光纤耦合实验报告
光纤耦合实验报告

光纤耦合实验报告一.实验目的将一束空间平行光(红外1068nm或者紫外)耦合进光纤里,本实验是耦合红外1068nm激光二.实验原理1.光纤耦合头:一个透镜mount在一可调焦距的耦合装置上,我们实验室用的型号有()2.光纤型号()一束平行光通过耦合头里的可调节透镜,使光聚焦至光纤里面三.实验仪器激光器(波长1068nm),光纤耦合头,光功率计,光纤(波长1068nm),45o反射镜,透镜(如果需要光斑需要整形),红外探片,尺子四.实验步骤1. 首先,调节45o反射镜,使需要耦合的平行光束平行于光路平台(高度约为75mm)P2. 用光功率计测量一下耦合前的光功率并记下3. 安装耦合头,将耦合头固定在支架上(耦合头中心轴到支架底部的高度约为75mm),将支架摆放在光学平台上,调节45o反射镜和支架,使平行光束基本恰好通过耦合头,此时用探片在耦合头后方观察时,呈均匀的圆斑状,说明光束基本打到透镜的轴心上,将支架固定在平台上即可。
4. 取出光纤使光纤的一头用胶带固定在光功率计探头上,另一头安装在耦合头上5. 首先,调节功率计的量程约为纳瓦级别,此时,可看到功率计上示数为十几或是几十纳瓦(),然后,调节45o反射镜和支架上的旋钮,观察功率计示数并使之最大,接着调节透镜聚焦(功率计示数会有大的波动),使功率计示数最大,接着再次调节45o反射镜和支架,使功率计示数最大,再次调节透镜聚焦,使功率计示数最大,这样迭代下去,一直使功率计P示数最大为止,读出示数16. 计算耦合效率10ηP =P五.实验总结1. 调节光纤耦合需要很大的耐心,掌握正确的方法原理实验难点,总会调很高的效率.2. 影响光纤耦合的效率有:○1.光路是否等高同轴,平行光束是否恰好通过透镜中心 ○2.光纤头是否被污染, ○3.光斑质量(大小)是否需要整形 ○4.耦合头的选择注意事项1.由于红外激光对眼的视网膜具有不可修复性伤害,所以不许人的眼线与光线所走的水平面重合,更不许用眼激光直接打进眼睛,做好光线格挡,避免光束外露,以免对人体造成伤害。
光纤合束实验报告(3篇)

第1篇一、实验目的1. 理解光纤合束的基本原理和过程。
2. 掌握光纤合束器的类型及其应用。
3. 学习光纤合束过程中的关键技术,如光纤对接、光纤耦合等。
4. 通过实验验证光纤合束的性能,提高实验操作技能。
二、实验原理光纤合束是指将两根或多根光纤的端面进行精确对接,使光信号在光纤中传输,实现光信号的合成与传输。
光纤合束实验主要涉及以下原理:1. 光纤端面处理:为了实现良好的光耦合,需要对光纤端面进行精确切割、抛光和清洁处理。
2. 光纤对接:通过精确对接两根光纤的端面,使光信号在光纤中传输。
3. 光纤耦合:利用光纤耦合器将多根光纤连接在一起,实现光信号的合成与传输。
三、实验仪器与材料1. 光纤合束仪2. 光纤切割器3. 光纤抛光机4. 光纤清洁器5. 光纤耦合器6. 光纤跳线7. 光功率计8. 光纤9. 实验平台四、实验步骤1. 光纤切割:使用光纤切割器将两根光纤切割成所需长度,确保切割面垂直于光纤轴线。
2. 光纤抛光:使用光纤抛光机对切割后的光纤端面进行抛光处理,使端面平整、光滑。
3. 光纤清洁:使用光纤清洁器清洁抛光后的光纤端面,去除尘埃和油污。
4. 光纤对接:将两根光纤端面进行精确对接,确保对接紧密、无间隙。
5. 光纤耦合:使用光纤耦合器将多根光纤连接在一起,实现光信号的合成与传输。
6. 性能测试:使用光功率计测试光纤合束后的光功率,验证合束性能。
五、实验结果与分析1. 光纤端面处理:通过实验发现,光纤端面处理对合束性能影响较大。
端面平整、光滑的光纤合束性能较好,而端面不平整、有油污的光纤合束性能较差。
2. 光纤对接:光纤对接的精度对合束性能影响较大。
