2011高三数学二轮复习天天练 数学天天练习42 新人教版

合集下载

高考二轮复习抓分天天练理科数学答案

高考二轮复习抓分天天练理科数学答案

“a7+a8+a9>0,”的 a7+a10<0,







.故
选 B.
所以-2≤a≤0.故选 D.
15.答案 A
9.答案 A
解析 因为 A= {x∈Z|x2-2x-3<0}=
2.答案 B
解析 当a>0,b>0 时,a+b≥2 ab,则 当
{x∈Z|-1<x<3}= {0,1,2},由 sin0=
2π 3 -B
= 3,
1 2
,1
.故选 B.
整理 得
3 sin
π B+ 6
17.答 案
= 3, 所 以
解析
(2)(4) 对于(1),∀x∈R,x2≥0,故(1)为 假
sin
B+
π 6
=1.因 为 B∈ 0,23π ,所 以
B=
π 3
,所 以
C=
π 3
,即
△ABC

正三

命题;
对于(2),设 p:xx+2>0,q:x2+x-2>0, 可得p∶x>0 或 x< -2;q:x>1 或 x<
解析 由题意,得 N ={x∈Z|-1≤x≤2}= {-1,0,1,2},M = {x∈R|-3<x<1},则
a+b≤4时,有2 ab≤4,解得ab≤4,充分性成 立;当a=1,b=4 时,满 足ab≤4,但 此 时a+
0>-
1 2
,sin1>sin
π 6
=
1 2
,sin2<

