA⊥BD.(2)如图,以D为坐标原点,AD的长为单位长,射线DA为x轴的正半轴建立空间直角坐标系D−xyz,则A1,0,0,B 0,0,C −1,0,P0,0,1,故AB= −1,3,0,PB=0,3,−1,BC=−1,0,0.设平面PAB的法向量为n=x,y,z,则n⋅AB=0,n⋅PB=0.即−x+3y=0,3y−z=0.因此可取n=3,1,3.设平面PBC的法向量为m,则m⋅PB=0,m⋅BC=0.可取m=0,−1,− 3,所以cos m,n=−427=−27.故二面角A−PB−C的余弦值为−277.19. (1)由试验结果知,用A配方生产的产品中优质品的频率为22+8=0.3,所以用A配方生产的产品的优质品率的估计值为0.3.由试验结果知,用B配方生产的产品中优质品的频率为32+10=0.42,所以用B配方生产的产品的优质品率的估计值为0.42.(2)用B配方生产的100件产品中,其质量指标值落入区间90,94,94,102,102,110的频率分别为0.04、0.54、0.42,因此P X=−2=0.04,P X=2=0.54,P X=4=0.42,即X的分布列为X−224P0.040.540.42X的数学期望值EX=−2×0.04+2×0.54+4×0.42=2.68.20. (1)设M x,y,由已知得B x,−3,A0,−1.所以MA=−x,−1−y,MB=0,−3−y,AB=x,−2.再由题意可知 MA+MB⋅AB=0,即−x,−4−2y⋅x,−2=0.所以曲线C的方程式为y=14x2−2.(2)设P x0,y0为曲线C:y=14x2−2上一点,因为yʹ=12x,所以l的斜率为12x0.因此直线l的方程为y−y0=12x0x−x0,即x0x−2y+2y0−x02=0.则O点到l的距离d=∣002∣x0+4.又y0=14x02−2,所以d=12x2+42=12x02+4+2≥2,当x02=0时取等号,所以O点到l距离的最小值为2.21. (1)fʹx=a x+1x−ln xx+12−bx2,由于直线x+2y−3=0的斜率为−12,且过点1,1,故f1=1,fʹ1=−1 ,即b=1,a−b=−1 ,解得a=1,b=1.(2)由(1)知f x=ln x+1,所以f x−ln xx−1+kx=11−x22ln x+k−1x2−1x.考虑函数ℎx=2ln x+k−1x2−1xx>0,则ℎʹx=k−1x2+1+2xx2.(i)设k≤0,由ℎʹx=k x2+1−x−12x2知,当x≠1时,ℎʹx<0.而ℎ1=0,故当x∈0,1时,ℎx>0,可得12ℎx>0;当x∈1,+∞时,ℎx<0,可得11−x2ℎx>0.从而当x>0,且x≠1时,f x−ln x+k>0,即f x>ln xx−1+kx.(ii)设0<k<1.由于当x∈1,11−k时,k−1x2+1+2x>0,故ℎʹx>0,而ℎ1=0,故当x∈1,11−k 时,ℎx>0,可得11−xℎx<0,与题设矛盾.(iii)设k≥1.此时ℎʹx>0,而ℎ1=0,故当x∈1,+∞时,ℎx>0,可得11−x2ℎx<0,与题设矛盾.综合得,k的取值范围为−∞,0.22. (1)连接DE,根据题意在△ADE 和△ACB 中,AD ×AB =mn =AE ×AC ,即AD =AE. 又∠DAE =∠CAB ,从而△ADE ∽△ACB ,因此∠ADE =∠ACB ,所以C ,B ,D ,E 四点共圆.(2)m =4,n =6时,方程x 2−14x +mn =0的两根为x 1=2,x 2=12.故AD =2,AB =12.取CE 的中点G ,DB 的中点F ,分别过G ,F 作AC ,AB 的垂线,两垂线相交于H 点,连接DH .因为C ,B ,D ,E 四点共圆,所以C ,B ,D ,E 四点所在圆的圆心为H ,半径为DH . 由于∠A =90∘,故GH ∥AB ,HF ∥AC .HF=AG =5,DF =112−2 =5,DH=5 2.故C ,B ,D ,E 四点所在圆的半径为5 23. (1)设P x ,y ,则由条件知M x 2,y2 . 由于M 点在C 1上,所以x2=2cos α,y2=2+2sin α, 即x =4cos α,y =4+4sin α,从而C 2的参数方程为x =4cos α,y =4+4sin α,α为参数 .