分式反比例应用题

合集下载

分式与反比例函数的综合测试题

分式与反比例函数的综合测试题

分式与反比例综合测试班级: 姓名:一、选择题(每小题3分,共30分) ( )1、下列各式2b a -,xx 3+,πy+5,ba b a -+中,是分式的共有A. 1个B. 2个C. 3个D. 4个( )2、使分式 21xx - 有意义的x 的取值范围是A 、 12x >B 、 12x ≤C 、 12x ≥D 、 12x ≠( )3、如果把分式yx x 232-中的x,y 都扩大3倍,那么分式的值A 、扩大3倍B 、不变C 、缩小3倍D 、扩大2倍 ( )4、已知分式)1)(2(1+--x x x 的值是零,那么x 的值是A 、2B 、1±C 、1D 、1- ( )5、对分式y x y xx y22432、、进行通分时,最简公分母是 A 、xy 2 B 、y x 24 C 、224y x D 、22xy ( )6、下列函数中,y 是x 的反比例函数的是 A 、 3x y =B.11+=x y C.21y x= D.3y x=( )7、反比例函数xk y =的图象经过点(2-,3),则它还经过点A.(3,2)B.(1-,-6)C.(6,1-)D.(0,0)( ) 8、反比例函数y =2x的图象位于A .一、二象限B .一、三象限C .二、三象限D .二、四象限 ( )9、函数 y=kx+1 与k y x=在同一坐标系内的大致图象是A B C D( )10、函数xa y 12+=图像上有三个点()()()321,32,1y y y 、,、,则函数值321y y y 、、大小关系A 、321y y y >>B 、123y y y >>C 、312y y y >>D 、231y y y >> 二、填空(每小题3分,共24分) 11、计算2422()a b a b --÷= . 12、①())0(,10 53≠=a axyxya ②()1422=-+a a .13、已知52纳米为0.000000052米,用科学记数法表示为 米. 14、已知aa 1+=6,则(a -a1)2= .15、已知22(1)my m x -=- 是反比例函数,则m = .16、已知反比例函数xk y 23-=,当k 时,其图象的两个分支在第一、三象限内.17、一次函数y =kx +1和反比例函数y =6x的图象都经过点(2,m ),则一次函数的解析式是________.18、反比例函数xy 6=的图像上,横坐标和纵坐标都是整数的点有 。

反比例函数难题汇编及答案解析

反比例函数难题汇编及答案解析

反比例函数难题汇编及答案解析一、选择题1 .下列函数:①y=-x ; @y=2x ; (3) y = ~— ; (4)y=x 2.当x<0时,y 随x 的增大而减小x的函数有()A. 1个B. 2个C. 3个D. 4个【答案】B 【解析】 【分析】分别根据一次函数、反比例函数及二次函数的性质进行逐一判断即可. 【详解】一次函数y=-x 中k<0,随x 的增大而减小,故本选项正确;・ ・,正比例函数y=2x 中,k=2,・,•当xVO 时,y 随x 的增大而增大,故本选项错误; ・ ・•反比例函数丁二一^1■中,k= -1V0,・♦.当xVO 时函数的图像在第二象限,此时y 随x 的 增大而增大,故本选项错误;・ ・,二次函数y=x2,中o=1>0,・,•此抛物线开口向上,当xVO 时,y 随x 的增大而减小, 故本选项正确. 故选B. 【点睛】本题考查的是一次函数、反比例函数及二次函数的性质,解题关键是根据题意判断出各函 数的增减性.2.如图,o/WOC 的顶点的坐标分别是4(0,-3),8 (1, 0),顶点C,。

在双曲线k y 二一上,边8D 交V 轴于点£,且四边形ACO 石的面积是A45石面积的3倍,则Z 的值x为:()【答案】A 【解析】A. -6c. -3 D. -12B. -4过D作DF〃>'轴,过C作CE〃x轴,交点为厂,利用平行四边形的性质证明△DCF = AA80,利用平移写好C, D的坐标,由四边形ACDE的面积是AA8E面积的3倍,得到DB = 2BE,利用中点坐标公式求横坐标,再利用反比例函数写。

的坐标,列方程求解女.【详解】解:过D作DF〃y轴,过c作b//x轴,交点为尸,则CF ± DF,:D ABDC,・•・/CDF, /BAO的两边互相平行,AB = DC,.・.ZCDF = NBAO,・・/DFC = 404 = 90。

分式反比例勾股定理综合性测试

分式反比例勾股定理综合性测试

分式、反比例、勾股定理阶段性综合测试一.选择题(每小题3分,共24分)1.计算1a-1 – aa-1的结果为( )A. 1+a a -1B. -aa-1 C. -1 D.1-a2.化简(x -)÷(1-)的结果是( ) A . B .x -1 C .D .3.当分式的值为0时,x 的值是( )A .0 B.1 C.-1 D.-24.如图3,在△ABC 中,∠C=90°,BC=6,D,E 分别在AB,AC 上,将△ABC 沿DE 折叠,使点A 落在点A ′处,若A ′为CE 的中点,则折痕DE 的长为( ) A .21 B .2 C .3 D .45.如图,△ABC 中,∠C =90°,AC =3,∠B =30°,点P 是BC 边上的动点,则AP 长不可能是( ) A. 3.5 B. 4.2 C. 5.8 D. 76.若函数的图象在其象限内的值随值的增大而增大,则的取值范围是( ) A .B .C .D .7.如图,函数和函数的图象相交于点M (2,m ),N (-1,n ),若,则x 的取值范围是( ) A . B . C . D .8.已知如图,A 是反比例函数的图像上的一点,AB ⊥x 轴于点B,且△ABO 的面积是3,则k 的值是( ) A.3 B.-3 C.6 D.-6·x 1-x 2x1x 1x1-x 1-x x 21+-x x xm y 2+=y x m 2->m 2-<m 2>m 2<m 11y x =-22y x=12y y >102x x <-<<或12x x <->或1002x x -<<<<或102x x -<<>或xky=第8题图图3'二.填空题(每小题3分,共15分)1.已知反比例函数的图象经过(1,-2).则 .2.在直角三角形ABC 中,∠C = 90°,BC = 12,AC = 9,则AB = .3.若m 为正实数,且,=4.下列命题中,其逆.命题成立的是______________.(只填写序号) ①同旁内角互补,两直线平行; ②如果两个角是直角,那么它们相等; ③如果两个实数相等,那么它们的平方相等; ④如果三角形的三边长a ,b ,c 满足,那么这个三角形是直角三角形.5.过反比例函数y=(k≠0)图象上一点A ,分别作x 轴,y 轴的垂线,垂足分别为B,C ,如果⊿ABC 的面积为3.则k 的值为 .三.计算题(每小题7分,共14分)1.先化简,再求值:,其中·2.先化简,再求值:⎝ ⎛⎭⎪⎫1+ 1 x -2÷ x 2-2x +1x 2-4,其中x =-5.四.解答题1.(本小题8分)如图,在边长为1的小正方形组成的网格中,△ABC 的三个顶点均在格点上,请按要求完成下列各题:(1)画线段AD ∥BC 且使AD =BC ,连接CD ;(2)线段AC 的长为 ,CD 的长为 ,AD 的长为 ; (3)△ACD 为 三角形,四边形ABCD 的面积为 ; (4)若E 为BC 中点,则AB/AC 的比值是 .ky x=k =13m m -=221m m-则xk)121(212-+÷+-x x x 31=x 222a b c += ABC E2.(本小题7分)如图,函数的图象与函数()的图象交于A 、B 两点,与轴交于C 点,已知A 点坐标为(2,1),C 点坐标为(0,3).(1)求函数的表达式和B 点的坐标;(2)观察图象,比较当时,与的大小.3. (本小题6分)光明中学八年级(1)班开展数学实践活动,小李沿着东西方向的公路以50 m/min 的速度向正东方向行走,在A 处测得建筑物C 在北偏东60°方向上,20min 后他走到B 处,测得建筑物C 在北偏西45°方向上,求建筑物C 到公路AB 的距离.4.(本小题6分)已知一次函数与反比例函数,其中一次函数图象过点P (,5). ①试确定反比例函数的表达式;②若点Q 是上述一次函数与反比例函数图象在第三象限的交点,求点Q 的坐标b x k y +=11xk y 22=0>x y 1y 0>x 1y 2y 2y x =+ky x=2y x =+k(第3题)5.(本小题10分)如图,正比例函数的图象与反比例函数在第一象限的图象交于点,过点作轴的垂线,垂足为,已知的面积为1.(1)求反比例函数的解析式;(2)如果为反比例函数在第一象限图象上的点(点与点不重合),且点的横坐标为1,在轴上求一点,使最小.6.(本小题10分)如图,已知反比例函数的图像经过第二象限内的点A (-1,m ),AB ⊥x 轴于点B ,△AOB 的面积为2.若直线y =ax +b 经过点A ,并且经过反比例函数的图象上另一点C (n ,一2). ⑴求直线y =ax +b 的解析式;⑵设直线y =ax +b 与x 轴交于点M ,求AM 的长.12y x =ky x=(0)k ≠A A x M OAM ∆B B A B x P PA PB +xky =xky =第6题图MxA(第5题)答案一.选择题:CBBBD BDC二.填空题: -2 15 ①和④ 6或-6 三.计算题: 1.原式== =1-x把代入得 原式=1-=2. 解:===, 当时,原式==.四.解答题1.解:(1)如图;(2)5;(3)直角,10; (4)12. 2. 【答案】(1)由题意,得 解得 ∴ ;又A 点在函数上,所以 ,解得, 所以;解方程组 得 , . 1332212)1)(1(+--÷+-+x x x x x )1(22)1)(1(+-+⨯+-+x x x x x 31=x 3132412)211(22-+-÷-+x x x x )2)(2()1(2122-+-÷-+-x x x x x2)1()2)(2(21--+⋅--x x x x x 12-+x x 5-=x 12-+x x 211525=--+-2⎩⎨⎧==+.3,121b b k ⎩⎨⎧=-=.3,11b k 31+-=x y x k y 22=212k =22=k x y 22=⎪⎩⎪⎨⎧=+-=x y x y 2,3⎩⎨⎧==2111y x ⎩⎨⎧==1222y x ABCE第1题图D所以点B 的坐标为(1, 2). (2)当x =1或x =2时,y 1=y 2;当1<x <2时,y 1>y 2; 当0<x <1或x >2时,y 1<y 2.3.【答案】过C 作CD ⊥AB 于D 点, 由题意可知AB =50×20=1000m,∠CAB =30°,∠CBA =45°,AD =CD /tan30°,BC =CD /tan45°, ∵AD +BD = CD /tan30°+ CD /tan45°=1000, 解得CD1-)4. 【答案】解:因一次函数y =x +2的图象经过点P (k ,5), 所以得5=k +2,解得k =3 所以反比例函数的表达式为 (2)联立得方程组解得 或 故第三象限的交点Q 的坐标为(-3,-1)5. 【答案】(1) 设点的坐标为(,),则.∴. ∵,∴.∴. ∴反比例函数的解析式为.(2) 由 得 ∴为(,) 设点关于轴的对称点为,则点的坐标为(,). 令直线的解析式为.∵为(,)∴∴∴的解析式为.3y x=23y x y x =+⎧⎪⎨=⎪⎩13x y =⎧⎨=⎩31x y =-⎧⎨=-⎩A a b kb a=ab k =112ab =112k =2k =2y x=212y xy x ⎧=⎪⎪⎨⎪=⎪⎩2,1.x y =⎧⎨=⎩A 21A x C C 21-BC y mx n =+B 122,12.m n m n =+⎧⎨-=+⎩3,5.m n =-⎧⎨=⎩BC 35y x =-+当时,.∴点为(,) 6. 【答案】(1)∵点A (-1,m )在第二象限内,∴AB = m ,OB = 1,∴ 即:,解得,∴A (-1,4), ∵点A (-1,4),在反比例函数的图像上,∴4 =,解得, ∵反比例函数为,又∵反比例函数的图像经过C (n ,) ∴,解得,∴C (2,-2), ∵直线过点A (-1,4),C (2,-2)∴ 解方程组得∴直线的解析式为 ;(2)当y = 0时,即解得,即点M (1,0)在中,∵AB = 4,BM = BO +OM = 1+1 = 2, 由勾股定理得AM =.0y =53x =P 530221=⋅=∆BO AB S ABO 2121=⨯m 4=m x k y =1-k 4-=k x y 4-=xy 4-=2-n42-=-2=n b ax y +=⎩⎨⎧+=-+-=b a b a 224⎩⎨⎧=-=22b a b ax y +=22+-=x y 022=+-x 1=x ABM Rt ∆52。

