高中正弦定理说课稿(共7篇)

合集下载

正弦定理说课稿

正弦定理说课稿

正弦定理说课稿【正弦定理说课稿】一、引入正弦定理是高中数学中的重要概念之一,它能够帮助我们解决在三角形中已知某些边长和夹角的情况下,求解其他未知边长或夹角的问题。

本次说课将围绕正弦定理的定义、推导以及应用展开,帮助学生深入理解正弦定理的原理和应用方法。

二、概念讲解1. 正弦定理的定义正弦定理是指在任意三角形ABC中,三条边a、b、c与其对应的角A、B、C 之间满足以下关系:a/sinA = b/sinB = c/sinC2. 推导过程为了帮助学生理解正弦定理的推导过程,我们可以通过绘制一个任意三角形ABC,并在三边上标注对应的边长a、b、c和夹角A、B、C,然后利用三角形的面积公式S = 1/2 * a * b * sinC,结合三角形ABC的高度h,可以得到以下推导过程:a/sinA = b/sinB = c/sinC = 2R (其中R为三角形外接圆的半径)三、应用举例1. 已知两边和夹角,求第三边例如,已知三角形ABC的两边长分别为a = 5cm,b = 7cm,夹角A = 60°,我们可以利用正弦定理求解第三边c:c/sinC = a/sinAc/sinC = 5/sin60°c/sinC = 5/(√3/2)c/sinC = 10/√3c ≈ 10/√3 * sinCc ≈ 10/√3 * sin(180° - 60° - C)c ≈ 10/√3 * sin(120° - C)2. 已知两边和夹角,求其他夹角例如,已知三角形ABC的两边长分别为a = 6cm,b = 8cm,夹角A = 45°,我们可以利用正弦定理求解夹角B和夹角C:a/sinA = b/sinB6/sin45° = 8/sinB6/√2 = 8/sinBsinB = 8/6 * √2sinB ≈ 0.9428B ≈ arcsin(0.9428)3. 已知三角形的三边长,求角度例如,已知三角形ABC的三边长分别为a = 5cm,b = 7cm,c = 8cm,我们可以利用正弦定理求解夹角A、夹角B和夹角C:a/sinA = b/sinB = c/sinC5/sinA = 7/sinB = 8/sinCsinA = 5/7 * sinBsinC = 8/7 * sinBsinA + sinB + sinC = 5/7 * sinB + sinB + 8/7 * sinB = 1sinB = 7/20B ≈ arcsin(7/20)四、教学方法与策略1. 概念讲解结合实例:通过引入正弦定理的定义,结合具体的应用实例,帮助学生理解定理的意义和应用方法。

2024高中数学说课稿:《正弦定理》范文

2024高中数学说课稿:《正弦定理》范文

2024高中数学说课稿:《正弦定理》范文今天我说课的内容是《正弦定理》,下面我将就这个内容从以下几个方面进行阐述。

一、说教材1、《正弦定理》是高中数学教材中的重要知识点,属于解三角形的内容。

正弦定理是三角形中边与角之间关系的重要定理,具有广泛的应用。

2、教学目标根据新课程标准的要求以及教材的特点,结合学生现有的数学基础,我制定了以下三点教学目标:①认知目标:理解正弦定理的含义,掌握正弦定理的公式及其应用。

②能力目标:在解三角形问题中运用正弦定理解决实际问题,并能够进行证明推导。

③情感目标:培养学生对数学的兴趣,提高数学解决问题的能力。

3、教学重难点在深入研究教材的基础上,我确定了本节课的重点是:理解正弦定理的含义及其应用,掌握正弦定理的公式。

难点是:能够进行正弦定理的证明推导。

二、说教法学法本节课我采用的教法:导入法,示范演示法,归纳总结法;学法是:合作学习法,自主学习法。

通过导入法引发学生的思考,激发学生的兴趣;通过示范演示法进行知识的传授与演示;通过归纳总结法让学生深化对知识的理解;同时采用合作学习法和自主学习法,激发学生的主动性和探索精神。