对接紧密、无间隙的光纤合束性能较好,而对接不紧密、有间隙的光纤合束性能较差。
3. 光纤耦合:光纤耦合器的性能对合束性能影响较大。
耦合性能良好的光纤耦合器能实现光信号的合成与传输,而耦合性能较差的光纤耦合器会导致光信号损耗较大。
4. 性能测试:通过实验发现,光纤合束后的光功率与理论计算值基本一致,说明光纤合束实验取得了较好的效果。
川大光纤实验报告(3篇)

第1篇一、实验目的1. 理解光纤的基本原理和结构;2. 掌握光纤的传输特性;3. 学习光纤的连接与测试方法;4. 了解光纤通信在实际应用中的重要性。
二、实验原理光纤是一种利用光的全反射原理来传输信号的介质。
它由纤芯、包层和涂覆层组成。
纤芯是光信号传输的核心部分,包层的作用是使光信号在纤芯中发生全反射,而涂覆层则用于保护光纤。
光纤通信具有传输速度快、容量大、抗干扰能力强等优点,因此在现代通信中有着广泛的应用。
三、实验仪器与材料1. 光纤通信实验箱2. 光源3. 光功率计4. 光纤连接器5. 光纤跳线6. 实验指导书四、实验步骤1. 光纤连接:按照实验指导书的要求,将光纤连接器插入光源和光功率计,确保连接牢固。
2. 光源调整:调整光源的输出功率,使其符合实验要求。
3. 光纤传输测试:将光纤跳线插入实验箱,连接光源和光功率计,开始测试光纤的传输特性。
4. 测试数据记录:记录不同位置的信号强度,分析光纤的传输特性。
5. 连接测试:将光纤连接器连接到实验箱,测试连接的稳定性和信号强度。
6. 实验总结:对实验数据进行整理和分析,得出结论。
五、实验结果与分析1. 光纤传输特性:实验结果显示,光纤在传输过程中信号强度衰减较小,说明光纤具有良好的传输性能。
2. 连接稳定性:在实验过程中,光纤连接器连接稳定,未出现信号中断或衰减过大的现象。
3. 信号强度分析:通过实验数据,可以分析出光纤在不同位置的信号强度,从而了解光纤的传输特性。
六、实验结论1. 光纤通信具有传输速度快、容量大、抗干扰能力强等优点,是现代通信的重要手段。
2. 通过本次实验,掌握了光纤的基本原理和结构,了解了光纤的传输特性。
3. 熟悉了光纤的连接与测试方法,为今后在实际工作中应用光纤通信技术奠定了基础。
七、实验体会1. 光纤通信技术在现代社会中有着广泛的应用,了解光纤的基本原理和结构对于从事通信行业的人员来说至关重要。
2. 实验过程中,要注意光纤连接的稳定性,确保信号传输的可靠性。
光纤耦合实验报告

篇一:光纤测量实验报告光纤测量实验报告课程名称:光纤测量实验名称:耦合器光功率分配比的测量学院:电子信息工程学院专业:通信与信息系统班级:研1305班姓名:韩文国学号:13120011实验日期:2014年4月22日指导老师:宁提纲、李晶耦合器光功率分配比的测量一、实验目的:1. 理解光纤耦合器的工作原理;2. 掌握光纤耦合器的用途和使用方法;3. 掌握光功率计的使用方法。
二、实验装置:ld激光器,1 ×2光纤耦合器,2 ×2光纤耦合器,tl-510型光功率计,光纤跳线若干。
1. ld激光器半导体激光器是以一定的半导体材料做工作物质而产生激光的器件。
.其工作原理是通过一定的激励方式,在半导体物质的能带(导带与价带)之间,或者半导体物质的能带与杂质(受主或施主)能级之间,实现非平衡载流子的粒子数反转,当处于粒子数反转状态的大量电子与空穴复合时,便产生受激发射作用。
电注入式半导体激光器,一般是由砷化镓(gaas)、硫化镉(cds)、磷化铟(inp)、硫化锌(zns)等材料制成的半导体面结型二极管,沿正向偏压注入电流进行激励,在结平面区域产生受激发射。
本实验用的ld激光器中心频率是1550nm。
2. 光功率计光功率计(optical power meter )是指用于测量绝对光功率或通过一段光纤的光功率相对损耗的仪器。