(2)曲线C 1的极坐标方程为ρ=4sin θ,曲线C 2的极坐标方程为ρ=8sin θ.普通高等学校招生全国统一考试高考数学教师精校版含详解完美版 射线θ=π3与C 1的交点A 的极径为 ρ1=4sin π, 射线θ=π3与C 2的交点B 的极径为 ρ2=8sin π. 所以∣AB∣=∣ρ2−ρ1∣=2 3.24. (1)当a =1时,f x ≥3x +2可化为∣x −1∣≥2.由此可得x ≥3 或 x ≤−1.故不等式f x ≥3x +2的解集为x ∣x ≥3 或 x ≤−1 .(2)由f x ≤0得∣x −a∣+3x ≤0,此不等式可化为不等式组x ≥a x −a +3x ≤0 或 x ≤a a −x +3x ≤0即x ≥a x ≤a 4 或 x ≤a x ≤−a 2因为a >0,所以不等式组的解集为x ∣x ≤−a . 由题设可得−a 2=−1,故a =2.。
2011年(全国卷II)(含问题详解)高考文科数学
2011年普通高等学校招生全国统一考试(2全国卷)数学(文)试题一、选择题 ( 本大题共 12 题, 共计 60 分)1、设集合U={1,2,3,4},M={1,2,3},N={2,3,4},则(M∩N)=( ) A.{1,2} B.{2,3} C.{2,4} D.{1,4}2、函数y=2(x≥0)的反函数为( )A. (x∈R) B. (x≥0)C.y=4x2(x∈R) D.y=4x2(x≥0)3、设向量a,b满足|a|=|b|=1,,则|a+2b|=( )A. B. C.D.4、若变量x,y满足约束条件则z=2x+3y的最小值为( ) A.17 B.14 C.5D.35、下面四个条件中,使a>b成立的充分而不必要的条件是( )A.a>b+1 B.a>b-1 C.a2>b2D.a3>b36、设S n为等差数列{a n}的前n项和,若a1=1,公差d=2,S k+2-S k=24,则k =( )A.8 B.7 C.6D.57、设函数f(x)=cosωx(ω>0),将y=f(x)的图像向右平移个单位长度后,所得的图像与原图像重合,则ω的最小值等于( )A.B.3 C.6D.98、已知直二面角α-l-β,点A∈α,AC⊥l,C为垂足,点B∈β,BD⊥l,D 为垂足.若AB=2,AC=BD=1,则CD=…( )A.2 B. C.D.19、4位同学每人从甲、乙、丙3门课程中选修1门,则恰有2人选修课程甲的不同选法共有( )A.12种B.24种C.30种 D.36种10、(5分)设f(x)是周期为2的奇函数,当0≤x≤1时,f(x)=2x(1-x),则f(-5/2)=( )A. B. C.D.11、设两圆C1、C2都和两坐标轴相切,且都过点(4,1),则两圆心的距离|C1C2|=( )A.4 B. C.8 D.12、已知平面α截一球面得圆M,过圆心M且与α成60°二面角的平面β截该球面得圆N.若该球面的半径为4,圆M的面积为4π,则圆N的面积为( ) A.7π B.9π C.11π D.13π二、填空题 ( 本大题共 4 题, 共计 20 分)13、 (1-x)10的二项展开式中,x的系数与x9的系数之差为______.14、已知,tanα=2,则cosα=______.15、已知正方体ABCD-A1B1C1D1中,E为C1D1的中点,则异面直线AE与BC所成角的余弦值为______.16、已知F1、F2分别为双曲线C:的左、右焦点,点A∈C,点M的坐标为(2,0),AM为∠F1AF2的平分线,则|AF2|=______.三、解答题 ( 本大题共 6 题, 共计 70 分)17、设等比数列{a n}的前n项和为S n.已知a2=6,6a1+a3=30,求a n和S n.18、△ABC的内角A、B、C的对边分别为a、b、c,.(1)求B;(2)若A=75°,b=2,求a,c.19、根据以往统计资料,某地车主购买甲种保险的概率为0.5,购买乙种保险但不购买甲种保险的概率为0.3.设各车主购买保险相互独立.(1)求该地1位车主至少购买甲、乙两种保险中的1种的概率;(2)求该地的3位车主中恰有1位车主甲、乙两种保险都不购买的概率.20、如图,四棱锥S-ABCD中,AB∥CD,BC⊥CD,侧面SAB为等边三角形.AB =BC=2,CD=SD=1.