三、说教学准备在教学过程中,我准备了多媒体教具以及相关的实例和练习题,以便更好地呈现教学素材,激发学生的学习兴趣和提高教学效率。

四、说教学过程新课标强调教学活动是师生共同参与、互动的过程,本着这个教学理念,我设计了如下教学环节。

环节一、导入新课课堂开始前,我向学生提出一个问题:“在实际生活中,我们常常需要测量无法直接测量的距离,你们知道如何通过已知量来测量未知量吗?”通过引发学生的思考,导入了正弦定理的学习。

环节二、示范演示与讲解我通过多媒体呈现示例三角形,并详细演示了如何运用正弦定理求解三角形中的未知边长和角度。

同时,结合实际生活中的问题,讲解了正弦定理的应用。

环节三、归纳总结与讨论在学生初步掌握了正弦定理的公式和应用后,我引导学生进行归纳总结。

通过提问和讨论,让学生能够主动思考,深化对知识的理解。

正弦定理说课稿范文模板

正弦定理说课稿范文模板

正弦定理说课稿范文模板正弦定理说课稿6篇作为一无名无私奉献的教育工作者,时常需要编写说课稿,写说课稿能有效帮助我们总结和提升讲课技巧。

那么什么样的说课稿才是好的呢?下面是精心整理的正弦定理说课稿,仅供参考,欢迎大家阅读。

正弦定理说课稿1尊敬的各位考官:大家好,我是今天的X号考生,今天我说课的题目是《正弦定理》。

新课标指出:高中教育属于基础教育,具有基础性,且具有多样性与选择性,使不同的学生在数学上得到不同的发展。

今天我将贯彻这一理念从教材分析、学情分析、教学过程等几个方面展开我的说课。

一、说教材教师对教材的掌握程度,是评判一位教师是否能上好一堂课的基本标准。

在正式内容开始之前,我要先谈一谈对教材的理解。

《正弦定理》是人教A版必修5第一章第一节的内容,其主要内容是正弦定理及其应用。

此前学习了三角函数的相关知识,且积累很多的证明、推导的经验,为本节课的学习都起到了一定的铺垫作用。

本节课的学习,也为以后学习和解决生活中的一些问题提供帮助。

因此本节的学习有着极其重要的地位。

二、说学情合理把握学情是上好一堂课的基础,下面我来谈谈学生的实际情况。

这一阶段的学生已经具备了一定的分析问题、解决问题的能力,且在知识方面也有了一定的积累。

所以,教学中,利用学生的特点以及原有经验进行教学,增强学生的课堂参与度。

三、说教学目标根据以上对教材的分析以及对学情的把握,我制定了如下三维教学目标:(一)知识与技能能证明正弦定理,并能利用正弦定理解决实际问题。

(二)过程与方法通过正弦定理的推导过程,提高分析问题、解决问题的能力。

(三)情感、态度与价值观在正弦定理的推导过程中,感受数学的严谨,提升对数学的兴趣。

四、说教学重难点我认为一节好的数学课,从教学内容上说一定要突出重点、突破难点。

而教学重点的确立与我本节课的内容肯定是密不可分的。

那么根据授课内容可以确定本节课的教学重点为:正弦定理。

难点:正弦定理的证明。

五、说教法和学法现代教学理论认为,在教学过程中,学生是学习的主体,教师是学习的组织者、引导者,教学的一切活动都必须以强调学生的主动性、积极性为出发点。

高中数学《正弦定理》优秀说课稿范文

高中数学《正弦定理》优秀说课稿范文

高中数学《正弦定理》优秀说课稿范文1. 引言大家好,我是XX中学的数学教师。

今天我将为大家带来《正弦定理》的课程讲解。

正弦定理是高中数学中非常重要的一个概念,它在解决三角形问题中起着至关重要的作用。

通过本课的学习,学生将能够了解正弦定理的概念、应用以及解决实际问题的方法。

2. 教学目标通过本节课的学习,学生将能够:•掌握正弦定理的概念和表达方式;•理解正弦定理的应用场景;•学会运用正弦定理解决实际问题。

3. 教学过程3.1 导入通过展示一道与三角形相关的实际问题,激发学生对于正弦定理的兴趣。

比如:一个人站在河边观察船只通过的角度问题。

3.2 概念讲解首先,我们将介绍正弦定理的概念。

正弦定理描述了三角形中角度和边长的关系。

它的表达方式是:$\\frac{a}{\\sin(A)} = \\frac{b}{\\sin(B)} = \\frac{c}{\\sin(C)}$其中,a、b、c分别表示三角形三边的长度,A、B、C分别表示对应的内角。