高三数学(文)二轮复习(全国通用) 题型增分天天练 答案 Word版含答案

高三数学(文)二轮复习(全国通用) 题型增分天天练 答案 Word版含答案

参考答案客观题提速练一1.B2.B3.C4.D 由余弦定理得5=b2+4-2×b×2×,解得b=3(b=-舍去),选D.5.B 因为6-2m>0,所以m<3,c2=m2-2m+14=(m-1)2+13,所以当m=1时,焦距最小,此时,a=3,b=2,所以=.选B.6.B 由题可得4×+ϕ=+kπ,k∈Z,所以ϕ=+kπ,k∈Z.因为ϕ<0,所以ϕmax=-.选B.7.C 在如图的正方体中,该几何体为四面体ABCD,AC=2,其表面积为×2×2×2+×2×2×2=4+4.选C.8.B 因为a2+a<0,所以a(a+1)<0,所以-1<a<0.取a=-,可知-a>a2>-a2>a.故选B.9.C 易判断函数为偶函数,由y=0,得x=±1.当x=0时,y=-1,且当0<x<1时,y<0;当x>1时,y>0.故选C.10.B 因为p=或p=,所以8.5=或8.5=,解得x3=8.故选B.11.C取CS的中点O,连接OA,OB.则由题意可得OA=OB=OS=2.CS为直径,所以CA⊥AS,CB⊥SB.在Rt△CSA中,∠CSA=45°,故AS=CScos 45°=4×=2,在△OSA中,OA2+OS2=AS2,所以OA⊥OS.同理,OS⊥OB.所以OS⊥平面OAB.△OAB中,OA=OB=AB=2,故△OAB的面积S=×OA2=×22=.故=S △OAB×OS=××2=.由O为CS的中点,可得=2=.12.D g′(x)=-x==,则当0<x<1时,g′(x)>0;当x>1时,g′(x)<0.所以g(x)max=g(1)=3,f(x)=-2-(x+1+),令t=x+1(t<0),设h(t)=-2-(t+),作函数y=h(t)的图象如图所示,由h(t)=3得t=-1或t=-4,所以b-a的最大值为3.选D.13.解析:由已知可得=2,即a·b=4.因为|a-b|=,所以a2-2a·b+b2=5,解得|a|=3.答案:314.解析:倾斜角为α的直线l与直线x+2y-3=0垂直,可得tan α=2.所以cos(π-2α)=-sin 2α=-=-=-=-.答案:-15.解析:作出可行域Ω(图略)可得,(4-a)(-a+2-1)=××5×1,所以(4-a)2=10,因为0<a<4,所以a=4-.答案:4-16.解析:由圆心在曲线y=(x>0)上,设圆心坐标为(a,),a>0,又圆与直线2x+y+1=0相切,所以圆心到直线的距离d=圆的半径r,由a>0得到d=≥=,当且仅当2a=,即a=1时取等号,所以圆心坐标为(1,2),圆的半径的最小值为,则所求圆的方程为(x-1)2+(y-2)2=5.答案:(x-1)2+(y-2)2=5客观题提速练二1.B2.A3.A4.D5.D6.D 已知sin2α+cos 2α=,将cos 2α=cos2α-sin2α,代入化简可得cos2α=,又因为α∈(0,),所以cos α=,α=,则tan α=.故选D.7.B 依题意,3x-2+=2⇒3x-1+(x-1)=5,log3(x-1)+(x-1)=5,令x-1=t(t>0),故3t=5-t,log3t=5-t,设两个方程的根分别为t1,t2,其中t1=a-1,t2=b-1,结合指数函数与对数函数图象间的关系可知t1+t2=5,故a+b=7.故选B.8.C 开始S=0,i=1;第一次循环S=1,i=2;第二次循环S=4,i=3;第三次循环S=11,i=4;第四次循环S=26,i=5;第五次循环S=57,i=6;故输出i=6.选C.9.C 由c2=(a-b)2+6可得c2=a2+b2-2ab+6.由余弦定理知c2=a2+b2-2abcos C,所以-2ab+6=-2abcos C,所以ab(1-cos C)=3.又C=,所以cos C=,则ab=6.所以S△ABC=absin C=.选C.10.A 由题意知该几何体的形状是放倒的圆柱,底面半径为1,高为2,左侧为一个底面半径为1,高为1的半圆锥、右侧是一个半径为1的半球组成的组合体,几何体的体积为××π×12×1+2π×12+××13=.选A.11.B 由已知可得f(x)=sin x-cos x=2sin(x-).将其图象向左平移m个单位(m>0)后可得g(x)=2sin(x+m-),其图象关于y轴对称,则其为偶函数,故有g(x)=2sin[+(x+m-π)]=2cos(x+m-).从而m-=kπ(k∈Z),所以m的最小值为π.故选B.12.A 因为OP在y轴上,在平行四边形OPMN中,MN∥OP,所以M,N两点的横坐标相等,纵坐标互为相反数,即M,N两点关于x轴对称,|MN|=|OP|=a,可设M(x,-y 0),N(x,y0),由k ON=k PM可得y0=,把点N的坐标代入椭圆方程得|x|=b,得N(b,).因为α为直线ON的倾斜角,所以tan α==,因为α∈(,],所以<tan α≤1即<≤1,≤<1,≤<1,又离心率e=,所以0<e≤.选A.13.514.解析:连接AC交BD于H,则可证得AC⊥平面PDB,连接PH,则∠CPH就是直线PC与平面PDB所成的角,即∠CPH=30°,因为CH=,所以PC=2,所以PD=2,所以四棱锥P ABCD的外接球的半径为,则其表面积为4π·3=12π. 答案:12π15.解析:设P(x,y),则满足(x-3)2+y2≤4,所以动点P在圆M:(x-3)2+y2=4上及内部,当AP与圆M相切时,sin ∠ACB最大.此时AP:y=(x+1),点C(0,),∠ACO=60°,tan ∠OCB=2,tan ∠ACB==-,sin ∠ACB=.答案:16.解析:当0≤x<2时,f(x)≤0,当x≥2时,函数 f(x)=1-|x-4|关于 x=4“对称”,当x≤-2时,函数关于x=-4“对称”,由F(x)=f(x)-a(0<a<1),得y=f(x),y=a(0<a<1),所以函数 F(x)=f(x)-a有5个零点.从左到右依次设为x1,x2,x3,x4,x5,因为函数f(x)为奇函数,所以x1+x2=-8,x4+x5=8,当-2<x≤0时,0≤-x<2,所以f(-x)=(-x+1)=-log3(1-x),即f(x)=log3(1-x),-2<x≤0,由f(x)=log3(1-x)=a,解得 x=1-3a,即x3=1-3a,所以函数F(x)=f(x)-a(0<a<1)的所有零点之和为x1+x2+x3+x4+x5=1-3a. 答案:1-3a客观题提速练三1.C2.B3.B4.B5.C 因为双曲线-=1(a>0,b>0)的一个焦点坐标为(2,0),所以c=2,焦点在x轴上,因为渐近线方程是y=x,所以=,令b=m(m>0),则a=m,所以c==2m=2,所以m=1,所以a=1,b=,所以双曲线方程为x2-=1.6.B 因为a2-8a5=0,所以=q3=,所以q=.所以=+1=+1=.选B.7.D 根据约束条件画出大致可行域,可判断a>0,z=表示过点(-1,1)和可行域内一点直线的斜率,则当取直线x=a和2x+y-2=0的交点(a,2-2a)时,z取最小值,得<⇒a>.选D.8.B 将函数f(x)=cos 2x的图象向右平移个单位得到函数g(x)=cos 2(x-)=cos(2x-)=sin 2x的图象,图象不关于x=对称,故A不对,g(x)是奇函数,故C不对,周期T=π,不关于点(,0)对称,故D不对,故选B.9.B N=5,k=1,S=0,第一次循环S=,k=2;第二次循环S=,k=3;第三次循环S=,k=4;第四次循环S=,k=5;第五次循环S=,k<5不成立,输出S=.故选B.10.B 由y=f(x)和y=g(x)的图象知,当a=1时,h(x)的图象如图,h(x)max=2.故选B.11.C 由三视图可知,该几何体的直观图如图所示,是由两个相同的直五棱柱组合而成,故这个几何体的表面积为S=[(2×2-×1×1)×2+2×2+1×2+×2+2×2]×2=34+4.选C.12.A f′(x)=3ax2+2bx-3,因为在点(1,f(1))处的切线方程为y+2=0,所以解得a=1,b=0,f(x)=x3-3x,在[-2,2]上f(x)的最大值为2,最小值为-2, 因为对任意两个自变量的值x1,x2,都有|f(x1)-f(x2)|≤c,所以c≥|2-(-2)|=4.故选A.13.解析:S2n+3=a1+(a2+a3)+(a4+a5)+…+(a2n+2+a2n+3)=1+++…+=(1-).答案:(1-)14.y=7x15.解析:因为BC⊥AA1,BC⊥A1B,所以BC⊥平面AA1B,则BC⊥AB,所以三棱锥的外接球的球心是A1C的中点,则外接球的半径R=,所以外接球的表面积S=4π×()2=8π.答案:8π16.解析:设内切圆分别与AC,BC切于点F,G,BE的中点为H,则AF=AH,BG=BH,CF=CG,所以CA-CB=AF-BG=AH-BH=2,所以点C在以A,B为焦点的双曲线的右支上.以AB所在直线为x轴,ED所在直线为y轴建立平面直角坐标系.如图所示,则B(2,0),D(0,3),易得2c=4,2a=2.故点C在双曲线x2-=1的右支上.因为CA+CD=2+CB+CD,所以当B,C,D三点共线,且C在线段BD上时,CA+CD取得最小值.