(1)证明:SD⊥平面SAB;(2)求AB与平面SBC所成的角的大小.21、已知函数f(x)=x3+3ax2+(3-6a)x+12a-4(a∈R).(1)证明:曲线y=f(x)在x=0处的切线过点(2,2);(2)若f(x)在x=x0处取得极小值,x0∈(1,3),求a的取值范围.22、已知O为坐标原点,F为椭圆C:在y轴正半轴上的焦点,过F 且斜率为的直线l与C交于A,B两点,点P满足. (1)证明:点P在C上;(2)设点P关于点O的对称点为Q,证明:A,P,B,Q四点在同一圆上.2011年普通高等学校招生全国统一考试(2全国卷)数学(文)试题答案解析:一、选择题 ( 本大题共 12 题, 共计 60 分)1、(5分) DM∩N={1,2,3}∩{2,3,4}={2,3},又∵U={1,2,3,4},∴(M∩N)={1,4}.2、(5分) B由 (x≥0)得 (y≥0),∴,∴反函数为 (x≥0).3、(5分) B由|a|=|b|=1,,得.4、(5分) C由x,y的约束条件画出可行域如图:设l0:,则过A点时,z的值最小.由得A(1,1),∴z min=2×1+3×1=5.5、(5分) AA项中a>b+1>b,所以充分性成立,但必要性不成立,所以“a>b +1”为“a>b”成立的充分不必要条件.6、(5分) D由S k+2-S k=24,∴a k+1+a k+2=24,∴a1+kd+a1+(k+1)d=24,∴2a1+(2k+1)d=24.又a1=1,d=2,∴k=5.7、(5分) C由题意得:为函数f(x)=cosωx的最小正周期的正整数倍,∴(k∈N*),∴ω=6k(k∈N*),∴ω的最小值为6.8、(5分) C如图,AB=2,AC=BD=1,连结BC,则△ABC为直角三角形,∴.又△BCD为直角三角形,∴.9、(5分) B先从4人中选2人选修甲课程,有种方法,剩余2人再选修剩下的2门课程,有22种方法,∴共有种方法.10、(5分) A∵f(x)是周期为2的奇函数,∴11、(5分) C由题意可设两圆的方程均为:(x-r)2+(y-r)2=r2.将(4,1)代入,可得:(4-r)2+(1-r)2=r2,∴r2-10r+17=0.∴此方程两根r1,r2分别为两圆半径,∴两圆心的距离12、(5分) D由题意可得截面图形.∵圆M的面积为4π,∴圆M的半径为2.∵α与β所成二面角为60°,∴∠BMC=60°.在△OMB中,∠OMB=90°,MB=2,OB=4,∴∠OBM=60°. ∴OB∥CD,.在△OMN中,∠OMN=30°,,∴.∴.∴圆N的面积为.二、填空题 ( 本大题共 4 题, 共计 20 分)解析:(1-x)10的通项公式.∴,,∴系数之差为.14、(5分)解析:∵α∈(π,),tanα=2,∴.又sin2α+cos2α=1,∴5cos2α=1,∴.15、(5分)解析:如图,连结DE.∵AD∥BC,∴AE与BC所成的角,即为AE与AD所成的角,即∠EAD. 设正方体棱长为a,∴,∴,∴.解析:F1(-6,0),F2(6,0),M(2,0),∴|F1M|=8,|MF2|=4.由内角平分线定理得:,又|AF1|-|AF2|=2a=2×3=6,∴2|AF2|-|AF2|=|AF2|=6.三、解答题 ( 本大题共 6 题, 共计 70 分)17、(10分) 解:设{a n}的公比为q,由题设得解得或当a1=3,q=2时,a n=3×2n-1,S n=3×(2n-1);当a1=2,q=3时,a n=2×3n-1,S n=3n-1.18、(12分) 解:(1)由正弦定理得.由余弦定理得b2=a2+c2-2ac cos B.故,因此B=45°.(2)sin A=sin(30°+45°)=sin30°cos45°+cos30°sin45°=.故,.19、(12分) 解:记A表示事件:该地的1位车主购买甲种保险;B表示事件:该地的1位车主购买乙种保险但不购买甲种保险;C表示事件:该地的1位车主至少购买甲、乙两种保险中的1种;D表示事件:该地的1位车主甲、乙两种保险都不购买.(1)P(A)=0.5,P(B)=0.3,C=A+B,P(C)=P(A+B)=P(A)+P(B)=0.8.