3.3 理解与应用接下来我们将讲解正弦定理的应用。

正弦定理可以用于求解未知边长,也可以用于求解未知角度。

通过一些具体的例子,如三角形的边长比较已知、求解高度等,学生将能够理解和运用正弦定理。

3.4 解决实际问题为了让学生更好地理解和应用正弦定理,我将提供一些实际问题供学生进行解决。

例如,如何测量一个高楼的高度、如何确定无法直接测量的距离等。

通过这些实际问题,学生将能够将数学知识与实际问题相结合,提高解决问题的能力。

3.5 小结与拓展在课堂的最后,我将对本节课所学内容进行小结,并给出一些相关的拓展练习供学生自主学习和巩固。

同时,也可以引导学生思考其他几何问题,如何用正弦定理来解决。

4. 课堂互动在教学过程中,我将积极与学生互动。

通过提问、让学生解答问题、小组讨论等教学形式,激发学生的思维、兴趣和参与度。

同时,我也会鼓励学生提出自己的问题和疑惑,以促进他们的学习和思考。

《正弦定理》说课稿和教案

《正弦定理》说课稿和教案

《正弦定理》说课稿尊敬的各位评委老师,大家好!我是号选手,我今天说课的题目是《正弦定理》。

我主要从教材分析、学情分析、说教学方法与策略、说教学过程、说板书设计等几个步骤向大家详细地讲解我对这节课的安排。

一、教材地位分析《正弦定理》是普通高中课程标准实验教科书必修5中第二章《解三角形》的学习内容,比较系统地研究了解三角形这个课题。

对比同学们在初中学习过的解直角三角形,解三角形虽是少了一个字,明显我们面临解决的问题范围却扩大了。

因此,本章内容是对初中解直角三角形内容的直接延伸,在解直角三角形时主要借助三角形内角和定理、三角函数和方程的思想来实现,这种方法当然是局限于直角三角形,面对一般的三角形同学将束手无策。

《正弦定理》紧跟必修4(包括三角函数与平面向量)之后,可以启发学生联想所学知识,运用三角函数知识作为工具,运用转化与化归作为指导思想,推导出正弦定理。

正弦定理是求解任意三角形的基础,又是学生了解三角形中存在边与角的定量关系的一个开端,对进一步学习任意三角形的求解、体会事物是相互联系的辨证思想均起着举足轻重的作用。

作为三角形中的一个定理,而定理本身的应用(定理应用放在下一节专门研究)又十分广泛,因此做好该节内容的教学,使学生通过对任意三角形中正弦定理的探索、发现和证明,感受“类比—猜想—证明”的科学研究问题的思路和方法,体会由“定性研究到定量研究”这种数学地思考问题和研究问题的思想,养成大胆猜想、善于思考的品质和勇于求真的精神。

同时,通过本节课的学习为后面学习《余弦定理》提供了方法上的模式;为将来解决测量、工业、几何等方面的实际问题提供了理论基础,使学生进一步感受、了解到数学在实际中的应用。

二、教学目标分析根据上述教材结构与内容分析,考虑到学生已有的认知结构心理特征,制定如下教学目标:认知目标:在创设的问题情境中,使学生主动地去发现正弦定理的内容和推证正弦定理及简单运用正弦定理能力目标:通过对正弦定理的引入、推导和应用,培养学生的创新意识和思维能力,能体会用“作高”将一般三角形转化为直角三角形;将几何问题转化为代数问题。