分式和反比例函数易错题

分式和反比例函数易错题

第十六章分式和第十七章反比例函数试题选解1.分式14+m 表示一个整数时,字母m 可以取的整数值共有 个. 2.当x 时,分式2142x x +-的值是负数. 3.下列分式变形正确的是( ) A.y x =22yx B.n m n m +-=))(()(2n m n m n m -+-=222)(n m n m -- C.1212+--x x x =11-x D.a b =2a ab 4.在分式abb a 2-中,字母a,b 值分别扩大为原来的2倍,则分式的值( ) A.扩大为原来的2倍 B.不变 C.缩小为原来的21 D. 缩小为原来的41 5.若a=32,则1273222+---a a a a 的值等于 . 6.当a=21时,代数式12-a a -111---a a的值为 . 7.某人的上山的速度为m 千米/时,下山的速度为n 千米/时,则他上下山的平均速度为 .8.解分式方程x x 1--13-x x +1=0,如果设xx 1-= y,将原方程化为关于y 的整式方程为 . 9.若分式方程a x a x =-+1有增根,则a 的值为 ;若该方程无解,则a 的值为 . 10.当x = 时,2x-3与345+x 互为倒数. 11.分式m x x +-212,若不论x 取何值分式总有意义,则m 的取值范围是 12.a b b a a 222⋅÷ = ; n m n m mn 2923=-⨯ ;b a b a ab ab a +=--+)(2222 13.若分式方程313+=-+x x x a 的解是负数,则a 的取值范围是 . 14.已知211=-y x ,则yxy x y xy x ---+2252的值为 . 15已知21)2)(1(32++-=+--x B x A x x x ,则A= ,B= . 16.当a = 时,分式122++a a a 的值为0;若分式21+x ,12-x x 的和等于2,则x = . 17.若(m-n )x=m 2-n 2的解是x=m+n 则m 与n 的关系是 .18.已知x,y 满足x 2+y 2=4x+6y-13,求224331⎪⎪⎭⎫ ⎝⎛⋅⎪⎪⎭⎫ ⎝⎛-÷⎪⎭⎫ ⎝⎛-y x xy x y 的值为 . 19.若ba c c abc b a k +=+=+=,则k= . 20.已知2=a ,分式b a 22+= ;计算=-⋅-⋅-678)1()()(b a . 26.计算:(1)12-+x x ·61222--+-x x x x -9622-+x x (2)解分式方程 221+--x x =x -21(3))(11n m x n n x m m ≠+=+ (4))225(423---÷--x x x x27.A 、B 。