在光纤系统中,测量光功率是最基本的,非常像电子学中的万用表;在光纤测量中,光功率计是重负荷常用表。
通过测量发射端机或光网络的绝对功率,一台光功率计就能够评价光端设备的性能。
用光功率计与稳定光源组合使用,则能够测量连接损耗、检验连续性,并帮助评估光纤链路传输质量。
3. 耦合器光纤耦合器是一种用于传送和分配光信号的光纤无源器件,是光纤系统中使用最多的光无源器件之一,在光纤通信及光纤传感领域占有举足轻重的地位。
光纤耦合器一般具有以下几个特点:一是器件由光纤构成,属于全光纤型器件;二是光场的分波与合波主要通过模式耦合来实现;三是光信号传输具有方向性。
光纤耦合实验报告

篇一:光纤测量实验报告光纤测量实验报告课程名称:光纤测量实验名称:耦合器光功率分配比的测量学院:电子信息工程学院专业:通信与信息系统班级:研1305班姓名:韩文国学号:13120011实验日期:2014年4月22日指导老师:宁提纲、李晶耦合器光功率分配比的测量一、实验目的:1. 理解光纤耦合器的工作原理;2. 掌握光纤耦合器的用途和使用方法;3. 掌握光功率计的使用方法。
二、实验装置:ld激光器,1 ×2光纤耦合器,2 ×2光纤耦合器,tl-510型光功率计,光纤跳线若干。
1. ld激光器半导体激光器是以一定的半导体材料做工作物质而产生激光的器件。
.其工作原理是通过一定的激励方式,在半导体物质的能带(导带与价带)之间,或者半导体物质的能带与杂质(受主或施主)能级之间,实现非平衡载流子的粒子数反转,当处于粒子数反转状态的大量电子与空穴复合时,便产生受激发射作用。
电注入式半导体激光器,一般是由砷化镓(gaas)、硫化镉(cds)、磷化铟(inp)、硫化锌(zns)等材料制成的半导体面结型二极管,沿正向偏压注入电流进行激励,在结平面区域产生受激发射。
本实验用的ld激光器中心频率是1550nm。
2. 光功率计光功率计(optical power meter )是指用于测量绝对光功率或通过一段光纤的光功率相对损耗的仪器。
在光纤系统中,测量光功率是最基本的,非常像电子学中的万用表;在光纤测量中,光功率计是重负荷常用表。
通过测量发射端机或光网络的绝对功率,一台光功率计就能够评价光端设备的性能。
用光功率计与稳定光源组合使用,则能够测量连接损耗、检验连续性,并帮助评估光纤链路传输质量。
3. 耦合器光纤耦合器是一种用于传送和分配光信号的光纤无源器件,是光纤系统中使用最多的光无源器件之一,在光纤通信及光纤传感领域占有举足轻重的地位。
光纤耦合器一般具有以下几个特点:一是器件由光纤构成,属于全光纤型器件;二是光场的分波与合波主要通过模式耦合来实现;三是光信号传输具有方向性。
耦合试验实验报告总结(3篇)

第1篇一、实验概述本次实验旨在通过耦合试验,了解并掌握光纤耦合器的工作原理,学习其在光通信系统中的应用,以及光功率计的使用方法。
实验过程中,我们使用了LD激光器、光纤耦合器、光功率计等设备,对耦合器光功率分配比进行了测量。
二、实验目的1. 理解光纤耦合器的工作原理;2. 掌握光纤耦合器的用途和使用方法;3. 熟悉光功率计的使用方法;4. 通过实验验证光纤耦合器在光通信系统中的应用效果。
三、实验原理光纤耦合器是一种将两根或多根光纤连接在一起的器件,用于实现光信号的传输、分配和复用。
其主要工作原理是利用光纤的物理特性,通过光纤的弯曲、折射等作用,实现光信号的耦合。
光功率计是一种测量光功率的仪器,用于检测光信号在传输过程中的能量变化。
其工作原理是基于光功率与光信号强度的关系,通过光电转换将光信号转换为电信号,进而测量光功率。
四、实验装置1. LD激光器:中心频率为1550nm;2. 光纤耦合器:1×2光纤耦合器;3. 光功率计:TL-510型光功率计;4. 光纤跳线若干。