《正弦定理》说课稿高二数学说课稿

《正弦定理》说课稿高二数学说课稿

《正弦定理》说课稿高二数学说课稿尊敬的各位评委、老师们:大家好!今天我说课的内容是高二数学中的《正弦定理》。

下面我将从教材分析、学情分析、教学目标、教学重难点、教法与学法、教学过程以及教学反思这几个方面来展开我的说课。

一、教材分析《正弦定理》是高中数学必修5 第一章《解三角形》中的重要内容。

它是解决三角形中边角关系的重要定理,不仅为后续学习余弦定理奠定基础,还在实际测量和几何计算中有着广泛的应用。

本节课的教材内容编排合理,通过引导学生从已有的直角三角形边角关系出发,逐步推广到一般三角形,让学生经历观察、猜想、实验、证明等数学探究活动,从而理解和掌握正弦定理。

二、学情分析高二的学生已经掌握了三角函数的基本概念和性质,具备了一定的逻辑推理能力和数学运算能力。

但对于从特殊到一般的数学思维方法的运用还不够熟练,对于抽象的数学定理的理解和证明可能存在一定的困难。

在教学过程中,要注重引导学生从已有的知识和经验出发,通过直观感知、操作确认、思辨论证等方式,帮助学生突破难点,掌握正弦定理。

三、教学目标1、知识与技能目标(1)掌握正弦定理的内容及其证明方法。

(2)能够运用正弦定理解决简单的三角形边角计算问题。

2、过程与方法目标(1)通过对正弦定理的探究过程,培养学生观察、猜想、归纳、证明的数学思维能力。

(2)通过运用正弦定理解决实际问题,提高学生分析问题和解决问题的能力。

3、情感态度与价值观目标(1)让学生在自主探究、合作交流中体验数学学习的乐趣,增强学习数学的自信心。

(2)通过正弦定理在实际生活中的应用,让学生感受数学的实用性,激发学生学习数学的兴趣。

四、教学重难点1、教学重点正弦定理的内容及其证明,以及运用正弦定理解决三角形中的边角计算问题。

2、教学难点正弦定理的证明思路以及如何根据已知条件选择合适的定理进行解题。

五、教法与学法1、教法(1)启发式教学法:通过设置问题情境,引导学生思考,启发学生的思维。

(2)探究式教学法:让学生参与正弦定理的探究过程,培养学生的创新精神和实践能力。

《正弦定理》说课稿高二数学说课稿

《正弦定理》说课稿高二数学说课稿

《正弦定理》说课稿高二数学说课稿尊敬的各位评委、老师们:大家好!今天我说课的内容是高二数学中的《正弦定理》。

下面我将从教材分析、学情分析、教学目标、教学重难点、教法与学法、教学过程以及教学反思这几个方面来展开我的说课。

一、教材分析《正弦定理》是高中数学必修5 第一章《解三角形》的第一节内容。

解三角形问题是三角函数知识的应用,也是测量、几何等实际问题的重要数学模型。

正弦定理是解决三角形问题的重要工具,它为后续学习余弦定理以及解三角形的实际应用奠定了基础。

本节课的教材内容主要包括正弦定理的推导、正弦定理的内容以及正弦定理的简单应用。

教材通过引导学生从已有的几何知识和三角函数知识出发,逐步推导得出正弦定理,体现了数学知识的内在联系和逻辑推理的重要性。

二、学情分析高二的学生已经掌握了三角函数的基本概念和公式,具备了一定的平面几何知识和逻辑推理能力。

但是,对于如何将三角函数与几何图形相结合,推导正弦定理,以及如何灵活运用正弦定理解决实际问题,还需要进一步的引导和训练。

在学习过程中,学生可能会遇到以下困难:一是对于正弦定理的推导过程中涉及的几何图形的分析和转化存在困难;二是在运用正弦定理解决问题时,对于已知条件的分析和选择合适的公式进行计算容易出现错误。