含参一次型分式函数的应用例题

含参一次型分式函数的应用例题

含参一次型分式函数的应用例题
含参一次型分式函数是一种形式的函数,其中分式部分是以一次函数形式加上一个参数。

在实际应用中,这种函数常常被用来进行数据处理和分析。

以下是一些例题:
1. 已知反比例函数的解析式为,求 y 与 x 的函数关系式。

解:将 x2,y1 代入得,解得 k=9。

因此 y 与 x 的函数关系式为。

2. 求分式方程的应用题例题。

解:设步行速度为 x 千米/分,则汽车的速度为 2.5x 千米/分。

得,解得 x=0.38。

经检验,x=0.38 为方程的解,且符合题意。

因此汽车的速度为每千米 0.95 分。

3. 求一次函数表达式的例题。

解:例 1.一个弹簧,不挂物体时长 12cm,挂上物体后会伸长,伸长的长度与所挂物体的质量成正比例。

如果挂上 3kg 物体后,弹簧总长是 13.5cm,求弹簧总长是 y(cm) 与所挂物体质量 x(kg) 之间的函数关系式。

如果弹簧最大总长为 23cm,求自变量 x 的取值范围。

解:由题意设所求函数为 ykx12,则 13.5=3k12,得 k=0.5。

因此函数解析式为 y=0.5x12。

由 230.5x12 得 x=22。

因此自变量 x 的取值范围是 0x22。

通过这些例题,我们可以看到含参一次型分式函数在实际应用中具有广泛的应用,可以用于数据处理和分析。

九江市初中数学反比例函数解析含答案

九江市初中数学反比例函数解析含答案

九江市初中数学反比例函数解析含答案一、选择题1.使关于x的分式方程=2的解为非负数,且使反比例函数y=图象过第一、三象限时满足条件的所有整数k的和为().A.0 B.1 C.2 D.3【答案】B【解析】试题分析:分别根据题意确定k的值,然后相加即可.∵关于x的分式方程=2的解为非负数,∴x=≥0,解得:k≥-1,∵反比例函数y=图象过第一、三象限,∴3﹣k>0,解得:k<3,∴-1≤k<3,整数为-1,0,1,2,∵x≠0或1,∴和为-1+2=1,故选,B.考点:反比例函数的性质.2.如图, 在同一坐标系中(水平方向是x轴),函数kyx=和3y kx=+的图象大致是()A.B.C.D.【答案】A【解析】【分析】根据一次函数及反比例函数的图象与系数的关系作答.解:A 、由函数y=k x 的图象可知k >0与y=kx+3的图象k >0一致,正确; B 、由函数y=k x 的图象可知k >0与y=kx+3的图象k >0,与3>0矛盾,错误; C 、由函数y=k x 的图象可知k <0与y=kx+3的图象k <0矛盾,错误; D 、由函数y=k x的图象可知k >0与y=kx+3的图象k <0矛盾,错误. 故选A .【点睛】本题主要考查了反比例函数的图象性质和一次函数的图象性质,要掌握它们的性质才能灵活解题.3.已知点A (﹣2,y 1),B (a ,y 2),C (3,y 3)都在反比例函数4y x =的图象上,且﹣2<a <0,则( )A .y 1<y 2<y 3B .y 3<y 2<y 1C .y 3<y 1<y 2D .y 2<y 1<y 3 【答案】D【解析】【分析】根据k >0,在图象的每一支上,y 随x 的增大而减小,双曲线在第一三象限,逐一分析即可.【详解】∵反比例函数y=4x中的k=4>0, ∴在图象的每一支上,y 随x 的增大而减小,双曲线在第一三象限,∵-2<a <0,∴0>y 1>y 2,∵C (3,y 3)在第一象限,∴y 3>0,∴213y y y <<,故选D .【点睛】本题考查了反比例函数的性质,熟练地应用反比例函数的性质是解题的关键.4.如图,点A 是反比例函数y =k x(x <0)的图象上的一点,过点A 作平行四边形ABCD ,使点B 、C 在x 轴上,点D 在y 轴上.已知平行四边形ABCD 的面积为8,则k 的值A .8B .﹣8C .4D .﹣4【答案】B【解析】【分析】 作AE ⊥BC 于E ,由四边形ABCD 为平行四边形得AD ∥x 轴,则可判断四边形ADOE 为矩形,所以S 平行四边形ABCD =S 矩形ADOE ,根据反比例函数k 的几何意义得到S 矩形ADOE =|k|.【详解】解:作AE ⊥BC 于E ,如图,∵四边形ABCD 为平行四边形,∴AD ∥x 轴,∴四边形ADOE 为矩形,∴S 平行四边形ABCD =S 矩形ADOE ,而S 矩形ADOE =|k|,∴|k|=8,而k <0∴k=-8.故选:B .【点睛】本题考查了反比例函数y=k x (k≠0)系数k 的几何意义:从反比例函数y=k x(k≠0)图象上任意一点向x 轴和y 轴作垂线,垂线与坐标轴所围成的矩形面积为|k|.5.如图,点P 是反比例函数(0)k y k x=≠的图象上任意一点,过点P 作PM x ⊥轴,垂足为M . 连接OP . 若POM ∆的面积等于2. 5,则k 的值等于 ( )A .5-B .5C . 2.5-D .2. 5【答案】A【解析】【分析】 利用反比例函数k 的几何意义得到12|k|=2,然后根据反比例函数的性质和绝对值的意义确定k 的值.【详解】解:∵△POM 的面积等于2.5,∴12|k|=2.5, 而k <0,∴k=-5,故选:A .【点睛】本题考查了反比例函数系数k 的几何意义:在反比例函数y=k x图象中任取一点,过这一个点向x 轴和y 轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|.也考查了反比例函数的性质.6.如图,点A 、B 在函数k y x=(0x >,0k >且k 是常数)的图像上,且点A 在点B 的左侧过点A 作AM x ⊥轴,垂足为M ,过点B 作BN y ⊥轴,垂足为N ,AM 与BN 的交点为C ,连结AB 、MN .若CMN ∆和ABC ∆的面积分别为1和4,则k 的值为( )A .4B .2C 522D .6【答案】D【解析】【分析】设点M(a,0),N(0,b),然后可表示出点A、B、C的坐标,根据CMN∆的面积为1可求出ab=2,根据ABC∆的面积为4列方程整理,可求出k.【详解】解:设点M(a,0),N(0,b),∵AM⊥x轴,且点A在反比例函数kyx=的图象上,∴点A的坐标为(a,ka),∵BN⊥y轴,同理可得:B(kb,b),则点C(a,b),∵S△CMN=12NC•MC=12ab=1,∴ab=2,∵AC=ka−b,BC=kb−a,∴S△ABC=12AC•BC=12(ka−b)•(kb−a)=4,即8k ab k aba b--⋅=,∴()2216k-=,解得:k=6或k=−2(舍去),故选:D.【点睛】本题考查反比例函数图象上点的坐标特征、三角形的面积计算等,解答本题的关键是明确题意,利用三角形的面积列方程求解.7.如图,在平面直角坐标系中,正方形ABCD的顶点A的坐标为(﹣1,1),点B在x轴正半轴上,点D在第三象限的双曲线y=8x上,过点C作CE∥x轴交双曲线于点E,则CE的长为( )A.85B.235C.3.5 D.5【答案】B 【解析】【分析】设点D(m,8m),过点D作x轴的垂线交CE于点G,过点A过x轴的平行线交DG于点H,过点A作AN⊥x轴于点N,根据AAS先证明△DHA≌△CGD、△ANB≌△DGC可得AN=DG=1=AH,据此可得关于m的方程,求出m的值后,进一步即可求得答案.【详解】解:设点D(m,8m),过点D作x轴的垂线交CE于点G,过点A过x轴的平行线交DG于点H,过点A作AN⊥x轴于点N,如图所示:∵∠GDC+∠DCG=90°,∠GDC+∠HDA=90°,∴∠HDA=∠GCD,又AD=CD,∠DHA=∠CGD=90°,∴△DHA≌△CGD(AAS),∴HA=DG,DH=CG,同理△ANB≌△DGC(AAS),∴AN=DG=1=AH,则点G(m,8m﹣1),CG=DH,AH=﹣1﹣m=1,解得:m=﹣2,故点G(﹣2,﹣5),D(﹣2,﹣4),H(﹣2,1),则点E(﹣85,﹣5),GE=25,CE=CG﹣GE=DH﹣GE=5﹣25=235,故选:B.【点睛】本题考查了正方形的性质、反比例函数图象上点的坐标特点和全等三角形的判定与性质,构造全等、充分运用正方形的性质是解题的关键.8.如图,A,B是反比例函数y=4x在第一象限内的图象上的两点,且A,B两点的横坐标分别是2和4,则△OAB的面积是()A.4 B.3 C.2 D.1【答案】B【解析】【分析】先根据反比例函数图象上点的坐标特征及A,B两点的横坐标,求出A(2,2),B(4,1).再过A,B两点分别作AC⊥x轴于C,BD⊥x轴于D,根据反比例函数系数k的几何意义得出S△AOC=S△BOD=12×4=2.根据S四边形AODB=S△AOB+S△BOD=S△AOC+S梯形ABDC,得出S△AOB=S梯形ABDC,利用梯形面积公式求出S梯形ABDC=12(BD+AC)•CD=12×(1+2)×2=3,从而得出S△AOB=3.【详解】∵A,B是反比例函数y=4x在第一象限内的图象上的两点,且A,B两点的横坐标分别是2和4,∴当x=2时,y=2,即A(2,2),当x=4时,y=1,即B(4,1),如图,过A,B两点分别作AC⊥x轴于C,BD⊥x轴于D,则S△AOC=S△BOD=12×4=2,∵S四边形AODB=S△AOB+S△BOD=S△AOC+S梯形ABDC,∴S△AOB=S梯形ABDC,∵S 梯形ABDC=12(BD+AC )•CD=12×(1+2)×2=3, ∴S △AOB =3,故选B .【点睛】本题考查了反比例函数()0k y k x=≠中k 的几何意义,反比例函数图象上点的坐标特征,梯形的面积,熟知反比例函数图象上的点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S 与k 的关系为S=12|k|是解题的关键.9.如图所示是一块含30°,60°,90°的直角三角板,直角顶点O 位于坐标原点,斜边AB 垂直于x 轴,顶点A 在函数y 1=1k x(x>0)的图象上,顶点B 在函数y 2= 2k x (x>0)的图象上,∠ABO=30°,则21k k =( )A .-3B .3C .13D .- 13【答案】A【解析】【分析】 根据30°角所对的直角边等于斜边的一半,和勾股定理,设出适当的常数,表示出其它线段,从而得到点A 、B 的坐标,表示出k 1、k 2,进而得出k 2与k 1的比值.【详解】如图,设AB 交x 轴于点C ,又设AC=a.∵AB ⊥x 轴 ∴∠ACO=90°在Rt △AOC 中,OC=AC·tan ∠OAB=a·tan60°3∴点A 3a ,a )同理可得 点B 3,-3a )∴k 1332 , k 23a×(-3a )3a∴213333k a k a-==-. 故选A.