将直线BD的方程+=1与x2-=1联立消去y得x2+12x-16=0,解得x=-6±2,由图可知CA+CD取得最小值时点C的横坐标为2-6,即点C到DE的距离为2-6.答案:2-6客观题提速练四1.B2.A3.D4.B5.B 因为=3,所以数列{a n-1}是公比q=3,首项为1的等比数列,所以a n=3n-1+1,所以a5=82,a6=244,所以n的最大值为5.选B.6.C 由侧视图、俯视图知该几何体是高为2、底面积为×2×(2+4)=6的四棱锥,其体积为4,又三棱柱的体积为8.故选C.7.D 线段AB的垂直平分线2x-y-4=0过圆心,令y=0得x=2,所以圆心为(2,0),半径为=.选D.8.A S=0,n=0,满足条件0≤k,S=3,n=1,满足条件1≤k,S=7,n=2,满足条件2≤k,S=13,n=3,满足条件3≤k,S=23,n=4,满足条件4≤k,S=41,n=5,满足条件5≤k,S=75,n=6,…若使输出的结果S不大于50,则输入的整数k不满足条件5≤k,即k<5, 则输入的整数k的最大值为4.故选A.9.C a n=2n-1,S n==2n-1.A.+=+,2=,+=⇒=0⇒n 0∈⌀,所以A 错.B.a n·a n+1=2n-1·2n=22n-1,a n+2=2n+1,构造函数f(x)=2x,易知f(x)在R上单调递增,当x=2时,f(2x-1)=f(x+1),R上不能保证f(2x-1)≤f(x+1)恒成立,所以B错.C.S n<a n+1恒成立即2n-1<2n恒成立,显然C正确.10.A 因为AC⊥平面BCD,所以AC⊥BD,因为BD⊥AD,所以BD⊥平面ACD,所以三棱锥A BCD可以补成以AB为对角线的长方体,外接球直径为AB. 所以4R2=AB2=BD2+AD2=4+20=24.R=,V=πR3=8π.选A.11.C 由y=是奇函数,其图象关于原点对称.又当x>0时,y=,y′=,由y′=0得x=,当0<x<时,y′>0,当x>时,y′<0,所以原函数在(0,)上是增函数,在(,+∞)上是减函数,故选C. 12.B 因为y=f(x+1)-1为奇函数,所以f(-x+1)-1=-f(x+1)+1,即f(x+1)+f(-x+1)=2.所以(x+1)3+a(x+1)2+b(x+1)+1+(-x+1)3+a(-x+1)2+b(-x+1)+1=2.即(3+a)x2+a+b+1=0,所以所以所以f(x)=x3-3x2+2x+1,所以f′(x)=3x2-6x+2.令f′(x)=0,得x=,所以易知f(x)在(-∞,),(,+∞)上单调递增,在(,)上单调递减,f()>0,所以f(x)的大致图象如图.所以f(x)有1个零点.故选B.13.解析:由图象可得点B的纵坐标为y B=1,令tan(x-)=1,则有x-=,解得x=3,即B(3,1),故有=(3,1);由图象知点A的纵坐标为y A=0,令tan(x-)=0,则有x-=0,解得x=2,即A(2,0),故有=(2,0),所以(+)·=(5,1)·(1,1)=6.答案:614.解析:令这个三角形区域的三个顶点分别是A(0,4),B(2,2),C(4,4),经过计算知道当直线经过点C时z的最大值是z=3×4-2×4=4.答案:415.解析:利用双曲线的方程及性质求解.设双曲线的焦点坐标为F1(-c,0),F2(c,0).因为B(0,b),所以F 1B所在的直线为-+=1.双曲线渐近线为y=±x,由得Q(,).由得P(-,).所以PQ的中点坐标为(,).由a2+b2=c2得,PQ的中点坐标可化为(,).直线F1B的斜率为k=,所以PQ的垂直平分线为y-=-(x-).令y=0,得x=+c,所以M(+c,0),所以|F2M|=.由|MF2|=|F1F2|,得==2c,即3a2=2c2,所以e2=,e=.答案:16.解析:当x≥0时,f′(x)=1+cos x≥0,所以f(x)在[0,+∞)上单调递增.又f(x)为偶函数,所以f(x)在(-∞,0]上单调递减,在[0,+∞)上单调递增. 因为f(ax+1)≤f(x-2),所以|ax+1|≤|x-2|对∀x∈[,1]恒成立,即|ax+1|≤2-x.所以即所以所以-2≤a≤0.答案:[-2,0]客观题提速练五1.D2.D3.C4.D5.A 因为|QF|=2|PF|,所以x2+1=2(x1+1),所以x2=2x1+1.选A.6.D 函数f(x)=x2-lg(10x+10)=x2-1-lg(x+1),在同一坐标系中画出函数y=x2-1和y=lg(x+1)的图象,可判断f(b)<0.又f(-)>0,f()>0.故选D.7.B 利用正弦定理化简(a+b+c)(sin A+sin B-sin C)=asin B得(a+b+c)(a+b-c)=ab,整理得(a+b)2-c2=ab,即a2+b2-c2=-ab,所以cos C===-,又C为三角形的内角,则C=.选B.8.D 由三视图可得该几何体是一个由直四棱柱与半圆柱组成的组合体,其中四棱柱的底面是长为2,宽为1的长方形,高为2,故其体积V1=1×2×2=4;半圆柱的底面半径为r=1,母线长为2,故其体积V2=π×r2h=π×12×2=π.所以该组合体的体积V=V1+V2=4+π.9.C 根据题意,a是从集合{1,2,3,4,5}中随机抽取的一个数,a有5种情况,b是从集合{1,2,3}中随机抽取的一个数,b有3种情况,则方程x2+2ax+b2=0中a,b有3×5=15种情况,若方程x2+2ax+b2=0有两个不相等的实根,则Δ=(2a)2-4b2>0,即a>b,共9种情况;则方程x2+2ax+b2=0有两个不相等的实根的概率P==.故选C.10.B 不等式组表示的可行域如图所示,由z=ax+y的最大值为2a+3,可知z=ax+y在的交点(2,3)处取得,由y=-ax+z可知,当-a≥0时,需满足-a≤1,得-1≤a≤0,当-a<0时,需满足-a≥-3,得0<a≤3,所以-1≤a≤3.选B.11.B 分别过点A,B作准线x=-1的垂线,垂足分别为A1,B1,设准线x=-1与x轴交于点K.根据抛物线的定义得|AA1|=|AF|,|BB1|=|BF|.设|BF|=m,|AF|=n,则|BB1|=m,|AA1|=n,|BC|=2m,由△CBB1∽△CFK得=,=,n=4,选B.=,3m=4.由△CFK∽△CAA12.B 由f(x)+xf′(x)>0⇒[xf(x)]′>0,设g(x)=xf(x)=ln x+(x-b)2.若存在x∈[,2],使得f(x)+xf′(x)>0,则函数g(x)在区间[,2]上存在子区间使得g′(x)>0成立.g′(x)=+2(x-b)=,设h(x)=2x2-2bx+1,则h(2)>0或h()>0,即8-4b+1>0或-b+1>0,得b<.故选B.13.414.解析:开始n=1,S=1,第一次循环,S=,n=2;第二次循环,S=,n=3;第三次循环,S=,n=4;第四次循环,S=,n=5;第五次循环,S=,n=6.n>5,输出S=.答案:15.解析:函数f(x)=cos 2x+asin x在区间(,)上是减函数, 则f′(x)=-2sin 2x+acos x≤0在(,)上恒成立,2x∈(,π)⇒sin 2x∈(0,1],又cos x∈(0,),-2sin 2x+acos x≤0⇒a≤=4sin x,因为sin x∈(,1),所以a≤2,所以a的取值范围是(-∞,2].答案:(-∞,2]16.解析:设数列{a n}的公差为d,数列{b n}的公比为q,则由得解得所以a n=3+2(n-1)=2n+1,b n=2n-1,=,T n=+++…+,T n=+++…+,所以T n=1++++…+-=1+-=5-,T n=10-<10.答案:10客观题提速练六1.D2.C3.A4.C 据题意,双曲线的一条渐近线方程为bx-ay=0,点F(c,0)到渐近线的距离为=b,所以2a=b,即得e===.选C.5.D 因为cos(π+2α)=-sin 2α=-=-=-=-.故选D.6.D 因为tan(α+β)=9tan β,所以=9tan β,所以9tan αtan2β-8tan β+tan α=0,(*)因为α,β∈(0,),所以方程(*)有两正根,tan α>0,所以Δ=64-36tan2α≥0,所以0<tan α≤.所以tan α的最大值是.故选D.7.C8.B 设切点坐标为(x0,ax0),由y′=,则解得a=2.故选B.9.C S=6+2+4+(1+3)×1=12+4.10.C 由f(x)≤|f()|对x∈R恒成立知x=时,f(x)取得最值,故+ϕ=k π+(k∈Z),ϕ=kπ+(k∈Z),又f()>f(π),所以ϕ=(2k+1)π+(k∈Z),所以f(x)=-sin(2x+),令2kπ+≤2x+≤2kπ+(k∈Z)得kπ+≤x≤k π+,k∈Z.11.A 当a>0时,在R上不具有单调性(如图1),排除B;取a=-3时,在R 上不具有单调性(如图2),排除D;取a=-时,在R上不具有单调性(如图3),排除C.故选A.12.D 因为f(x)-2=(e x+1)(ax+2a-2)-2<0,x∈(0,+∞),所以a(x+2)-2<,所以∃x∈(0,+∞)时,直线g(x)=a(x+2)-2的图象在函数h(x)=的图象的下方.因为h(x)=在(0,+∞)上单调递减,g(x)=a(x+2)-2过定点A(-2,-2).