(2),P(D)=1-P(C)=1-0.8=0.2,P(E)=×0.2×0.82=0.384.20、(12分)解法一:(1)取AB中点E,连结DE,则四边形BCDE为矩形,DE=CB=2. 连结SE,则SE⊥AB,.又SD=1,故ED2=SE2+SD2,所以∠DSE为直角.由AB⊥DE,AB⊥SE,DE∩SE=E,得AB⊥平面SDE,所以AB⊥SD. SD与两条相交直线AB、SE都垂直.所以SD⊥平面SAB.(2)由AB⊥平面SDE知,平面ABCD⊥平面SDE.作SF⊥DE,垂足为F,则SF⊥平面ABCD,.作FG⊥BC,垂足为G,则FG=DC=1.连结SG,则SG⊥BC.又BC⊥FG,SG∩FG=G,故BC⊥平面SFG,平面SBC⊥平面SFG.作FH⊥SG,H为垂足,则FH⊥平面SBC.,即F到平面SBC的距离为.由于ED∥BC,所以ED∥平面SBC,E到平面SBC的距离d也为. 设AB与平面SBC所成的角为α,则,.解法二:以C为坐标原点,射线CD 为x轴正半轴,建立如图所示的空间直角坐标系Cxyz.设D(1,0,0),则A(2,2,0),B(0,2,0).又设S(x,y,z),则x>0,y>0,z>0,(1)=(x-2,y-2,z),=(x,y-2,z),=(x-1,y,z),由得,故x=1.由得y2+z2=1,又由得x2+(y-2)2+z2=4,即y2+z2-4y+1=0,故,.于是,,,,,.故DS⊥AS,DS⊥BS,又AS∩BS=S,所以SD⊥平面SAB.(2)设平面SBC的法向量a=(m,n,p),则,,,.又,,故取p=2得.又,.故AB与平面SBC所成的角为.21、(12分) 解:(1)f′(x)=3x2+6ax+3-6a.由f(0)=12a-4,f′(0)=3-6a,得曲线y=f(x)在x=0处的切线方程为y=(3-6a)x+12a-4,由此知曲线y=f(x)在x=0处的切线过点(2,2).(2)由f′(x)=0,得x2+2ax+1-2a=0.①当时,f(x)没有极小值;②当或时,由f′(x)=0,得,,故x0=x2.由题设知1<-a+<3.当时,不等式无解;当时,解不等式,得.综合①②得a的取值范围是(,).22、(12分) 解:(1)F(0,1),l的方程为,代入并化简得.设A(x1,y1),B(x2,y2),P(x3,y3),则,,,,由题意得,y3=-(y1+y2)=-1.所以点P的坐标为.经验证,点P的坐标)满足方程,故点P在椭圆C 上.(2)由P和题设知,Q,PQ的垂直平分线l1的方程为.①设AB的中点为M,则M,AB的垂直平分线l2的方程为.②由①②得l1、l2的交点为N,,,,,,故|NP|=|NA|.又|NP|=|NQ|,|NA|=|NB|,所以|NA|=|NP|=|NB|=|NQ|,由此知A,P,B,Q四点在以N为圆心,NA为半径的圆上.。
2011年普通高等学校招生全国统一考试数学卷(全国Ⅱ.理)含详解
(9)设 f ( x ) 是周期 (致) -
5 2
1 2
1 4
(C)
1 4
(D)
1 2
答案 致 命题意 解 析 本题 要考查利用函数的周期性和奇偶性求函数值的方法.
f ( x) 是 周 期 若 的 奇 函 数 , 利 用 周 期 性 和 奇 偶 性 得 : 5 5 1 1 1 1 1 f (− ) = f (− + 2) = f (− ) = − f ( ) = −2 × × (1 − ) = − . 2 2 2 2 2 2 2 2 C 交于 A , B 点.则 (令代) 知抛物线 C y = 4 x 的焦点 F ,直线 y = 2 x − 4 cos ∠AFB = 4 3 3 4 (致) (B) (C) − (D) − 5 5 5 5
(k + 2)(k + 1) k (k − 1) × 2] − [k ×1 + × 2] = 4k + 4 = 24 ,解得 2 2
(5)设函数 f ( x) = cos ω x (ω > 0) ,将 y = f ( x) 的 原 致 重合,则 ω 的最小值等于
向右 移
π
3
个单 长度 ,所得的
1 3 2π
解析 致 C 答案 B 命题意 解析 本题 要考查 原函数 解得 x = 函数的求法.