【点睛】考查直角三角形的边角关系,反比例函数图象上点的坐标特征,设适合的常数,用常数表示出k ,是解决问题的方法.10.已知点()1,3M -在双曲线k y x =上,则下列各点一定在该双曲线上的是( ) A .()3,1-B .()1,3--C .()1,3D .()3,1 【答案】A【解析】【分析】先求出k=-3,再依次判断各点的横纵坐标乘积,等于-3即是在该双曲线上,否则不在.【详解】∵点()1,3M -在双曲线k y x=上, ∴133k =-⨯=-,∵3(1)3⨯-=-,∴点(3,-1)在该双曲线上,∵(1)(3)13313-⨯-=⨯=⨯=,∴点()1,3--、()1,3、()3,1均不在该双曲线上,故选:A.【点睛】此题考查反比例函数解析式,正确计算k 值是解题的关键.11.如图,A 、C 是函数1y x=的图象上任意两点,过点A 作y 轴的垂线,垂足为B ,过点C 作y 轴的垂线,垂足为D .记Rt AOB ∆的面积为1S ,Rt COD ∆的面积为2S ,则1S 和2S 的大小关系是( )A .12S S >B .12S S <C .12=S SD .由A 、C 两点的位置确定【答案】C【解析】【分析】 根据双曲线的图象上的点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S 的关系即S=12k|. 【详解】由题意得:S 1=S 2=12|k|=12. 故选:C .【点睛】本题主要考查了反比例函数y =k x中k 的几何意义,即图象上的点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S 的关系即S=12|k|,是经常考查的一个知识点;这里体现了数形结合的思想.12.如图,一次函数1y ax b =+和反比例函数2k y x=的图象相交于A ,B 两点,则使12y y >成立的x 取值范围是( )A .20x -<<或04x <<B .2x <-或04x <<C .2x <-或4x >D .20x -<<或4x >【答案】B 【解析】 【分析】根据图象找出一次函数图象在反比例函数图象上方时对应的自变量的取值范围即可. 【详解】观察函数图象可发现:2x <-或04x <<时,一次函数图象在反比例函数图象上方, ∴使12y y >成立的x 取值范围是2x <-或04x <<, 故选B . 【点睛】本题考查了反比例函数与一次函数综合,函数与不等式,利用数形结合思想是解题的关键.13.对于反比例函数2y x=-,下列说法不正确的是( ) A .图象分布在第二、四象限B .当0x >时,y 随x 的增大而增大C .图象经过点(1,-2)D .若点()11,A x y ,()22,B x y 都在图象上,且12x x <,则12y y < 【答案】D 【解析】 【分析】根据反比例函数图象的性质对各选项分析判断后利用排除法求解. 【详解】A. k=−2<0,∴它的图象在第二、四象限,故本选项正确;B. k=−2<0,当x>0时,y 随x 的增大而增大,故本选项正确;C.∵221-=-,∴点(1,−2)在它的图象上,故本选项正确; D. 若点A (x 1,y 1),B (x 2,y 2)都在图象上,,若x 1<0< x 2,则y 2<y 1,故本选项错误. 故选:D. 【点睛】本题考查了反比例函数的图象与性质,掌握反比例函数的性质是解题的关键.14.方程2x 3x 10+-=的根可视为函数3y x =+的图象与函数1y x=的图象交点的横坐标,则方程3x 2x 10+-=的实根x 0所在的范围是( ) A .010<x <4B .011<x <43C .011<x <32D .01<x <12【答案】C 【解析】 【分析】首先根据题意推断方程x 3+2x-1=0的实根是函数y=x 2+2与1y x=的图象交点的横坐标,再根据四个选项中x 的取值代入两函数解析式,找出抛物线的图象在反比例函数上方和反比例函数的图象在抛物线的上方两个点即可判定推断方程x 3+2x-1=0的实根x 所在范围. 【详解】解:依题意得方程3x 2x 10+-=的实根是函数2y x 2=+与1y x=的图象交点的横坐标,这两个函数的图象如图所示,它们的交点在第一象限.当x=14时,21y x 2216=+=,1y 4x ==,此时抛物线的图象在反比例函数下方; 当x=13时,21229y x =+=,1y 3x==,此时抛物线的图象在反比例函数下方; 当x=12时,21224y x =+=,1y 2x==,此时抛物线的图象在反比例函数上方; 当x=1时,2y x 23=+=,1y 1x==,此时抛物线的图象在反比例函数上方. ∴方程3x 2x 10+-=的实根x 0所在范围为:011<x <32. 故选C . 【点睛】此题考查了学生从图象中读取信息的数形结合能力.解决此类识图题,同学们要注意分析其中的“关键点”,还要善于分析各图象的变化趋势.15.如图,正方形OABC 的边长为6,D 为AB 中点,OB 交CD 于点Q ,Q 是y =kx上一点,k 的值是( )A .4B .8C .16D .24【答案】C 【解析】 【分析】延长根据相似三角形得到:1:2BQ OQ =,再过点Q 作垂线,利用相似三角形的性质求出QF 、OF ,进而确定点Q 的坐标,确定k 的值.【详解】解:过点Q 作QF OA ⊥,垂足为F ,OABC Q 是正方形,6OA AB BC OC ∴====,90ABC OAB DAE ∠=∠=︒=∠,D Q 是AB 的中点,12BD AB ∴=,//BD OC Q ,OCQ BDQ ∴∆∆∽, ∴12BQ BD OQ OC ==, 又//QF AB Q , OFQ OAB ∴∆∆∽,∴22213QF OF OQ AB OA OB ====+, 6AB =Q ,2643QF ∴=⨯=,2643OF =⨯=, (4,4)Q ∴,Q 点Q 在反比例函数的图象上,4416k ∴=⨯=,故选:C . 【点睛】本题考查了待定系数法求反比例函数、相似三角形的性质和判定,利用相似三角形性质求出点Q 的坐标是解决问题的关键.16.如图,已知点A ,B 分别在反比例函数12y x =-和2ky x=的图象上,若点A 是线段OB 的中点,则k 的值为( ).A .8-B .8C .2-D .4-【答案】A 【解析】 【分析】设A (a ,b ),则B (2a ,2b ),将点A 、B 分别代入所在的双曲线解析式进行解答即可. 【详解】解:设A (a ,b ),则B (2a ,2b ), ∵点A 在反比例函数12y x=-的图象上, ∴ab =−2;∵B 点在反比例函数2ky x=的图象上, ∴k =2a•2b =4ab =−8. 故选:A .【点睛】本题考查了反比例函数图象上点的坐标特征,图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.17.如图,直角三角形的直角顶点在坐标原点,∠OAB=30°,若点A在反比例函数y=6x(x>0)的图象上,则经过点B的反比例函数解析式为()A.y=﹣6xB.y=﹣4xC.y=﹣2xD.y=2x【答案】C 【解析】【分析】直接利用相似三角形的判定与性质得出13BCOAODSS=VV,进而得出S△AOD=3,即可得出答案.【详解】过点B作BC⊥x轴于点C,过点A作AD⊥x轴于点D,∵∠BOA=90°,∴∠BOC+∠AOD=90°,∵∠AOD+∠OAD=90°,∴∠BOC=∠OAD,又∵∠BCO=∠ADO=90°,∴△BCO∽△ODA,∵BOAO=tan30°3∴13BCOAODSS=VV,∵12×AD×DO=12xy=3,∴S△BCO=12×BC×CO=13S△AOD=1,∵经过点B的反比例函数图象在第二象限,故反比例函数解析式为:y=﹣2x.故选C.【点睛】此题主要考查了相似三角形的判定与性质,反比例函数数的几何意义,正确得出S△AOD=2是解题关键.18.如图,点A在反比例函数3(0)y xx=-<的图象上,点B在反比例函数3(0)y xx=>的图象上,点C在x轴的正半轴上,则平行四边形ABCO的面积是()A.6 B.5 C.4 D.3【答案】A【解析】【分析】因为四边形ABCO是平行四边形,所以点A、B纵坐标相等,即可求得A、B横坐标,则AB 的长度即可求得,然后利用平行四边形面积公式即可求解.【详解】解:∵四边形ABCO是平行四边形∴点A、B纵坐标相等设纵坐标为b,将y=b带入3(0)y xx=-<和3(0)y xx=>中,则A点横坐标为3b-,B点横坐标为3b∴AB=336()b b b --=∴66 ABCOS bb=⨯= Y故选:A.本题考查了反比例函数以及平行四边形面积公式,本题关键在于两点间距离的求法.19.已知点11(,)x y ,22(,)x y 均在双曲线1y x=-上,下列说法中错误的是( ) A .若12x x =,则12y y = B .若12x x =-,则12y y =- C .若120x x <<,则12y y < D .若120x x <<,则12y y >【答案】D 【解析】 【分析】先把点A (x 1,y 1)、B (x 2,y 2)代入双曲线1y x=-,用y 1、y 2表示出x 1,x 2,据此进行判断. 【详解】∵点(x 1,y 1),(x 2,y 2)均在双曲线1y x=-上, ∴111y x =-,221y x =-.A 、当x 1=x 2时,-11x =-21x ,即y 1=y 2,故本选项说法正确;B 、当x 1=-x 2时,-11x =21x ,即y 1=-y 2,故本选项说法正确;C 、因为双曲线1y x=-位于第二、四象限,且在每一象限内,y 随x 的增大而增大,所以当0<x 1<x 2时,y 1<y 2,故本选项说法正确;D 、因为双曲线1y x=-位于第二、四象限,且在每一象限内,y 随x 的增大而增大,所以当x 1<x 2<0时,y 1>y 2,故本选项说法错误; 故选:D . 【点睛】本题考查的是反比例函数图象上点的坐标特点,熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.20.在反比例函数y =93m x+图象上有两点A(x 1,y 1)、B(x 2,y 2),y 1<0<y 2,x 1>x 2,则有( ) A .m >﹣13B .m <﹣13C .m≥﹣13D .m≤﹣13【解析】【分析】先根据y1<0<y2,有x1>x2,判断出反比例函数的比例系数的正负,求出m的取值范围即可.【详解】∵在反比例函数y=93mx图象上有两点A(x1,y1)、B(x2,y2),y1<0<y2,x1>x2,∴反比例函数的图象在二、四象限,∴9m+3<0,解得m<﹣13.故选:B.【点睛】此题主要考查了反比例函数的性质,以及反比例函数图象上点的坐标特点,关键是掌握反比例函数的性质。