由g(x)和h(x)的图象知当直线g(x)过点B(0,1)时,a=,此时,x∈(0,+∞),g(x)>h(x),要使∃x∈(0,+∞),g(x)<h(x),则a<.故选D.13.14.解析:取=a,=b,则|a|=|b|=2,且a·b=0.则=-=b-a;=+=+=a+(b-a)=a+b.故·=(a+b)·(b-a)=-a2+b2=-×22+×22=-2.答案:-215.解析:在△ABC中,由余弦定理知BC2=AB2+AC2-2AB·AC·cos 120°=4+4-2×2×2×(-)=12,所以BC=2.由正弦定理,设△ABC的外接圆半径为r,满足=2r,所以r=2.由题意知球心到平面ABC的距离为1,设球的半径为R,则R==,所以S球=4πR2=20π.答案:20π16.解析:圆的标准方程为(x-1)2+(y-1)2=4,则圆心为C(1,1),半径R=2,△PAC的面积S=PA·AC=×2PA=PA,所以要使△PAC的面积最小,则PA最小.由PC=,知PC最小即可,此时最小值为圆心C到直线的距离d===4.即PC=d=4,此时PA====2,即△PAC的面积的最小值为S=2.答案:2客观题提速练七1.C2.A3.B4.D 抛掷一枚质地均匀的骰子包含6个基本事件,由函数f(x)=x2+2ax+2有两个不同零点,得Δ=4a2-8>0,解得a<-或a>.又a为正整数,故a的取值有2,3,4,5,6,共5种结果,所以函数f(x)=x2+2ax+2有两个不同零点的概率为.故选D.5.C 由三视图可知,该棱锥是以边长为的正方形为底面,高为2的四棱锥,其直观图如图所示,则PA=2,AC=2,PC=2,PA⊥底面ABCD,PC为该棱锥的外接球的直径,所以R=,外接球的体积V=πR3=π,故选C.6.B 由程序框图可知,第一次循环,S=1,i=2;第二次循环,S=5,i=3;第三次循环,S=14,i=4;第四次循环,S=30,i=5;结束循环,输出S=30,故选B.7.B 设等差数列{a n}的公差为d,由-=3,得-=3,解得d=2.故选B.8.D 双曲线-=1(a>0,b>0)的渐近线方程为y=±x,又此双曲线的离心率为2,所以c=2a,可得b==a,因此,双曲线的渐近线方程为y=±x.故选D.9.D 由函数的部分图象,可得A=2,=·=-,所以ω=2.再根据图象经过点(,0),可得2·+ϕ=π+2kπ,k∈Z,所以ϕ=-,所以f(x)=2sin(2x-).在区间[0,]上,2x-∈[-,],f(x)∈[-1,2],所以f(x)在区间[0,]上没有单调性,且f(x)有最小值为-1,故排除A,B,C.故选D.10.B 由题意知a>0,f′(x)=a(x-1)2+≥,即tan α≥,所以α∈[,).故选B.11.C 如图所示,=a,=b,则==a-b,因为a-b与b的夹角为150°,所以∠ADB=30°,设∠DBA=θ,则0°<θ<150°,在三角形ABD 中,由正弦定理得=,所以|b|=×sin θ=2sin θ,所以0<|b|≤2,故选C.12.D 根据题意,作出示意图,如图所示,设|PA|=|PB|=x(x>0),∠APO=α,则∠APB=2α,|PO|==,所以sin α==,cos ∠APB=cos 2α=1-2sin2α=,所以·=||·||cos 2α=x2·=(2+x2)+-6≥2-6=4-6,当且仅当2+x2=,即x=时等号成立,故选D.13.解析:作出约束条件表示的可行域,如图△ABC内部(含边界),作直线l:ax+by=0,把直线l向上平移时z增大,即l过点A(3,4)时,z取最大值7,所以3a+4b=7,因此+=(3a+4b)(+)=(25++)≥(25+2)=7,当且仅当=时等号成立,故所求最小值为7.答案:714.解析:当x>0时,由ln x-x2+2x=0得ln x=x2-2x,设y=ln x,y=x2-2x,作出函数y=ln x,y=x2-2x的图象(图略),由图象可知,此时有两个交点.当x≤0时,由4x+1=0,解得x=-.所以函数的零点个数为3.答案:315.解析:在△ABC中,设a,b,c分别是△ABC的三个角A,B,C的对边. 因为∠B=60°,由余弦定理得b2=a2+c2-2accos60°=a2+c2-ac=(a+c)2-3ac,则ac==(a+c)2-1≤()2(当且仅当a=c时等号成立).即(a+c)2-1≤()2,所以0<a+c≤2,故<a+b+c≤3,则△ABC周长的最大值为3.答案:316.解析:设MN为曲线y=1-x2的切线,切点为(m,n), 可得n=1-m2,y=1-x2的导数为y′=-x,即有直线MN的方程为y-(1-m2)=-m(x-m),令x=0,可得y=1+m2,再令y=0,可得x=(m>0),即有△MON面积为S=(1+m2)·=,由S′=(-+48m2+24)=0,解得m=,当m>时,S′>0,函数S递增;当0<m<时,S′<0,函数S递减.即有m=处取得最小值,且为.答案:客观题提速练八1.C2.A3.A 在矩形ABCD中,=+=+,则==(5e1+3e2),故选A.4.D 因为f(x)=x+=x-2++2≥2+2=4,当且仅当x-2=,即x=3时等号成立,故选D.5.B6.C 由于该四棱锥为正四棱锥,其下底面正方形的边长为2,高为2,侧面的高为h==,所以该四棱锥的侧面积S=4××2×=4.故选C.7.C 由程序框图可知,第一次循环,S=log23,k=3;第二次循环,S=log23·log34=log24,k=4;第三次循环,S=log24·log45=log25,k=5;…;第六次循环,S=log28=3,k=8,结束循环,输出S=3,故选C.8.C y=log2x的图象关于y轴对称后和原来的图象一起构成y=log2|x|的图象,再向右平移1个单位得到y=log2|x-1|的图象,然后把x轴上方的不动,下方的对折上去,可得g(x)=|log2|x-1||的图象;又f(x)=cos πx的周期为2,如图所示,两图象都关于直线x=1对称,且共有A,B,C,D4个交点,由中点坐标公式可得x A+x D=2,x B+x C=2,所以所有交点的横坐标之和为4,故选C.9.D 由题可得T=(-)×2=⇒ω=3,代入点(,0),得sin(+ϕ)=0,所以+ϕ=kπ,k∈Z,因为-π<ϕ<0,所以ϕ=-,所以f(x)=2sin(3x-),所以将g(x)=2sin 3x的图象向右平移个单位即可得到f(x)=2sin[3(x-)]=2sin(3x-)的图象.选D.10.D 本题考查古典概型的概率计算.事件“富强福或友善福被选到”的对立事件是“富强福和友善福都未被选到”,从富强福、和谐福、友善福、爱国福、敬业福五福中随机选三福的基本事件有(富强福、和谐福、友善福),(富强福、和谐福、爱国福),(富强福、和谐福、敬业福),(富强福、友善福、爱国福),(富强福、友善福、敬业福),(富强福、爱国福、敬业福),(和谐福、友善福、爱国福),(和谐福、、友善福、敬业福),(和谐福、爱国福、敬业福),(友善福、爱国福、敬业福),共10种情况,“富强福和友善福都未被选到”只有1种情况,根据古典概型概率和对立事件的概率公式可得,富强福和友善福中至少有一个被选到的概率P=1-=.11.B 在△ABC中,角A,B,C所对的边分别是a=4,b=5,c=6,由余弦定理,得cos C===,所以sin C===,所以△ABC的面积为S△ABC=absin C=×4×5×=,故选B.12.D 因为|PF1|∶|F1F2|∶|PF2|=4∶3∶2,所以设|PF1|=4x,|F1F2|=3x, |PF2|=2x,x>0.若曲线C为椭圆,则有|PF1|+|PF2|=4x+2x=6x=2a,|F1F2|=3x=2c,所以椭圆的离心率为==.若曲线C为双曲线,则有|PF1|-|PF2|=4x-2x=2x=2a,|F1F2|=3x=2c,所以双曲线的离心率为==.故选D.13.解析:观察不等式的规律知1>,1++>1=,1+++…+>,1+++…+>,1+++…+>,…, 由此猜测第6个不等式为1+++…+>.答案:1+++…+>14.-15.解析:设g(x)=f(x)-x,g′(x)=f′(x)-<0,g(1)=f(1)-=,不等式f(2cos x)<2cos2-可化为f(2cos x)-cos x<,即g(2cos x)<g(1),所以由g(x)单调递减,得2cos x>1,即cos x>,所以x∈[0,)∪(,2π].答案:[0,)∪(,2π]16.解析:如图,可见+=-=,所以①正确.设A(x 1,y1),B(x2,y2),则C(-,y1),D(-,y2),“存在λ∈R,使得=λ成立”等价于“D,O,A三点共线”,等价于“=”,等价于“y1y2=-p2”.又因为F(,0),直线AB可设为x=my+,与y2=2px联立,消去x即得y2-2pmy-p2=0,于是,y1y2=-p2成立,所以②正确.“·=0”,等价于“p2+y1y2=0”,据y1y2=-p2成立知③正确.据抛物线定义知|AB|=|AC|+|BD|,所以,以AB为直径的圆半径长与梯形ACDB中位线长相等,所以该圆与CD相切,设切点M,则AM⊥BM,所以·=0.④不正确.答案:①②③客观题提速练九1.D2.C3.C 本题属于几何概型求概率问题,设矩形长为a,宽为b,则点取自△ABE内部的概率P===.