五、实验步骤1. 将LD激光器输出端与光纤耦合器的一端相连;2. 将光纤耦合器的另一端与光纤跳线相连;3. 将光纤跳线的另一端连接至光功率计;4. 打开LD激光器,调整输出功率;5. 读取光功率计显示的光功率值;6. 改变光纤耦合器的连接方式,重复步骤4和5;7. 记录不同连接方式下的光功率值;8. 分析实验数据,得出结论。
六、实验结果与分析1. 实验结果显示,在不同连接方式下,光功率分配比存在差异;2. 当光纤耦合器为1×2时,光功率分配比为1:1;3. 当光纤耦合器为2×2时,光功率分配比为1:1:1:1;4. 实验数据与理论分析基本一致。
七、实验结论1. 光纤耦合器是一种重要的光通信器件,在光通信系统中具有广泛的应用;2. 光功率计是一种常用的光功率测量仪器,可以准确测量光功率;3. 通过实验验证了光纤耦合器在光通信系统中的应用效果,为实际工程应用提供了理论依据。
实验十一光纤耦合器的原理及性能测试
实验十一光纤耦合器的原理及性能测试光纤耦合器是一种用于将光信号从一个光纤传输到另一个光纤的设备。
它通常由光源、光纤、光学元件和检测器组成。
光纤耦合器的原理是利用光学元件将光信号从一个光纤耦合到另一个光纤中,同时保持信号的传输和质量。
光纤耦合器的主要性能指标包括插损、回波损耗、偏振相关性和耦合效率。
插损是指从输入光纤到输出光纤间能量的损失程度。
回波损耗是指在耦合过程中返回到光源的光信号损失的量。
偏振相关性是指光信号在耦合过程中发生的偏振旋转程度。
耦合效率是指被输入光纤耦合到输出光纤中的光信号的比例。
为了测试光纤耦合器的性能,可以采用以下方法:1.插入损耗的测试:将光纤耦合器与光学光源和光学检测器连接起来,测量输入和输出光功率的差异。
通过比较输入和输出光功率的差值,可以计算出耦合器的插损。
2.回波损耗的测试:将光纤耦合器的输入端连接到光源,输出端连接到光学检测器,并将光学反射镜连接到输出端。
测量从光源输入到输出端的光功率损失,以确定回波损耗。
3.偏振相关性的测试:将光纤耦合器的输入端连接到偏振光源,输出端连接到光学检测器,并通过改变输入端的偏振方向来测量输出端的光功率变化。
通过测量光功率的变化,可以确定光纤耦合器的偏振相关性。
4.耦合效率的测试:将光纤耦合器的输入端连接到光学光源,输出端连接到光学检测器,并将光纤耦合器连接到光纤,并测量输入光功率和输出光功率。
通过比较输入和输出光功率,可以计算出耦合效率。
此外,还可以通过使用OTDR(光时域反射仪)等仪器来测量光纤的损耗和传输性能。
通过TOF(飞行时间)测量等方法,可以实现对光纤传输的延迟和带宽的测量。
总之,了解光纤耦合器的原理以及性能测试的方法对于光纤通信系统中的光信号传输至关重要。
通过对光纤耦合器的性能进行测试,可以确保光信号在传输过程中的稳定性和最佳质量。
光纤与光源耦合方法实验
光纤与光源耦合方法实验一.实验目的初步掌握光纤切割技术,光纤与光源耦合技术,体会透镜数值孔径对耦合效率的影响。
二.实验原理光纤作为无源器件,是光纤传感器中基本组成部分。
其端面处质量的好坏直接影响与光源耦合的效率及光信号的采集。
光纤端面的处理可分为两种形式,即平面纤头和透镜牵头,本次实验主要是平面光纤头的制作。
光耦合是将光源发出的光,注入到光纤中的一个过程。
光耦合效率与光纤端面质量和耦合透镜的是指孔径有关,当光纤端面处理的质量较好,其数值孔径与耦合透镜数值孔径相匹配时可得到最佳耦合效率。
耦合方法光纤与光源的耦合有直接耦合和经聚光器件耦合两种。
聚光器件有传统的透镜和自聚焦透镜之分。
自聚焦透镜的外形为“棒”形(圆柱体),所以也称之为自聚焦棒。
实际上,它是折射率分布指数为2(即抛物线型)的渐变型光纤棒的一小段。
自聚焦透镜自聚焦透镜又称梯度折射率透镜,是指其内部的折射率分布沿径向逐渐减小的柱状透镜。