x2 ( x ∈ R) 4 y = 4 x2 ( x ∈ R) y=
B D
y=
x2 ( x ≥ 0) 4 y = 4 x 2 ( x ≥ 0)
y2 ,又原函数的值域 4
y ≥ 0 ,所 函数 y = 2 x ( x ≥ 0) 的
a1 = 1 ,公差 d = 2 , Sk + 2 − Sk = 24 ,则 k =
2011年三校生高考数学试卷
一、填空题:本大题共14小题,每小题5分,共70分.1.已知集合,,则▲ .【答案】2.设复数满足(是虚数单位),则复数的模为▲ .【答案】3.右图是一个算法流程图,则输出的的值是▲ .【答案】4.“ ”是“ ”成立的▲ 条件.(从“充要”,“充分不必要”,“必要不充分”中选择一个正确的填写)【答案】必要不充分5.根据某固定测速点测得的某时段内过往的100辆机动车的行驶速度(单位:km/h)绘制的频率分布直方图如右图所示.该路段限速标志牌提示机动车辆正常行驶速度为60 km/h~120 km/h,则该时段内非正常行驶的机动车辆数为▲ .【答案】6.在平面直角坐标系中,抛物线上纵坐标为1的一点到焦点的距离为3,则焦点到准线的距离为▲ .【答案】47.从集合中任取两个不同的数,则其中一个数恰是另一个数的3倍的概率为▲ .【答案】8.在平面直角坐标系中,设点为圆:上的任意一点,点 (2 , )( ),则线段长度的最小值为▲ .【答案】9.函数,,在上的部分图象如图所示,则的值为▲ .【答案】10.各项均为正数的等比数列中,.当取最小值时,数列的通项公式an= ▲ .【答案】11.已知函数是偶函数,直线与函数的图象自左向右依次交于四个不同点,,,.若,则实数的值为▲ .【答案】12.过点作曲线:的切线,切点为,设在轴上的投影是点,过点再作曲线的切线,切点为,设在轴上的投影是点,…,依次下去,得到第个切点.则点的坐标为▲ .【答案】13.在平面四边形ABCD中,点E,F分别是边AD,BC的中点,且AB ,,CD .若,则的值为▲ .【答案】14.已知实数a1,a2,a3,a4满足a1 a2 a3 ,a1a42 a2a4 a2 ,且a1 a2 a3,则a4的取值范围是▲ .【答案】二、解答题15.如图,在四棱锥中,底面是矩形,四条侧棱长均相等.(1)求证:平面;(2)求证:平面平面.证明:(1)在矩形中,,又平面,平面,所以平面.………6分(2)如图,连结,交于点,连结,在矩形中,点为的中点,又,故,,………9分又,平面,所以平面,………12分又平面,所以平面平面.………14分16.在△ABC中,角,,所对的边分别为,,c.已知.(1)求角的大小;(2)设,求T的取值范围.解:(1)在△ABC中,,………3分因为,所以,所以,………5分因为,所以,因为,所以.………7分(2)………11分因为,所以,故,因此,所以.………14分17.某单位设计的两种密封玻璃窗如图所示:图1是单层玻璃,厚度为8 mm;图2是双层中空玻璃,厚度均为4 mm,中间留有厚度为的空气隔层.根据热传导知识,对于厚度为的均匀介质,两侧的温度差为,单位时间内,在单位面积上通过的热量,其中为热传导系数.假定单位时间内,在单位面积上通过每一层玻璃及空气隔层的热量相等.(注:玻璃的热传导系数为,空气的热传导系数为.)(1)设室内,室外温度均分别为,,内层玻璃外侧温度为,外层玻璃内侧温度为,且.试分别求出单层玻璃和双层中空玻璃单位时间内,在单位面积上通过的热量(结果用,及表示);(2)为使双层中空玻璃单位时间内,在单位面积上通过的热量只有单层玻璃的4%,应如何设计的大小?解:(1)设单层玻璃和双层中空玻璃单位时间内,在单位面积上通过的热量分别为,,则,………2分………6分.………9分(2)由(1)知,当 4%时,解得(mm).答:当 mm时,双层中空玻璃通过的热量只有单层玻璃的4%.………14分18.如图,在平面直角坐标系中,椭圆的右焦点为,离心率为.分别过,的两条弦,相交于点(异于,两点),且.(1)求椭圆的方程;(2)求证:直线,的斜率之和为定值.(1)解:由题意,得,,故,从而,所以椭圆的方程为.①………5分(2)证明:设直线的方程为,②直线的方程为,③………7分由①②得,点,的横坐标为,由①③得,点,的横坐标为,………9分记,,,,则直线,的斜率之和为………13分.………16分19.