反比例函数经典测试题及答案解析

反比例函数经典测试题及答案解析一、选择题1.已知点()1,3M -在双曲线k y x =上,则下列各点一定在该双曲线上的是( ) A .()3,1-B .()1,3--C .()1,3D .()3,1 【答案】A【解析】【分析】先求出k=-3,再依次判断各点的横纵坐标乘积,等于-3即是在该双曲线上,否则不在.【详解】∵点()1,3M -在双曲线k y x=上, ∴133k =-⨯=-,∵3(1)3⨯-=-,∴点(3,-1)在该双曲线上,∵(1)(3)13313-⨯-=⨯=⨯=,∴点()1,3--、()1,3、()3,1均不在该双曲线上,故选:A.【点睛】此题考查反比例函数解析式,正确计算k 值是解题的关键.2.已知点A (﹣2,y 1),B (a ,y 2),C (3,y 3)都在反比例函数4y x =的图象上,且﹣2<a <0,则( )A .y 1<y 2<y 3B .y 3<y 2<y 1C .y 3<y 1<y 2D .y 2<y 1<y 3 【答案】D【解析】【分析】根据k >0,在图象的每一支上,y 随x 的增大而减小,双曲线在第一三象限,逐一分析即可.【详解】∵反比例函数y=4x中的k=4>0, ∴在图象的每一支上,y 随x 的增大而减小,双曲线在第一三象限,∵-2<a <0,∴0>y 1>y 2,∵C (3,y 3)在第一象限,∴y 3>0,∴213y y y <<,故选D .【点睛】本题考查了反比例函数的性质,熟练地应用反比例函数的性质是解题的关键.3.如图,在平面直角坐标系中,点A 是函数()0k y x x=>在第一象限内图象上一动点,过点A 分别作AB x ⊥轴于点B AC y ⊥、轴于点C ,AB AC 、分别交函数()10y x x =>的图象于点E F 、,连接OE OF 、.当点A 的纵坐标逐渐增大时,四边形OFAE 的面积( )A .不变B .逐渐变大C .逐渐变小D .先变大后变小【答案】A【解析】【分析】 根据反比例函数系数k 的几何意义得出矩形ACOB 的面积为k ,BOE SCOF S = 12=,则四边形OFAE 的面积为定值1k -. 【详解】 ∵点A 是函数(0k y x x =>)在第一象限内图象上,过点A 分别作AB ⊥x 轴于点B ,AC ⊥y 轴于点C ,∴矩形ACOB 的面积为k ,∵点E 、F 在函数1y x =的图象上, ∴BOE S COF S = 12=, ∴四边形OFAE 的面积11122k k =--=-, 故四边形OFAE 的面积为定值1k -,保持不变,故选:A .【点睛】本题考查了反比例函数中系数k 的几何意义,根据反比例函数系数k 的几何意义可求出四边形和三角形的面积是解题的关键.4.在平面直角坐标系中,分别过点(),0A m ,()2,0B m﹢作x 轴的垂线1l 和2l ,探究直线1l 和2l 与双曲线 3y x= 的关系,下列结论中错误..的是 A .两直线中总有一条与双曲线相交B .当m =1时,两条直线与双曲线的交点到原点的距离相等C .当20m -﹤﹤ 时,两条直线与双曲线的交点在y 轴两侧D .当两直线与双曲线都有交点时,这两交点的最短距离是2【答案】D【解析】【分析】根据题意给定m 特定值、非特定值分别进行讨论即可得.【详解】当m =0时,2l 与双曲线有交点,当m =-2时,1l 与双曲线有交点,当m 0m 2≠≠,﹣时,12l l 与和双曲线都有交点,所以A 正确,不符合题意;当m 1=时,两交点分别是(1,3),(3,1)B 正确,不符合题意;当2m 0-﹤﹤ 时,1l 在y 轴的左侧,2l 在y 轴的右侧,所以C 正确,不符合题意;两交点分别是33m (m 2m m 2++,和,),当m 无限大时,两交点的距离趋近于2,所以D 不正确,符合题意,故选D.【点睛】本题考查了垂直于x 轴的直线与反比例函数图象之间的关系,利用特定值,分情况进行讨论是解本题的关键,本题有一定的难度.5.下列函数中,当x >0时,函数值y 随自变量x 的增大而减小的是( )A .y =x 2B .y =xC .y =x+1D .1y x= 【答案】D【解析】【分析】需根据函数的性质得出函数的增减性,即可求出当x >0时,y 随x 的增大而减小的函数.【详解】解:A 、y =x 2是二次函数,开口向上,对称轴是y 轴,当x >0时,y 随x 的增大而增大,错误;B、y=x是一次函数k=1>0,y随x的增大而增大,错误;C、y=x+1是一次函数k=1>0,y随x的增大而减小,错误;D、1yx是反比例函数,图象无语一三象限,在每个象限y随x的增大而减小,正确;故选D.【点睛】本题综合考查了二次函数、一次函数、反比例函数的性质,熟练掌握函数的性质是解题的关键.6.如图,在平面直角坐标系中,正方形ABCD的顶点A的坐标为(﹣1,1),点B在x轴正半轴上,点D在第三象限的双曲线y=8x上,过点C作CE∥x轴交双曲线于点E,则CE的长为( )A.85B.235C.3.5 D.5【答案】B 【解析】【分析】设点D(m,8m),过点D作x轴的垂线交CE于点G,过点A过x轴的平行线交DG于点H,过点A作AN⊥x轴于点N,根据AAS先证明△DHA≌△CGD、△ANB≌△DGC可得AN=DG=1=AH,据此可得关于m的方程,求出m的值后,进一步即可求得答案.【详解】解:设点D(m,8m),过点D作x轴的垂线交CE于点G,过点A过x轴的平行线交DG于点H,过点A作AN⊥x轴于点N,如图所示:∵∠GDC+∠DCG=90°,∠GDC+∠HDA=90°,∴∠HDA=∠GCD,又AD=CD,∠DHA=∠CGD=90°,∴△DHA≌△CGD(AAS),∴HA=DG,DH=CG,同理△ANB≌△DGC(AAS),∴AN=DG=1=AH,则点G(m,8m﹣1),CG=DH,AH=﹣1﹣m=1,解得:m=﹣2,故点G(﹣2,﹣5),D(﹣2,﹣4),H(﹣2,1),则点E(﹣85,﹣5),GE=25,CE=CG﹣GE=DH﹣GE=5﹣25=235,故选:B.【点睛】本题考查了正方形的性质、反比例函数图象上点的坐标特点和全等三角形的判定与性质,构造全等、充分运用正方形的性质是解题的关键.7.如图直线y=mx与双曲线y=kx交于点A、B,过A作AM⊥x轴于M点,连接BM,若S△AMB=2,则k的值是()A.1 B.2 C.3 D.4【答案】B【解析】【分析】此题可根据反比例函数图象的对称性得到A 、B 两点关于原点对称,再由S △ABM =2S △AOM 并结合反比例函数系数k 的几何意义得到k 的值.【详解】根据双曲线的对称性可得:OA=OB,则S △ABM =2S △AOM =2,S △AOM =12|k |=1, 则k =±2.又由于反比例函数图象位于一三象限,k >0,所以k =2.故选B .【点睛】本题主要考查了反比例函数y =k x中k 的几何意义,即过双曲线上任意一点引x 轴、y 轴垂线,所得矩形面积为|k|,是经常考查的一个知识点.8.在平面直角坐标系xoy 中,函数()20y x x =<的图象与直线1l :()103y x b b =+<交于点A ,与直线2l :x b =交于点B ,直线1l 与2l 交于点C ,记函数()20y x x=<的图象在点A 、B 之间的部分与线段AC ,线段BC 围城的区域(不含边界)为W ,当4233b -≤≤-时,区域W 的整点个数为( ) A .3个 B .2个 C .1个 D .没有【答案】D【解析】【分析】根据解析式画出函数图象,根据图形W 得到整点个数进行选择.【详解】∵()20y x x=<,过整点(-1,-2),(-2,-1), 当b=43-时,如图:区域W 内没有整点,当b=23-时,区域W 内没有整点,∴4233b -≤≤-时图形W 增大过程中,图形内没有整点, 故选:D.【点睛】 此题考查函数图象,根据函数解析式正确画出图象是解题的关键.9.如图,ABDC 的顶点,A B 的坐标分别是()(), 0,3 1, 0A B -,顶点,C D 在双曲线k y x=上,边BD 交y 轴于点E ,且四边形ACDE 的面积是ABE ∆面积的3倍,则k 的值为:( )A .6-B .4-C .3-D .12-【答案】A【解析】【分析】 过D 作DF//y 轴,过C 作//CF x 轴,交点为F ,利用平行四边形的性质证明,DCF ABO ∆≅∆利用平移写好,C D 的坐标,由四边形ACDE 的面积是ABE ∆面积的3倍,得到2,DB BE =利用中点坐标公式求横坐标,再利用反比例函数写D 的坐标,列方程求解k .【详解】解:过D 作DF//y 轴,过C 作//CF x 轴,交点为F ,则,CF DF ⊥ ABDC ,,CDF BAO ∴∠∠的两边互相平行,,AB DC =CDF BAO ∴∠=∠,90,DFC BOA ∠=∠=︒,DCF ABO ∴∆≅∆,,CF BO DF AO ∴== 设(,),k C m m由()(), 0,3 1, 0A B -结合平移可得:(1,3)k D m m++, 四边形ACDE 的面积是ABE ∆面积的3倍,11()322BD BE DE CA h h BE ∴+=⨯⨯, ,,BD BE h h AC BD ==3DE AC BE ∴+=,4,DE BD BE BE ∴++=2,DB BE ∴=(1,3),(1,0),0,E k D m B x m++= ∴ 由中点坐标公式知:110,2m ++= 2m ∴=- ,(1,)1k D m m ++, 3212k k ∴=+-+-, 6.k ∴=-故选A .【点睛】本题考查的是反比例函数的图像与性质,平行四边形的性质,平移性质,中点坐标公式,掌握以上知识点是解题关键.10.函数kyx=与y kx k=-(0k≠)在同一平面直角坐标系中的大致图象是()A.B.C.D.【答案】C【解析】【分析】分k>0和k<0两种情况确定正确的选项即可.