由于梯度折射率透镜具有端面准直、耦合和成像特性,加上它圆柱状小巧的外形特点,可以在多种不同的微型光学系统中使用更加方便。
并在集成光学领域如微型光学系统、医用光学仪器、光学复印机、传真机、扫描仪等设备有着广泛的应用。
梯度折射率透镜是光通讯无源器件中必不可少的基础元器件。
应用于要求聚焦和准直功能的各种场合,被分别使用在光耦合器、准直器、光隔离器、光开关、激光器等方面。
直接耦合是使光纤直接对准光源输出的光进行的“对接”耦合。
这种方法的操作过程是:将用专用设备使切制好并经清洁处理的光纤端面靠近光源的发光面,并将其调整到最佳位置(光纤输出端的输出光强最大),然后固定其相对位置。
这种方法简单,可靠,但必须有专用设备。
如果光源输出光束的横截面面积大于纤芯的横截面面积,将引起较大的耦合损耗。
经聚光器件耦合是将光源发出的光通过聚光器件将其聚焦到光纤端面上,并调整到最佳位置(光纤输出端的输出光强最大)。
这种耦合方法能提高耦合效率。
光通信实验报告
光通信实验报告实验一:测量光纤耦合效率【实验简介】:光线主要用于通信、光纤传感、图像传送以及光能传递等方面。
由于光纤制造技术的不断进步,光线内部的损耗越来越小,因此在实际应用中提高光源与光纤之间的耦合效率是提高系统传输效率的重要技术之一。
【实验目的】:1.了解光纤特性,种类2.掌握光纤耦合的基本技巧及提高耦合效率的手段3.熟悉常用的耦合方法【实验装置示意图】:【实验数据】:光纤输出光功率:0.78mW光纤输入光功率:1.9mW耦合效率为:0.78/1.9*100%=41.1%【实验思考总结】耦合时,因为起始的光强较弱,用探测器检测效果不明显。
可以先用目测法,观察输出光斑的亮度。
等到达到一定的亮度之后,在接入探测器,观察示数。
调节时,首先调节高度,然后调节俯仰角,最后在调节左右对准度与旋转方向。
实验二:测量光纤损耗【实验目的】:通过测量单模光纤的衰减值,了解测量光纤损耗的常用方法:插入法(实际测量中很多器件的插损、损耗都使用这种方法)。
【实验原理】:光源发出的光通过光的注入系统输入到短光纤中,并通过光纤活动连接器与光功率计接通。
首先测量短光纤的输出功率P1,然后通过光纤连接器接入被测光纤,测量长光纤的输出功率P2,则光纤的总损耗为被测光纤的长度为L,则光纤的损耗系数为【实验装置示意图】:【实验数据】:光纤长度L:6km波长为1310nm的数据电流(mA)22.5 17.0 7.3P1(dBm) -7.1 -9.9 -13.2 P2(dBm) -9.2 -12.8 -15.5 损耗A(dB) 2.1 2.9 2.5 损耗系数0.44 0.41 0.383 (dB/km)波长为1550nm的数据电流(mA)25.4 16.2 13.6 P1(dBm) -6.9 -10.0 -11.1 P2(dBm) -8.7 -11.9 -12.9 损耗A(dB) 1.8 1.9 1.8 损耗系数0.30 0.32 0.30 (dB/km)实验三:测量光纤的数值孔径【实验简介】:光纤的数值孔径大小与纤芯折射率、纤芯-包层相对折射率差有关。
关于光纤耦合的实习报告
实习报告实习内容:光纤耦合实习时间:xxxx年xx月xx日至xxxx年xx月xx日实习单位:xxxx科技有限公司一、实习背景及目的在我国科技事业的高速发展下,光纤通信技术得到了广泛应用。
光纤耦合作为光纤通信系统中的关键部分,其性能的好坏直接影响到整个系统的传输效率。
为了更好地了解光纤耦合的原理及其在实际应用中的性能表现,我选择了xxxx科技有限公司进行为期一个月的实习,主要学习光纤耦合的相关知识和实践操作。
二、实习内容及过程1. 光纤耦合基本原理实习期间,我首先了解了光纤耦合的基本原理。
光纤耦合是指将两个或多个光纤的光能量相互转移的过程。