已知数列是首项为1,公差为的等差数列,数列是首项为1,公比为的等比数列(1)若,,求数列的前项和;(2)若存在正整数,使得.试比较与的大小,并说明理由.解:(1)依题意,,故,所以,………3分令,①则,②①②得,,,所以.………7分(2)因为,所以,即,故,又,………9分所以综上所述,当时,;当时,;当时,.………16分(注:仅给出“ 时,;时,”得2分.)20.设是定义在的可导函数,且不恒为0,记.若对定义域内的每一个,总有,则称为“ 阶负函数”;若对定义域内的每一个,总有,则称为“ 阶不减函数”(为函数的导函数).(1)若既是“1阶负函数”,又是“1阶不减函数”,求实数的取值范围;(2)对任给的“2阶不减函数” ,如果存在常数,使得恒成立,试判断是否为“2阶负函数”?并说明理由.解:(1)依题意,在上单调递增,故恒成立,得,………2分因为,所以.………4分而当时,显然在恒成立,所以.………6分(2)①先证:若不存在正实数,使得,则恒成立.………8分假设存在正实数,使得,则有,由题意,当时,,可得在上单调递增,当时,恒成立,即恒成立,故必存在,使得(其中为任意常数),这与恒成立(即有上界)矛盾,故假设不成立,所以当时,,即;………13分②再证无解:假设存在正实数,使得,则对于任意,有,即有,这与①矛盾,故假设不成立,所以无解,综上得,即,故所有满足题设的都是“2阶负函数”.………16分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
长春大学2011年特殊教育学院 招生考试数学试题(听障考生)
1.反比例函数)0(>=
x x
y 的图像,随着x 值的增大,y 值( )。
A.增大 B.减小 C.不变 D.先减小后增大
2.已知全集{}5,4,3,2,1,0=U 。
集合{}{}5,4,1,5,3,0==N M ,则集合)(N C M U ⋂等于( )。
(其中N C U 表示集合N 的补集)
A.{}5
B.{}3,0
C.{}5,3,2,0
D.{}5,4,3,1,0
3.40<<x 是不等式52<<-x 成立的( )。
A.充分非必要条件
B.必要非充分条件
C.充要条件
D. 既非必要也非充分条件
4.等比数列{}n a 的首项为1,公比为q ,前n 项和为S ,则数列⎭
⎬⎫
⎩⎨⎧n a 1的前n 项和为( )。
A. S
1
B. S
C. 1
-n q
S D. S
q n 11-
5.已知函数x
k
y =
的图像经过点)3,1(-P ,则这个函数图像位于( )。
A. 第二、三象限 B. 第一、三象限 C. 第三、四象限 D. 第二、四象限 6.已知方程组⎩
⎨
⎧=+=+122y x k
y x 的解满足2=+y x ,则k 的值为( )。
A. 5
B. 8
C. 2
D. -8 7.已知2=ab ,若5b a ,022=+>且b ,则b +a 的值为( )。
A. 4 B. 5 C. 3 D. -1
二、填空题(本题共5小题,每小题5分,共25分)
1.不等式523≥+x 的解集为 。
2.直角坐标系下,将点)2,1(P 向右平移2个单位得到'P 的坐标,则点'P 的坐标是 。
3.函数35-=x y 在R 上的反函数是 。
4. 已知一次函数1+-=x y ,则y 随x 的增大而 (填“增大”或“减小”)。
5. 函数 3
22
2
++=
x x y 的定义域是 。
三、解答题(本题共6小题,每小题10分,共60分)
1. 已知数列{}n a 为等差数列,且6,994-==a a 。
(1)求通项n a ; (2)求12a 的值。
2.计算5
2cos
5
cos π
π
⋅的值。
3.计算)0b a (,b a )b a (53542
15
65
8≠⋅÷⋅⋅--。
4. 若560,360==b a 。
(1)求b a -+1的值;(2)求b a -+160。
5.计算210)5()2
1(2)12(--+----。
6.设函数)2(12)(2-≤--=x x x x f 。
(1)求)(x f 的定义域;(2)求)(x f 的值域。
四、证明题(本题共2小题,每小题15分,共30分)
1. 已知,1x 0<<证明:2x x x
1>>。
2. 已知2
1
121)(+-=
x
x f 。
(1)判断)(x f 的奇偶性;(2)证明:当0>x 时0)(>x f ,当0<x 时0)(<x f 。