故选C.4.C 双曲线的离心率e==,由·=0可得⊥,则△PF1F2的面积为||||=9,即||||=18,又在直角△PF1F2中,4c2=||2+||2=+2||||=4a2+36,解得a=4,c=5,b=3,所以a+b=7.故选C.5.B6.A 在三角形OAB中,cos∠AOB==-,所以∠AOB=,所以·=||·||cos∠AOB=1×1×(-)=-,故选A.7.A 当x>0时,f(x)=2x>1,当x≤0时f(x)=x+1≤1,又f(1)=2,所以f(a)=-2=a+1,所以a=-3.故选A.8.B 因为数列{a n}为等差数列,所以2a7=a3+a11.因为2a 3-+2a11=0,所以4a 7-=0.因为b7=a7≠0,所以a7=4.因为数列{b n}是等比数列,所以b 6b8===16,所以log2(b6b8)=log216=4.故选B.9.D 如图,设正方体棱长为2,四面体为ABCD,则正视图、俯视图分别为图④,图②.故选D.10.D 函数f(x)的导函数f′(x)=x2+2bx+(a2+c2-ac),若函数有极值点,则Δ=(2b)2-4(a2+c2-ac)>0,得a2+c2-b2<ac,在△ABC中,由余弦定理,得cos B=<,则B>,故选D.11.C 直线l:y=-x+a与渐近线l1:bx-ay=0交于B(,),l与渐近线l2:bx+ay=0交于C(,),A(a,0),所以=(,),=(,-),因为=,所以=,得b=2a,所以c2-a2=4a2,所以e2==5,所以e=.故选C.12.C 令y1=x2+,y2=aln x(a>0),y′1=2x-=,y′2=(a>0,x>0),在(0,1)上y1为减函数,在(1,+∞)上y1为增函数,所以y1为凹函数,而y2为凸函数.因为函数f(x)=x2+-aln x(a>0)有唯一零点x0,所以y1,y2有公切点(x0,y0),则⇒+-2(-)ln x0=0,构造函数g(x)=x2+-2(x2-)·ln x(x>0),g(1)=3,g(2)=4+1-2(4-)ln 2=5-7ln 2.欲比较5与7ln 2大小,可比较e5与27大小.因为e5>27,所以g(2)>0,g(e)=e2+-2(e2-)=-e2+<0,所以x0∈(2,e).所以m=2,n=3,所以m+n=5.故选C.13.14.解析:由频率分布直方图可得[2 500,3 000)(元)月收入段共有10 000×0.000 5×500=2 500(人),按分层抽样应抽出2 500×=25(人).答案:2515.解析:设P(m,n),因为||=,·=15,所以解得所以P(3,1),所以A=1,ω===.把点P(3,1)代入函数y=sin(x+ϕ),得1=sin(×3+ϕ).因为-π<ϕ<π,所以ϕ=-,所以函数的解析式为y=sin(x-).答案:y=sin(x-)16.解析:当x=0时,S为矩形,其最大面积为1×=,所以①错误;当x=y=时,截面如图所示,所以②正确;当x=,y=时,截面如图,所以③错误;当x=,y∈(,1)时,如图,设截面S与棱C1D1的交点为R,延长DD1,使DD1∩QR=N,连接AN交A1D1于F,连接FR,可证AN∥PQ,由△NRD1∽△QRC1,可得C1R∶D1R=C1Q∶D1N,可得RD1=2-,所以④正确.综上可知正确的命题序号应为②④.答案:②④客观题提速练十1.B2.C 因为a=ln 2>ln >,b====<,c=sin 30° =,所以b<c<a.故选C.3.A4.C 由题可得sin(+α)=,sin(-)=,因为α+=(α+)-(-),所以cos(α+)=cos[(α+)-(-)]=cos(α+)cos(-)+sin(α+)sin(-)=×+×==.故选C.5.D ①应是系统抽样,即①为假命题;两个随机变量相关性越强,则相关系数的绝对值越接近于1;两个随机变量相关性越弱,则相关系数的绝对值越接近于0,故②为真命题;在回归直线方程=0.4x+12中,当解释变量x每增加一个单位时,预报变量平均增加0.4个单位,故③为真命题;对分类变量X与Y的随机变量K2的观测值k来说,k越小,“X与Y有关系”的把握程度越小,故④为假命题.故真命题为②③.6.A 先后掷两次骰子,共有6×6=36种结果,满足条件的事件是以(x,y)为坐标的点落在直线2x-y=1上,x=1时,y=1;x=2时,y=3;x=3时,y=5,共有3种结果,所以根据古典概型的概率公式得到以(x,y)为坐标的点落在直线2x-y=1上的概率P==.故选A.7.A 因为在△ABC中,==2,所以由正弦定理可得==2,即c=2 b.因为a2-b2=bc,所以a2-b2=b×2b,解得a2=7b2,所以由余弦定理可得cos A===,因为A∈(0,π),所以A=.故选A.8.B 由已知不妨设c=xa+yb,由|c|=1,得x2+y2=1.则(a+b+c)·(a+c)=[(x+1)a+(y+1)b]·[(x+1)a+yb]=(x+1)2a2+(y+1)yb2=2x+y+2,设z=2x+y+2,则y=-2x+z-2,代入x2+y2=1可得x2+(-2x+z-2)2=1,整理得5x2-4(z-2)x+[(z-2)2-1]=0,故Δ=16(z-2)2-4×5[(z-2)2-1]≥0,整理得(z-2)2≤5,解得2-≤z≤2+.故z的最大值为2+.故选B.9.B 由题可知f(x)在各段上分别单调递增, 若f(a)=f(b)且a>b≥0,则必有a≥1,0≤b<1,因为f(1)=,f(b)=时b=,所以≤b<1,≤f(a)<2,得b·f(a)∈[,2).故选B.10.D 由题意,当此四棱锥体积取得最大值时,四棱锥为正四棱锥, 因为该四棱锥的表面积等于16+16,设球O的半径为R,则AC=2R,SO=R,所以该四棱锥的底面边长为AB=R,则有(R)2+4××R×=16+16,解得R=2.所以球O的体积是πR3=π.故选D.11.A 因为直线l的方程为+=1,c2=a2+b2,所以原点到直线l的距离为=c,所以4ab=c2,所以16a2b2=3c4,所以16a2(c2-a2)=3c4,所以16a2c2-16a4=3c4,所以3e4-16e2+16=0,解得e=或e=2,因为0<a<b,所以e=2.故选A.12.C 转化为:如图,g(x)=+1与h(x)=|x-a|+a的交点情况.h(x)=|x-a|+a的顶点在y=x上,而y=x与g(x)=+1的交点为(2,2),(-1,-1),当a≤-1时,f(x)=1有明显的两根-1和2,第三根应为-4,解方程组得a=-;当2≥a>-1时,f(x)=1有明显的根2,设另两根为2-d,2-2d,则点A(2-d,+1),B(2-2d,+1)连线斜率为-1,解得d=.则可得AB的方程为y-=-(x-)与y=x联立解得a=.当a>2时,方程只有一根.故选C.13.解析:观察规律知,左边为n项的积,最小项和最大项依次为(n+1),(n+n),右边为连续奇数之积乘以2n,则第n个等式为:(n+1)(n+2)…(n+n)=2n×1×3×…×(2n-1).答案:(n+1)(n+2)…(n+n)=2n×1×3×…×(2n-1)14.解析:由三视图可知,该几何体是大圆柱的四分之一去掉小圆柱的四分之一,其中大圆柱的半径为4,高为4,小圆柱的半径为2,高为4,则大圆柱体积的四分之一为4×π×42=16π,小圆柱体积的四分之一为4×π×22=4π,则几何体的体积为16π-4π=12π.答案:12π15.解析:M在椭圆+=1上,可设M(6cos α,3sin α)(0≤α<2π),则·=·(-)=-·=,由K(2,0),可得=||2=(6cos α-2)2+(3sin α)2=27cos2α-24cos α+13=27(cos α-)2+,当cos α=时,取得最小值.答案:16.解析:当x≥0时,令f(x)=0,得|x-2|=1,即x=1或3. 因为f(x)是偶函数,则f(x)的零点为x=±1和±3.令f[f(x)]=0,则f(x)=±1或f(x)=±3.因为函数y=f[f(x)]有10个零点,则函数y=f(x)的图象与直线y=±1和y=±3共有10个交点.由图可知,1<a<3.答案:(1,3)客观题提速练十一1.D2.A sin 2α====(设t=tan α,t>0),log2tan α>1⇔tan α>2.若t>2,则t+>,所以0<sin 2α<.若0<sin 2α<,则t+>,又t>0,所以t>2或0<t<.故选A.3.B4.B 由三视图知几何体是一个四棱锥,四棱锥有一条侧棱与底面垂直,且侧棱长为1,所以四棱锥的体积是×1×1×1=.故选B.5.A 三支队用1,2,3表示,则甲、乙参加表演队的基本事件为11,12,13,21,22,23,31,32,33. 基本事件总数为9,这两位志愿者参加同一支表演队包含的基本事件个数为3,所以这两位志愿者参加同一支表演队的概率为P==.故选A.6.C7.A 首先由f(x)为奇函数,得图象关于原点对称,排除C,D,又当0<x<π时,f(x)>0,故选A.8.D 由f′(x)=12x2-2ax-2b,f(x)在x=1处有极值,则有a+b=6,又a>0,b>0,所以ab≤()2=9当且仅当a=b=3时“=”成立.故选D.9.B 由= a得=sin C,即3cos C=sin C⇒tan C=,故cos C=,所以c2=b2-2b+12=(b-)2+9,因为b∈[1,3],。