【详解】当k:>0时,反比例函数的图象位于第一、三象限,一次函数的图象交 y轴于负半轴,y 随着x的增大而增大,A选项错误,C选项符合;当k<0时,反比例函数的图象位于第二、四象限,一次函数的图象交y轴于正半轴,y 随着x的增大而增减小,B. D均错误,故选:C.【点睛】此题考查反比例函数的图象,一次函数的图象,熟记函数的性质是解题的关键.11.若点A(﹣4,y1)、B(﹣2,y2)、C(2,y3)都在反比例函数1yx=-的图象上,则y1、y2、y3的大小关系是( )A.y1>y2>y3B.y3>y2>y1C.y2>y1>y3D.y1>y3>y2【答案】C【解析】【分析】根据反比例函数图象上点的坐标特征求出y1、y2、y3的值,比较后即可得出结论.【详解】∵点A(﹣4,y1)、B(﹣2,y2)、C(2,y3)都在反比例函数1yx=-的图象上,∴111 44y=-=-,21122y=-=-,312y=-,又∵﹣12<14<12,∴y3<y1<y2,故选C.【点睛】本题考查了反比例函数图象上点的坐标特征,反比例函数值的大小比较,熟知反比例函数图象上的点的坐标满足反比例函数的解析式是解题的关键.12.如图,在x轴的上方,直角∠BOA绕原点O按顺时针方向旋转.若∠BOA的两边分别与函数1yx=-、2yx=的图象交于B、A两点,则∠OAB大小的变化趋势为()A.逐渐变小B.逐渐变大C.时大时小D.保持不变【答案】D【解析】【分析】如图,作辅助线;首先证明△BEO∽△OFA,,得到BE OEOF AF=;设B为(a,1a-),A为(b,2b),得到OE=-a,EB=1a-,OF=b,AF=2b,进而得到222a b=,此为解决问题的关键性结论;运用三角函数的定义证明知tan∠2为定值,即可解决问题.【详解】解:分别过B和A作BE⊥x轴于点E,AF⊥x轴于点F,则△BEO∽△OFA,∴BE OE OF AF=,设点B为(a,1 a -),A为(b,2b),则OE=-a,EB=1a-,OF=b,AF=2b,可代入比例式求得222a b=,即222ab=,根据勾股定理可得:OB=22221OE EB aa+=+,OA=22224OF AF bb+=+,∴tan∠OAB=2222222212244baOB a bOAb bb b++==++=222214()24bbbb++=22∴∠OAB大小是一个定值,因此∠OAB的大小保持不变.故选D【点睛】该题主要考查了反比例函数图象上点的坐标特征、相似三角形的判定等知识点及其应用问题;解题的方法是作辅助线,将分散的条件集中;解题的关键是灵活运用相似三角形的判定等知识点来分析、判断、推理或解答.13.使关于x的分式方程=2的解为非负数,且使反比例函数y=图象过第一、三象限时满足条件的所有整数k的和为().A.0 B.1 C.2 D.3【答案】B【解析】试题分析:分别根据题意确定k的值,然后相加即可.∵关于x的分式方程=2的解为非负数,∴x=≥0,解得:k≥-1,∵反比例函数y=图象过第一、三象限,∴3﹣k>0,解得:k<3,∴-1≤k<3,整数为-1,0,1,2,∵x≠0或1,∴和为-1+2=1,故选,B.考点:反比例函数的性质.14.如图,在平面直角坐标系中,点B在第一象限,BA⊥x轴于点A,反比例函数y=kx(x>0)的图象与线段AB相交于点C,且C是线段AB的中点,若△OAB的面积为3,则k的值为 ()A.13B.1 C.2 D.3【答案】D 【解析】【分析】连接OC,如图,利用三角形面积公式得到S△AOC=12S△OAB=32,再根据反比例函数系数k的几何意义得到12|k|=32,然后利用反比例函数的性质确定k的值.【详解】连接OC,如图,∵BA⊥x轴于点A,C是线段AB的中点,∴S△AOC=12S△OAB=32,而S△AOC=12|k|,∴12|k|=32,而k >0,∴k=3.故选:D .【点睛】此题考查反比例函数系数k 的几何意义,解题关键在于掌握在反比例函数y=k x 图象中任取一点,过这一个点向x 轴和y 轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|.15.如图,已知点A ,B 分别在反比例函数12y x =-和2k y x=的图象上,若点A 是线段OB 的中点,则k 的值为( ).A .8-B .8C .2-D .4- 【答案】A【解析】【分析】 设A (a ,b ),则B (2a ,2b ),将点A 、B 分别代入所在的双曲线解析式进行解答即可.【详解】解:设A (a ,b ),则B (2a ,2b ),∵点A 在反比例函数12y x =-的图象上, ∴ab =−2;∵B 点在反比例函数2k y x=的图象上, ∴k =2a•2b =4ab =−8.故选:A .【点睛】本题考查了反比例函数图象上点的坐标特征,图象上的点(x ,y )的横纵坐标的积是定值k ,即xy =k .16.如图,若点M 是x 轴正半轴上任意一点,过点M 作PQ ∥y 轴,分别交函数1(0)k y x x =>和2(0)k y x x=>的图象于点P 和Q ,连接OP 和OQ .则下列结论正确的是( )A .∠POQ 不可能等于90°B .12PM QM k k =C .这两个函数的图象一定关于x 轴对称D .△POQ 的面积是()1212k k + 【答案】D【解析】 【分析】【详解】解:根据反比例函数的性质逐一作出判断: A .∵当PM=MO=MQ 时,∠POQ=90°,故此选项错误;B .根据反比例函数的性质,由图形可得:1k >0,2k <0,而PM ,QM 为线段一定为正值,故12PM QM k k =,故此选项错误; C .根据1k ,2k 的值不确定,得出这两个函数的图象不一定关于x 轴对称,故此选项错误; D .∵|1k |=PM•MO ,|2k |=MQ•MO ,∴△POQ 的面积=12MO•PQ=12MO (PM+MQ )=12MO•PM+12MO •MQ=()1212k k +. 故此选项正确.故选D .17.如图,若直线2y x n =-+与y 轴交于点B ,与双曲线()20y x x=-<交于点(),1A m ,则AOB 的面积为( )A .6B .5C .3D .1.5【答案】C【解析】【分析】 先根据题意求出A 点坐标,再求出一次函数解析式,从而求出B 点坐标,则问题可解.【详解】解:由已知直线2y x n =-+与y 轴交于点B ,与双曲线()20y x x =-<交于点(),1A m ∴21m=-则m=-2 把A (-2,1)代入到2y x n =-+,得()122n =-⨯-+∴n=-3∴23y x =--则点B (0,-3)∴AOB 的面积为132=32⨯⨯ 故应选:C【点睛】本题考查的是反比例函数与一次函数的综合问题,解题关键是根据题意应用数形结合思想.18.如图,点A ,B 是双曲线18y x=图象上的两点,连接AB ,线段AB 经过点O ,点C 为双曲线k y x=在第二象限的分支上一点,当ABC 满足AC BC =且:13:24AC AB =时,k 的值为( ).A.2516-B.258-C.254-D.25-【答案】B【解析】【分析】如图作AE⊥x轴于E,CF⊥x轴于F.连接OC.首先证明△CFO∽△OEA,推出2()COFAOES OCS OA∆∆=,因为CA:AB=13:24,AO=OB,推出CA:OA=13:12,推出CO:OA=5:12,可得出2()COFAOES OCS OA∆∆==25144,因为S△AOE=9,可得S△COF=2516,再根据反比例函数的几何意义即可解决问题.【详解】解:如图作AE⊥x轴于E,CF⊥x轴于F.连接OC.∵A、B关于原点对称,∴OA=OB,∵AC=BC,OA=OB,∴OC⊥AB,∴∠CFO=∠COA=∠AEO=90°,∴∠COF+∠AOE=90°,∠AOE+∠EAO=90°,∴∠COF=∠OAE,∴△CFO∽△OEA,∴2()COFAOES OCS OA∆∆=,∵CA:AB=13:24,AO=OB,∴CA:OA=13:12,∴CO:OA=5:12,∴2()COFAOES OCS OA∆∆==25144,∵S△AOE=9,∴S△COF=2516,∴||25216k=,∵k <0, ∴258k =- 故选:B .【点睛】本题主要考查反比例函数图象上的点的特征、等腰三角形的性质、相似三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,根据相似三角形解决问题,属于中考选择题中的压轴题.19.当0x <时,反比例函数2y x=-的图象( ) A .在第一象限,y 随x 的增大而减小 B .在第二象限,y 随x 的增大而增大C .在第三象限,y 随x 的增大而减小D .在第四象限,y 随x 的增大而减小 【答案】B【解析】【分析】反比例函数2y x =-中的20k =-<,图像分布在第二、四象限;利用0x <判断即可. 【详解】解:反比例函数2y x=-中的20k =-<, ∴该反比例函数的图像分布在第二、四象限;又0x <,∴图象在第二象限且y 随x 的增大而增大.故选:B .【点睛】本题主要考查的是反比例函数的性质,对于反比例函数()0k y k x=≠,(1)0k >,反比例函数图像分布在一、三象限;(2)k 0< ,反比例函数图像分布在第二、四象限内.20.若一个圆锥侧面展开图的圆心角是270°,圆锥母线l 与底面半径r 之间的函数关系图象大致是( )A .B .C.D.【答案】A【解析】【分析】根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长得到2πr=270180lπ⋅⋅,整理得l=43r(r>0),然后根据正比例函数图象求解.【详解】解:根据题意得2πr=270180lπ⋅⋅,所以l=43r(r>0),即l与r为正比例函数关系,其图象在第一象限.故选A.【点睛】本题考查圆锥的计算;函数的图象.。