其原理主要是利用光纤的模场直径、折射率、耦合长度等参数,使得光能量在光纤之间实现高效转移。
光纤耦合的方式有多种,如光纤端面耦合、光纤锥形耦合、光纤光栅耦合等。
2. 光纤耦合器件的制作与测试在实习过程中,我参与了光纤耦合器件的制作与测试。
首先,我学习了光纤耦合器件的制作工艺,包括光纤切割、光纤熔接、光纤耦合器的设计与制作等。
在制作过程中,我深刻体会到了光纤耦合技术在实际操作中的细节问题,如光纤的切割角度、耦合长度、耦合效率等。
接下来,我参与了光纤耦合器件的性能测试。
测试过程中,我们使用光学仪器测量了光纤耦合的插入损耗、回波损耗、耦合效率等参数。
通过测试结果,我们分析了光纤耦合器件的性能优劣,并为优化设计提供了依据。
3. 光纤耦合在实际应用中的性能表现在实习期间,我还学习了光纤耦合在实际应用中的性能表现。
光纤耦合在光通信系统、光纤传感器、光纤激光器等领域具有重要作用。
通过对实际应用场景的了解,我认识到光纤耦合性能的优劣直接影响到整个系统的性能表现。
例如,在光通信系统中,光纤耦合的插入损耗越小,系统的传输效率越高;在光纤传感器中,光纤耦合的灵敏度越高,传感器的检测精度越高。
三、实习收获及体会通过这次实习,我对光纤耦合的基本原理、制作工艺及其在实际应用中的性能表现有了更深入的了解。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
光纤耦合实验报告
一.实验目的
将一束空间平行光(红外1068nm或者紫外)耦合进光纤里,本实验是耦合红外1068nm激光
二.实验原理
1.光纤耦合头:一个透镜mount在一可调焦距的耦合装置上,
我们实验室用的型号有()
2.光纤型号()
一束平行光通过耦合头里的可调节透镜,使光聚焦至光纤里面
三.实验仪器
激光器(波长1068nm),光纤耦合头,光功率计,光纤(波长1068nm),45o反射镜,透镜(如果需要光斑需要整形),红外探片,尺子
四.实验步骤
1. 首先,调节45o反射镜,使需要耦合的平行光束平行于光路平台(高度约为75mm)
P
2. 用光功率计测量一下耦合前的光功率并记下
3. 安装耦合头,将耦合头固定在支架上(耦合头中心轴到支架底部的高度约为75mm),将支架摆放在光学平台上,调节45o反射镜和支架,使平行光束基本恰好通过耦合头,此时用探片在耦合头后方观察时,呈均匀的圆斑状,说明光束基本打到透镜的轴心上,将支架固定在平台上即可。
4. 取出光纤使光纤的一头用胶带固定在光功率计探头上,另一头安装在耦合头上
5. 首先,调节功率计的量程约为纳瓦级别,此时,可看到功率计上示数为十几或是几十纳瓦(),然后,调节45o反射镜和支架上的旋钮,观察功率计示数并使之最大,接着调节透镜聚焦(功率计示数会有大的波动),使功率计示数最大,接着再次调节45o反射镜和支架,使功率计示数最大,再次调节透镜聚焦,使功率计示数最大,这样迭代下去,一直使功率计
P
示数最大为止,读出示数
1
6. 计算耦合效率10ηP =P
五.实验总结
1. 调节光纤耦合需要很大的耐心,掌握正确的方法原理实验难点,总会调很高的效率.
2. 影响光纤耦合的效率有:
○
1.光路是否等高同轴,平行光束是否恰好通过透镜中心 ○
2.光纤头是否被污染, ○
3.光斑质量(大小)是否需要整形 ○
4.耦合头的选择
注意事项
1.由于红外激光对眼的视网膜具有不可修复性伤害,所以不许人的眼线与光线所走的水平面重合,更不许用眼激光直接打进眼睛,做好光线格挡,避免光束外露,以免对人体造成伤害。
2.光纤很脆,需小心拿放,以免折断。
3.光纤头不得长时间暴露空气中,更不得触碰,以免受到污染(若光纤头脏了,需用专业试纸擦拭)。
4.光束耦合好后,光纤的另一头不得朝着人体的方向,更不得对着人眼,以免激光对人体产生伤害。