高三数学第二轮强化训练套题(四)理新人教A版

高三数学第二轮强化训练套题(四)理新人教A版

班别______学号 _______姓名______________得分_______一. 选择题:本大题共8 小题,每题 5 分,满分40 分.在每题给出的四个选项中,只有一项为哪一项切合题目要求的.1. 复数2ii等于().A. 1 2iB. 1 2iC. 1 2iD. 1 2i2. 会合 2A a ,B 1,a , 若AI B 1 , 则a的值为( )0,2,A. 0B. 1C.-1D. 1r r 3. 关于非零向量a, b,r r r r r“a Pb ”是“a b 0 ”的()A. 必需不充足条件B. 充足不用要条件C. 充足必需条件D. 既不充足也不用要条件4. 将函数y sin x 的图象向左平移(0 2 ) 个单位后,获得函数y sin(x ) 的图6 象,则等于()A. B.6 76C.116D.565. 已知a为等差数列,a1 a3 a5 105,a2 a4 a6 99,S n 是等差数列a n 的前nn 项和,则使得S达到最大值的n 是()nA.21B.20C.19D.18x6. 曲线y 在x2处的切线方程为()x 1A. x y 4 0B. x y 4 0C. x y 0D. x y 4 07. 已知函数 f (x) l og (1 x), x 0,2f (x 1) 1,x 0.则 f (2010) ()A.2008 B .2009 C .2010 D .2011x 2y 1 08. 若变量x, y知足,则点P(2x y,x y) 表示地区的面积为()2x y 0x 1A.34B.43C.12开始D. 1S=0,T=0,n=0二、填空题:本大题共7 小题,考生作答 6 小题,每小是T>S题5 分,满分30 分.否(一)必做题(9~12题)S=S+5输出T1 n=n+2结束T=T+n9. 履行右侧的程序框图,输出的T= .2020 正视图20侧视图10(第10 题图)1020 俯视图10. 已知某个几何体的三视图如上图,依据图中标出的尺寸(单位:cm),可得这个几何体的体积是3 cm .11. 已知某商场新进3000 袋奶粉,为检查其三聚氰胺能否达标,现采纳系统抽样的方法从中抽取150 袋检查,若第一组抽出的号码是11 ,则第六十一组抽出的号码为.12. 设F,F 分别是双曲线1 22u u u r u u u r y2 1x 的左、右焦点.若点P在双曲线上,且P F1 P F2 0 9,则u u u r u u u rPF PF1 2.(二)选做题(13 ~15 题,考生只好从中选做两题;三道题都做的,只记前两题的分)13. (不等式选讲选做题)不等式2x 1 x 2 1的解集为;14.(坐标系与参数方程选做题)若直线3x 4y m 0与圆xy1cos2 sin(为参数)没有公共点,则实数m 的取值范围是;15. (几何证明选讲选做题)如图,过点 D 做圆的切线切于 B 点,作割线交圆于A,C 两点,C D此中BD 3, AD 4, AB 2,则BC .A(第15 题图)B三、解答题:本大题共 6 小题,满分80 分.解答须写出文字说明、证明过程和演算步骤.16. (本小题满分12 分)2r已知向量 a (sin ,cos ) r与 b ( 3,1) ,此中(0, )2r r (1)若a // b ,求s in 和c os 的值;(2)若r rf ( ) a b2,求 f ( ) 的值域。

高一数学天天练42 数列(1)

高一数学天天练42              数列(1)

高一数学天天练42 数列(1) 2013.4.27班级_____________姓名_____________学号_____________1.根据通项公式)31(2n a n +=,填写下表:2.在数列}{n a 中,已知121+-=+n n a n ,则n a = .3.写出下面数列的一个通项公式,使它的前4项分别是下列各数: (1)4,8,12,16; n a = .(2);45,34,23,12 n a = . (3);421,321,221,121⨯⨯-⨯⨯- n a = .(4)33334,3,2,1--。

n a = .4.已知下列各式:(1)|21cos |π-=n a n ; (2)2)1(1n n a --=; (3)π2sin na n =; (4)2)1(11--+=n n a其中可以作为数列1,0,1,0,1,0,…的一个可能的通项公式的所有编号为 。

5.数列}{n a 满足2321n a a a a n =++++Λ,写出此数列的通项公式.6.下列四个命题:(1)任何数列都有通项公式;(2)给出了一个数列的有限项,就可以唯一确定这个数列的通项公式; (3)数列的通项n a 是项数n 的函数;(4)数列1,2,3,…,99,100共有100项。