初三数学反比例函数试题

初三数学反比例函数试题1.如图,矩形ABCD的顶点A在第一象限,AB∥x轴,AD∥y轴,且对角线的交点与原点重合,在边AB从小于AD到大于AD的变化过程中,若矩形ABCD的周长始终保持不变,则经过动点A的反比例函数中,k的值的变化情况是()A.一直增大B.一直减小C.先增大后减小D.先减小后增大【答案】C.【解析】设矩形ABCD中,AB=2a,AD=2b.∵矩形ABCD的周长始终保持不变,∴2(2a+2b)=4(a+b)为定值.∴a+b为定值.设(定值),则∵矩形对角线的交点与原点O重合, ∴k=AB•AD=ab=.∴k是a的二次函数,它的图象开口向下,当时,有最大值.∴在边AB从小于AD到大于AD的变化过程中,k的值先增大后减小.故选C.【考点】1.单动点问题;2.曲线上点的坐标与方程的关系;3.矩形的性质;4.二次函数的性质.2.如图,在直角坐标系中,矩形OABC的顶点O与坐标原点重合,顶点A,C分别在坐标轴上,顶点B的坐标为(4,2).过点D(0,3)和E(6,0)的直线分别与AB,BC交于点M,N. (1)求过O,B,E三点的二次函数关系式;(2)求直线DE的解析式和点M的坐标;(3)若反比例函数(x>0)的图象经过点M,求该反比例函数的解析式,并通过计算判断点N是否在该函数的图象上.【答案】(1)过O,B,E三点的二次函数关系式为:y=﹣x2+x;(2)直线DE的解析式为:y=﹣x+3;M(2,2);(3)点N在函数y=的图象上.【解析】(1)首先把O(0,0),B(4,2),E(6,0)代入y=ax2+bx+c,得方程,解此方程即可;(2)首先设直线DE的解析式为:y=kx+b,然后将点D,E的坐标代入即可求得直线DE的解析式,又由点M在AB边上,B(4,2),而四边形OABC是矩形,可得点M的纵坐标为2,求得点M的坐标;(3)由反比例函数y=(x>0)的图象经过点M,可求该反比例函数的解析式,又由点N在BC边上,B(4,2),可得点N的横坐标为4.然后由点N在直线y=﹣x+3上,求得点N的坐标,即可判断.试题解析:(1)设过O,B,E三点的二次函数关系式为:y=ax2+bx+c;把O(0,0),B(4,2),E(6,0)代入y=ax2+bx+c,得,解得:,∴过O,B,E三点的二次函数关系式为:y=﹣x2+x;(2)设直线DE的解析式为:y=kx+b,∵点D,E的坐标为(0,3)、(6,0),∴,解得,∴直线DE的解析式为:y=﹣x+3;∵点M在AB边上,B(4,2),而四边形OABC是矩形,∴点M的纵坐标为2.又∵点M在直线y=﹣x+3上,∴2=﹣x+3.∴x=2.∴M(2,2);(3)∵y=(x>0)经过点M(2,2),∴m=4.∴该反比例函数的解析式为:y=,又∵点N在BC边上,B(4,2),∴点N的横坐标为4.∵点N在直线y=﹣x+3上,∴y=1.∴N(4,1).∵当x=4时,y==1,∴点N在函数y=的图象上.【考点】反比例函数综合题.3.下列各点在双曲线y=上的是()A.(3,-4)B.(4,-3)C.(-2,6)D.(-2,-6)【答案】D.【解析】双曲线y=,∴12=xy,A、3×(-4)≠12,故本选项错误;B、4×(-3)≠12,故本选项错误;C、(-2)×6≠12,故本选项错误;D、(-2)×(-6)=12,故本选项正确;故选D.【考点】反比例函数图象上点的坐标特征.4.如图,菱形OABC的顶点C的坐标为(3,4).顶点A在x轴的正半轴上,反比例函数(x>0)的图象经过顶点B,则k的值为.【答案】32.【解析】如图,过点C作CD⊥x轴于点D,∵点C的坐标为(3,4),∴OD=3,CD=4.∴根据勾股定理,得:OC=5.∵四边形OABC是菱形,∴点B的坐标为(8,4).∵点B在反比例函数 (x>0)的图象上,∴.【考点】1.菱形的性质;2.勾股定理;3.曲线上点的坐标与方程的关系.5.双曲线y=的图象经过第二、四象限,则k的取值范围是________.【答案】k<【解析】因反比例函数的图象经过第二、四象限,所以2k-1<0,即k<.故答案是k<.6.如果矩形的面积为6cm2,那么它的长ycm与宽xcm之间的函数关系用图象表示大致是()【答案】C.【解析】根据题意有:xy=6;故y与x之间的函数图象为反比例函数,且根据x、y实际意义x、y应>0,其图象在第一象限,即可得出答案.解答:解:∵xy=6,∴y=(x>0,y>0).故选C.考点: 反比例函数的应用.7.如图,已知一次函数(m为常数)的图象与反比例函数(k为常数,)的图象相交于点 A(1,3).(1)求这两个函数的解析式及其图象的另一交点的坐标;(2)观察图象,写出使函数值的自变量的取值范围.【答案】(1)一次函数解析式为:y1=x+2,B(﹣3,﹣1);(2)根据图象得:函数值y1≥y2的自变量x的取值范围是:x≥1或﹣3≤x<0.【解析】(1)利用待定系数法把 A(1,3)代入一次函数y1=x+m与反比例函数中,可解出m、k的值,进而可得解析式,求B点坐标,就是把两函数解析式联立,求出x、y的值;(2)根据函数图象可以直接写出答案.试题解析:(1)∵一次函数y1=x+m(m为常数)的图象与反比例函数(k为常数,k≠0)的图象相交于点 A(1,3),∴3=1+m,k=1×3,∴m=2,k=3,∴一次函数解析式为:y1=x+2,反比例函数解析式为:y2=,由,解得:x1=﹣3,x2=1,当x1=﹣3时,y1=﹣1,x 2=1时,y1=3,∴两个函数的交点坐标是:A(1,3)和B(﹣3,﹣1)∴B(﹣3,﹣1);(2)根据图象得:函数值y1≥y2的自变量x的取值范围是:x≥1或﹣3≤x<0.考点:反比例函数解析式,一次函数解析式,反比例函数的性质.8.已知反比例函数y=的图象经过点(2,﹣2),则该反比例函数的图象位于()A.第一、二象限B.第一、三象限C.第二、三象限D.第二、四象限【答案】D.【解析】当k大于0时,反比例函数的图象在第一、三象限,当k小于0时,反比例函数的图象在第二、四象限,将点(2,-2)代入,求得k=-4,所以反比例函数的图象在第二、四象限.故选D.【考点】反比例函数的图象.9.小兰画了一个函数的图象如图,那么关于x的分式方程的解是()A.x=1B.x="2" C.x="3" D.x="4"【答案】A.【解析】关于x的分式方程的解就是函数中,纵坐标y=2时的横坐标x的值.根据图象可以得到:当y=2时,x=1.故选A.【考点】反比例函数的图象.10.已知正比例函数与反比例函数的图象的一个交点坐标为(-1,2),则另一个交点的坐标为.【答案】(1,-2)【解析】根据正比例函数与反比例函数的交点关于原点对称进行解答即可:∵正比例函数与反比例函数的图象均关于原点对称,∴两函数的交点关于原点对称。

分式化简及反比例函数

分式化简及反比例函数1、(8分)计算:1221212222+--÷---+x x x x x x x2、先化简式子(112--a a +1)÷(a+1)·aa a 2122+-,再求值。

其中a=2。

3、(满分8分)计算:22221(1)121a a a a a a +-÷+---+.4、(5分)先化简,再求值:4212312+-÷⎪⎭⎫ ⎝⎛+-x x x ,其中x =3。

5、( 6分)请你先将分式:111222+++-+-a aa a a a 化简,再选取一个你喜欢且使原式有意义的数代入并求值.6、(8分)先化简,再求值:x xx x x x x 222444222-+-÷-+-, 其中=x -17、先化简代数式12211112+-÷⎪⎭⎫ ⎝⎛-++a a a a a ,从你喜欢的数中选择一个恰当的作为a 的值,代入求出代数式的值.(6分)8、先化简,再求值11)1113(2-÷+--x x x ,其中x=29、(6分) 先化简,再求值:2132446222--+-∙+-+a a a a a a a ,其中31=a10、直线y=kx+b 过x 轴上的点A (23,0),且与双曲线y=xk相交于B 、C 两点,已知B 点坐标为(-21,4),求直线和双曲线的解析式。

11、(7分)如图,已知一次函数y=k 1x+b 的图象与反比例函数y=xk 2的图象交于A (1,-3),B (3,m )两点,连接OA 、OB .(1)求两个函数的解析式; (2)求△ABC 的面积.12、 如图已知一次函数y=k 1x+b 的图象与反比例函数y=xk 2的图象交于 A (1,-3),B (3,m )两点,连接OA 、OB . (1)求两个函数的解析式; (2)求△ABO 的面积.13、(10分)(2011•烟台)如图,已知反比例函数xk y 11=(k 1>0)与一次函数y 2=k 2x+1(k 2≠0)相交于A 、B 两点(点A 在第一象限),AC ⊥x 轴于点C .若△OAC 的面积为1,且OCAC=2. (1)求出反比例函数与一次函数的解析式;(2)请直接写出B 点的坐标,并指出当x 为何值时,反比例函数y1的值大于一次函数y2的值?ABOxyABOxy14、如图直线y=kx+2k(k≠0)与x轴交于点B,与双曲线y=(m+5)x2m+1交于点A、C,其中点A在第一象限,点C在第三象限.(1)求双曲线的解析式;(2)求B点的坐标;(3)若S△AOB=2,求A点的坐标;(4)在(3)的条件下,在x轴上是否存在点P,使△AOP是等腰三角形?若存在,请写出P 点的坐标;若不存在,请说明理由.15、(7分)已知如图:矩形ABCD的边BC在X轴上,E为对角线BD的中点,点B、D的坐标分别为B(1,0),D(3,3),反比例函数y=kx的图象经过A点,(1)写出点A和点E的坐标;(2)求反比例函数的解析式;(3)判断点E是否在这个函数的图象上16、(9分)如图,反比例函数与一次函数的图像位于P(-2,1),Q(1,m)(1)求反比例函数的关系式;(2)求Q点的坐标;(3)根据图像回答:当x取何值时,一次函数的值大于反比例函数的值。

初三数学反比例函数试题

初三数学反比例函数试题1.如图,四边形ABCD是平行四边形,点A(1,0),B(3,1),C(3,3).反比例函数的函数图象经过点D,点P是一次函数y=kx+3-3k(k≠0)的图象与该反比例函数图象的一个公共点.(1)求反比例函数的解析式;(2)通过计算,说明一次函数y=kx+3-3k(k≠0)的图象一定过点C;(3)对于一次函数y=kx+3-3k(k≠0),当y随x的增大而增大时,确定点P的横坐标的取值范围(不必写出过程).【答案】(1)反比例函数的解析式为;(2)说明见解析;(3)a的范围为.【解析】(1)由B(3,1),C(3,3)得到BC⊥x轴,BC=2,根据平行四边形的性质得AD=BC=2,而A点坐标为(1,0),可得到点D的坐标为(1,2),然后把D(1,2)代入即可得到m=2,从而可确定反比例函数的解析式;(2)把x=3代入y=kx+3-3k(k≠0)得到y=3,即可说明一次函数y=kx+3-3k(k≠0)的图象一定过点C;(3)设点P的横坐标为a,由于一次函数y=kx+3-3k(k≠0)过C点,并且y随x的增大而增大时,则P点的纵坐标要小于3,横坐标要小于3,当纵坐标小于3时,由得到,于是得到a的取值范围.(1)∵四边形ABCD是平行四边形,∴AD=BC,∵B(3,1),C(3,3),∴BC⊥x轴,AD=BC=2,而A点坐标为(1,0),∴点D的坐标为(1,2).∵反比例函数的函数图象经过点D(1,2),∴,∴m=2,∴反比例函数的解析式为;(2)当x=3时,y=kx+3-3k=3k+3-3k=3,∴一次函数y=kx+3-3k(k≠0)的图象一定过点C;(3)设点P的横坐标为a,则a的范围为.【考点】反比例函数综合题.2.反比例函数y=过点(2,3),则k=_____________________;反比例函数y=过点(-2,3),则k=_________________.【答案】6 -5【解析】点在函数图象上,则点的坐标满足函数关系式,把点的坐标值代入解析式求k的值.3= ,k=6;=3,k-1=-6,k=-5.3.反比例函数的图象在象限.【答案】一、三.【解析】利用反比例函数的性质,由k>0得出函数图象位于一、三象限.故答案是一、三.【考点】反比例函数的性质.4.如图,在平面直角坐标系中,一次函数的图象与反比例函数的图象在第一象限内交于点,与轴交于点,与轴交于点,。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

分式方程应用题
1、某学校学生进行紧急行军训练,预计行60千米的路程可在下午5点到达, 后来由于把速度加快了2千米/小时,结果下午4点到达,求原计划行军的速度。

2. (本题10分) 为了预防流感,某学校在休息日用药熏消毒法对教室进行消毒.已知药物释放过程中,室内每立方米空气中的含药量y(毫克)与时间x(分钟)成正比例;药物释放完毕后,y 与x 成反比例,如图所示.根据图中提供的信息,解答下列问题:
(1)写出从药物释放开始,y 与x 之间的两个函数关系式及相应的自变量取值范围;
(2)据测定,当空气中每立方米的含药量降低到0.45毫克以下时,学生方可进入
教室,那么从药物释放开始,至少需要经过多少小时
后,学生才能进人教室?
3.(本题12分)已知,如图:反比例函数
k
y x =
的图象经过点A (b )过点
A 作x 轴的垂线,垂足为
B ,AOB S ∆。

(1)求k ,b 的值;
(2)若一次函数1y ax =+的图象经过点A ,且与x 轴交于M ,求AM 的长。

4.(本题10分)如图所示,在平面直角坐标系中,一次函数1y kx =+的图象与反比例
函数
9
y x =
的图象在第一象限相交于点A ,过点A 分别作x 轴、y 轴的垂线,
垂足为点 B 、C 如果四边形OBAC 是正方形,求一次函数的解析式. 5.(本题10分)某服装厂准备加工400套运动装,在加工完160套后,采用了新
技术,使得工作效 率比原计划提高了20%,结果共用了18天完成任务,问计划每天加工服装多少套? 6. (12分)已知反比例函数
与一次函数
图象交于P (
,)和Q (1,
n )两点.
(1)求这两个函数的关系式;
(2)在同一直角坐标系内画出它们的图象; (3)求△POQ 的面积;
7.(7分)如图,已知一次函数y=k 1x+b 的图象与反比例函数y=x k 2
的图象交于A
(1,-3),B (3,m )两点,连接OA 、OB .
(1)求两个函数的解析式;(2)求△AOB 的面积.
y
五、综合题(本题10分)
8.如图,直线y=x+b (b ≠0)交坐标轴于A 、B 两点,交双曲线y=x 2
于点D ,过
D 作两坐标轴的垂线DC 、D
E ,连接OD .
(1)求证:AD 平分∠CDE ; (2)对任意的实数b (b ≠0),求证AD ·BD 为定值;
(3)是否存在直线AB ,使得四边形OBCD 为平行四边形?若存在,求出直线的解析式;若不存在,请说明理由.
9.八年级(1)班学生周末乘汽车到游览区游览,游览区距学校180km.一部分学生乘慢车先行,出发1h 后,另一部分学生乘快车前往,结果他们同时到达游览区.已知快车速度是慢车速度的1.5倍,求慢车的速度.
10.为了更好适应和服务新农村下经济的快速发展,某乡镇决定对一段公路进行改
造.已知这项工程由甲工程队单独做需要40天完成;如果由乙工程队先单独做10天,那么剩下的工程还需要两队合做20天才能完成. (1)求乙工程队单独完成这项工程所需的天数;
(2)如果这项工程由两队合做,求两队合做完成这项工程所需的天数.
11.已知反比例函数
x k
y =
图象过第二象限内的点A (-2,m )AB ⊥x 轴于B ,Rt
△AOB 面积为3, 若直线y=ax+b 经过点A ,并且经过反比例函数
x k
y =
的图象上
另一点C (n ,—23
),
(1) 反比例函数的解析式为 ,m= ,
n= ;
(2) 求直线y=ax+b 的解析式;
(3) 在y 轴上是否存在一点P ,使△PAO 为等腰三角形,若存在,请直接写出P 点坐标,若不存在,说明理由。

12.(7分)甲做90个机器零件所用时间与乙做120个所用时间相等,已知甲、乙二人每小时一共做35个零件.求甲每小时做多少个机器零件?
13.(9分)如图,已知一次函数2+-=x y 的图象与
反比例函数的图象交于A ,B 两点,且A 点的横坐标与B 点的纵坐标都是2-.
(1)求反比例函数的解析式; (2)求△AOB 的面积.
14.(7分)如图,已知一次函数2+-=x y 的图象与反比例函数的图象交于A ,B 两点,且A 点的横坐标与B 点的纵坐标都是2-. (1)求反比例函数的解析式;(2)求△AOB 的面积.
六. 动手试一试。

( 9分)
24.A,B 两种机器人都用来搬运化工原料,A 型机器人比B 型机器人每小时多般运30kg,A 型机器人搬运900 kg 所用时间与B 型机器人搬运600 kg 所用的时间相等,两种机器人每小时分别搬运多少化工原料?。

相关文档
最新文档