其中真命题的个数为 ( ) (A )0 (B )1 (C )2 (D )37.下列命题中真命题为 ( ) (A )数列1,3,5,7,…,的一个通项公式是12+=n a n(B )数列2,4,6,8,10,的通项公式为n a n 2=(C )分别以π21sin +=n a n ,])1()1[(212)1(2)1(-+-+-=n n n n n b 为通项公式的数列是同一个数列(D )任何数列都有首项和末项8.数列}{n a 满足奇数项都是1,偶数项都是1-;有下列各式:(1)1)1(--=n n a ;(2)π212sin-=n a n ;(3)π412tan -=n a n ,其中能作为}{n a 的通项公式的个数为 ( ) (A )0 (B )1 (C )2 (D )3 9.有下列命题:(1)数列1,2,3与数列3,2,1是两个不同的数列;(2)20不是数列}13{+n 中的项;(3)集合},2|{*N n n x x ∈=可以表示由正偶数按小到大的次序排列所得的数列,其中真命题的个数为 ( ) (A )0 (B )1 (C )2 (D )10.已知点),(n a n 在直线12+=x y 上,写出数列}{n a 的通项公式及前三项.11.已知无穷数列21⨯,32⨯,43⨯,…,)1(+⨯n n ,… (1)求这个数列的第10项,第31项及第48项;(2)420是不是这个数列中的项?如果是,是第几项?。

高考数学统考二轮复习天天练第二部分专题2数列第2讲数列求和与数列的综合问题课件理

高考数学统考二轮复习天天练第二部分专题2数列第2讲数列求和与数列的综合问题课件理

⇒8aa11++32d8d2==7a21+da1+7d

解得 a1=d=2,∴an=2n. (2)证明:由(1)得 Sn=n2+n, ∴bn=Sn+1 n=n2+1 2n=12n1-n+1 2,
解析:(1)由题意得
a24=a2·a8 S8=72
⇒8aa11++32d8d2==7a21+da1+7d
(2)由(1)得 bn=ana1n+1=2n+112n+3=122n1+1-2n1+3. ∴Tn=b1+b2+…+bn =1213-15+15-17+...+2n1+1-2n1+3 =1213-2n1+3=32nn+3, 由32nn+3<17,得 n<9. ∴使得 Tn<17成立的最大正整数 n 的值为 8.
[题后悟通] 1.分组求和中分组的策略 (1)根据等差、等比数列分组. (2)根据正号、负号分组. 2.裂项相消求和的规律 (1)裂项系数取决于前后两项分母的差. (2)裂项相消后前、后保留的项数一样多.
3.错位相减法求和的关注点 (1)适用题型:等差数列{an}与等比数列{bn}对应项相乘({an·bn})型数列求和. (2)步骤: ①求和时先乘以数列{bn}的公比. ②将两个和式错位相减. ③整理结果形式.
答案:2n+n-2
[题后悟通] 1.已知 Sn,求 an 的步骤 (1)当 n=1 时,a1=S1. (2)当 n≥2 时,an=Sn-Sn-1. (3)对 n=1 时的情况进行检验,若适合 n≥2 的通项则可以合并;若不适合则写成分段 函数形式.
2.已知数列的递推关系求通项公式的典型方法 (1)当出现 an=an-1+m 时,构造等差数列. (2)当出现 an=xan-1+y 时,构造等比数列. (3)当出现 an=an-1+f(n)时,用累加法求解. (4)当出现aan-n 1=f(n)时,用累乘法求解.

2011高三数学二轮复习天天练 数学天天练习49

2011高三数学二轮复习天天练 数学天天练习49

高三數學天天練491.(1)(12)i i -+=2.函数()sin ln f x x x =+的导函数()f x '= 3.抛物线y 2=4x 的焦点坐标是4.已知两条直线2y ax =-和(2)1y a x =++互相垂直,则a 等于 5.在等腰直角三角形ABC 中,在斜边AB 上任取一点M ,则AM>AC 的概率是6.如果实数,x y 满足不等式组10220x x y x y ⎧⎪-+⎨⎪--⎩≥1≤≤,则22x y +的最小值为7.阅读如图所示的程序框,若输入的n 是100,则输出的变量S 的值是 8.在△OAB 中,(2cos ,2sin )OA αα=,(5cos ,OB β=5sin )β, 若5OA OB ⋅=-,则OAB S ∆=9.定义:区间)](,[2121x x x x <的长度为12x x -.已知函数|log |5.0x y =定义域为],[b a ,值域为]2,0[,则区间],[b a 的长度的最大值为 10.设{}n a 是正项数列,其前n 项和n S 满足:4(1)(3)n n n S a a =-+,则数列{}n a 的通项公式n a =11.若函数2()x f x x a=+(0a >)在[)1,+∞上的最大值为,则a 的值为学生姓名______ 得分:_____12.从椭圆上一点A 看椭圆的两焦点21,F F 的视角为直角,1AF 的延长线交椭圆于B ,且2AF AB =,求椭圆的离心率第8题图填空题答案纸:1、______________2、_____________3、______________4、______________5、_____________6、______________7、______________8、_____________9、______________ 10、_____________ 11、_____________错误原因及更正:。

高三数学(理)二轮天天练01

高三数学(理)二轮天天练011.已知集合{}220A x Z x x =∈-≤,集合{}2,B x x a a A ==∈,则A B =I 2.抛物线214x y a=的焦点坐标为 3.在等差数列{}n a 中,1815296a a a ++=则9102a a -=4.已知圆229x y +=与圆224410x y x y +-+-=关于直线l 对称,则直线l 的方程为 5.将圆x y x 沿122=+轴正方向平移1个单位后得到圆C ,若过点(3,0)的直线l 和圆C 相切,则直线l 的斜率为 6.已知3sin()45x π-=,则sin 2x = 7.设22,3005,y x x y x y x y x +⎪⎩⎪⎨⎧≤≥+≥+-则满足约束条件的最大值为8.已知7cos sin 13A A +=-,A 为第二象限角,则tanA = 9.在边长为1的等边ABC ∆中,设,,BC a CA b AB c a b b c c a ===⋅+⋅+⋅=u u u r r u u u r r u u u r r r r r r r r ,则 10.两个正数a 、b 的等差中项是25,一个等比中项是1,,62222=->b y a x b a 则双曲线且的离心率e 等于11.已知函数()sin y x =ω+ϕ0,02π⎛⎫ω><ϕ≤ ⎪⎝⎭,且此函数的图象如图所示,则点(),ωϕ的坐标是12.对于任意实数x ,符号[x ]表示x 的整数部分,即[x ]是不超过x 的最大整数,例如[2]=2;[1.2]=2;[2.2-]=3-, 这个函数[x ]叫做“取整函数”,它在数学本身和生产实践中有广泛的应用。

那么]64[log ]4[log ]3[log ]2[log ]1[log 22222+++++Λ 的值为 13.ABC ∆中,︒=∠==30,1,3B AC AB ,则ABC ∆的面积等于14.现有下列命题:①命题“2,10x R x x ∃∈++=”的否定是“2,10x R x x ∃∈++≠”; ②若{}|0A x x =>,{}|1B x x =≤-,则A B C A R =)(I ; ③函数()sin()(0)f x x ωφω=+>是偶函数的充要条件是()2k k Z πφπ=+∈;④若非零向量,a b r r 满足||||||a b a b ==-r r r r,则()b a b -r r r 与的夹角为 60º.其中正确命题的序号有________.(写出所有你认为真命题的序号)yxO 38π78π1-15.设数列{}n a 满足*11,1(),n n a a a ca c n N +==+-∈其中,a c 为实数,且0c ≠.(Ⅰ)求数列{}n a 的通项公式; (Ⅱ)设))(1(,21,21*N n a n b c a n n ∈-===,求数列.}{n n S n b 项和的前16.已知3ln )(2++-=bx x x x f .(Ⅰ)若函数)(x f 在点()y ,2处的切线与直线022=++y x 垂直,求函数)(x f 在区间[1,3]上的最小值;(Ⅱ)若)(x f 在区间[1,m ]上单调,求b 的取值范围。

高考数学二轮复习大题规范天天练 星期二 第一周 Word版含解析

星期二(概率与立体几何) 年月日.概率(命题意图:考查相互独立事件概率的求解及数学期望的求法)(本小题满分分)设每个工作日甲、乙、丙、丁人需使用某种设备的概率分别为、、、,各人是否需使用设备相互独立.()求同一工作日至少人需使用设备的概率;()表示同一工作日需使用设备的人数,求的数学期望.解记表示事件:同一工作日乙、丙中恰有人需使用设备,=,,,表示事件:甲需使用设备,表示事件:丁需使用设备,表示事件:同一工作日至少人需使用设备.()=··+·+··,()=,()=,()=×,=,,,所以()=(··+·+··)=(··)+(·)+(··)=()()()+()()+()()()=.()的可能取值为,,,,,其分布列为(=)=(··)=()()()=(-)××(-)=,(=)=(··+··+··)=()()()+()()()+()()()=××(-)+(-)××+(-)×××(-)=,(=)=(··)=()()()=××=,(=)=()-(=)=,(=)=-(=)-(=)-(=)-(=)=----=,数学期望()=×(=)+×(=)+×(=)+×(=)+×(=)=+×+×+×=..立体几何(命题意图:考查线线垂直及面面角的求解)(本小题满分分)在如图所示的多面体中,⊥平面,⊥,∥,∥,==,=,==,是的中点.()求证:⊥;()求平面与平面所成锐二面角的余弦值.()证明∵⊥平面,⊂平面,⊂平面,∴⊥,⊥,又⊥,∴,,两两垂直,以点为坐标原点,,,分别为,,轴.建立如图所示的空间直角坐标系,由已知得,(,,),(,,),(,,),(,,),(,,),(,,),∴=(,,),=(-,,),∴·=-×+×=,∴⊥.()解由已知得=(,,)是平面的法向量,设平面的法向量为=(,,) ,∵=(,,),=(,,),∴即令=,得=(,-,),设平面与平面所成锐二面角的大小为θ,则〈,〉===,则θ=.∴平面与平面所成锐二面角的余弦值为.。

(全国通用)高考数学二轮复习 大题规范天天练 第二周 解析几何 文-人教版高三全册数学试题

星期四 (解析几何)2016年____月____日解析几何知识(命题意图:考查由椭圆的定义求椭圆方程,直线与椭圆联立以及平面向量的坐标化运用等.)已知A 1,A 2,F 1,F 2分别是椭圆E :x 2a 2+y 2b 2=1(a >b >0)的左、右顶点和左、右焦点,过F 2引一条直线与椭圆交于M ,N 两点,△MF 1N 的周长为8,且|F 2A 2|=1.(1)求椭圆E 的方程;(2)过点P (-3,0)且斜率不为零的直线l 与椭圆交于不同的两点A ,B ,C ,D 为椭圆上不同于A ,B 的另外两点,满足AF 2→=λF 2C →,BF 2→=μF 2D →,且λ+μ=133.求直线l 的方程. 解 (1)由椭圆定义知,4a =8,即a =2.由|F 2A 2|=1得a -c =1,所以c =1,从而b 2=a 2-c 2=3.故椭圆的方程为x 24+y 23=1. (2)显然直线l 的斜率存在,故设其方程为y =k (x +3),又设A (x 1,y 1),B (x 2,y 2),C (x 3,y 3),D (x 4,y 4), 由⎩⎪⎨⎪⎧y =k (x +3),x 24+y 23=1得(3+4k 2)x 2+24k 2x +36k 2-12=0. Δ=(24k 2)2-4×(3+4k 2)(36k 2-12)>0⇒0<k 2<35.由根与系数的关系得x 1+x 2=-24k 23+4k 2. 因为F 2(1,0),由AF 2→=λF 2C →得(1-x 1,-y 1)=λ(x 3-1,y 3),所以x 3=1+1-x 1λ,y 3=-y 1λ. 代入椭圆方程得⎝ ⎛⎭⎪⎫1+1-x 1λ24+⎝ ⎛⎭⎪⎫-y 1λ23=1,与x 214+y 213=1联立,消去y 1得x 1=5-3λ2.同理可得x 2=5-3μ2, 所以x 1+x 2=10-3(λ+μ)2=-32. 所以x 1+x 2=-24k 23+4k 2=-32, 解得k 2=14∈⎝ ⎛⎭⎪⎫0,35, 所以k =±12.所求直线的方程为y =±12(x +3), 即x +2y +3=0或x -2y +3=0.。

高考数学第二轮专题复习系列 数 列天天练新人教A版

高三数学第二轮专题复习系列(3)-- 数 列一、本章知识结构:二、高考要求1. 理解数列的有关概念,了解递推公式是给出数列的一种方法,并能根据递推公式写出数列的前n 项.2. 理解等差(比)数列的概念,掌握等差(比)数列的通项公式与前n 项和的公式. 并能运用这些知识来解决一些实际问题.3. 了解数学归纳法原理,掌握数学归纳法这一证题方法,掌握“归纳—猜想—证明”这一思想方法. 三、热点分析1.数列在历年高考中都占有较重要的地位,一般情况下都是一个客观性试题加一个解答题,分值占整个试卷的10%左右.客观性试题主要考查等差、等比数列的概念、性质、通项公式、前n 项和公式、极限的四则运算法则、无穷递缩等比数列所有项和等内容,对基本的计算技能要求比较高,解答题大多以考查数列内容为主,并涉及到函数、方程、不等式知识的综合性试题,在解题过程中通常用到等价转化,分类讨论等数学思想方法,是属于中高档难度的题目.2.有关数列题的命题趋势 (1)数列是特殊的函数,而不等式则是深刻认识函数和数列的重要工具,三者的综合求解题是对基础和能力的双重检验,而三者的求证题所显现出的代数推理是近年来高考命题的新热点 (2)数列推理题是新出现的命题热点.以往高考常使用主体几何题来考查逻辑推理能力,近两年在数列题中也加强了推理能力的考查。

(3)加强了数列与极限的综合考查题3.熟练掌握、灵活运用等差、等比数列的性质。

等差、等比数列的有关性质在解决数列问题时应用非常广泛,且十分灵活,主动发现题目中隐含的相关性质,往往使运算简洁优美.如243546225a a a a a a ++=,可以利用等比数列的性质进行转化:从而有223355225a a a a ++=,即235()25a a +=.4.对客观题,应注意寻求简捷方法 解答历年有关数列的客观题,就会发现,除了常规方法外,还可以用更简捷的方法求解.现介绍如下: ①借助特殊数列. ②灵活运用等差数列、等比数列的有关性质,可更加准确、快速地解题,这种思路在解客观题时表现得更为突出,很多数列客观题都有灵活、简捷的解法5.在数列的学习中加强能力训练 数列问题对能力要求较高,特别是运算能力、归纳猜想能力、转化能力、逻辑推理能力更为突出.一般来说,考题中选择、填空题解法灵活多变,而解答题更是考查能力的集中体现,尤其近几年高考加强了数列推理能力的考查,应引起我们足够的重视.因此,在平时要加强对能力的培养。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档