三、教学目标基于以上对教材和学情的分析,我制定了以下教学目标:1、知识与技能目标(1)掌握正弦定理的内容及其推导过程。

(2)能够运用正弦定理解决简单的三角形问题,如已知两角和一边求其他边和角,已知两边和其中一边的对角求其他边和角。

2、过程与方法目标(1)通过对正弦定理的推导,培养学生的逻辑推理能力和数学转化能力。

(2)通过正弦定理的应用,提高学生分析问题和解决问题的能力。

3、情感态度与价值观目标(1)让学生体会数学知识的内在联系和数学的应用价值,激发学生学习数学的兴趣。

(2)培养学生严谨的科学态度和勇于探索的精神。

四、教学重难点1、教学重点(1)正弦定理的内容和推导过程。

正弦定理说课稿

正弦定理说课稿

正弦定理说课稿正弦定理说课稿1尊敬的各位专家、评委:大家好!我是__县__中学数学教师fwsi,我今天说课的题目是:人教A 版普通高中课程标准实验教科书数学必修5第一章第一节的第一课时《正弦定理》,依据新课程标准对教材的要求,结合我对教材的理解,我将从以下几个方面说明我的设计和构思。

一、教材分析"解三角形"既是高中数学的基本内容,又有较强的应用性,在这次课程改革中,被保留下来,并独立成为一章。

这部分内容从知识体系上看,应属于三角函数这一章,从研究方法上看,也可以归属于向量应用的一方面。

从某种意义讲,这部分内容是用代数方法解决几何问题的典型内容之一。

而本课"正弦定理",作为单元的起始课,是在学生已有的三角函数及向量知识的基础上,通过对三角形边角关系作量化探究,发现并掌握正弦定理(重要的解三角形工具),通过这一部分内容的学习,让学生从"实际问题"抽象成"数学问题"的建模过程中,体验 "观察——猜想——证明——应用"这一思维方法,养成大胆猜想、善于思考的品质和勇于求真的精神。

同时在解决问题的过程中,感受数学的力量,进一步培养学生对数学的学习兴趣和"用数学"的意识。

二、学情分析我所任教的学校是我县一所农村普通中学,大多数学生基础薄弱,对"一些重要的数学思想和数学方法"的应用意识和技能还不高。

但是,大多数学生对数学的兴趣较高,比较喜欢数学,尤其是象本节课这样与实际生活联系比较紧密的内容,相信学生能够积极配合,有比较不错的表现。

三、教学目标1、知识和技能:在创设的问题情境中,引导学生发现正弦定理的内容,推证正弦定理及简单运用正弦定理解决一些简单的解三角形问题。

过程与方法:学生参与解题方案的探索,尝试应用观察——猜想——证明——应用"等思想方法,寻求最佳解决方案,从而引发学生对现实世界的一些数学模型进行思考。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

篇一:高中正弦定理说课稿1.1.1正弦定理大家好,今天我向大家说课的题目是《正弦定理》。

下面我将从以下几个方面介绍我这堂课的教学设计。

一教材分析本节知识是必修五第一章《解三角形》的第一节内容,与初中学习的三角形的边和角的基本关系有密切的联系与判定三角形的全等也有密切联系,在日常生活和工业生产中也时常有解三角形的问题,而且解三角形和三角函数联系在高考当中也时常考一些解答题。

因此,正弦定理和余弦定理的知识非常重要。

根据上述教材内容分析,考虑到学生已有的认知结构心理特征及原有知识水平,制定如下教学目标:认知目标:通过创设问题情境,引导学生发现正弦定理的内容,掌握正弦定理的内容及其证明方法,使学生会运用正弦定理解决两类基本的解三角形问题。

能力目标:引导学生通过观察,推导,比较,由特殊到一般归纳出正弦定理,培养学生的创新意识和观察与逻辑思维能力,能体会用向量作为数形结合的工具,将几何问题转化为代数问题。

情感目标:面向全体学生,创造平等的教学氛围,通过学生之间、师生之间的交流、合作和评价,调动学生的主动性和积极性,激发学生学习的兴趣。

教学重点:正弦定理的内容,正弦定理的证明及基本应用。

教学难点:已知两边和其中一边的对角解三角形时判断解的个数。

二教法根据教材的内容和编排的特点,为是更有效地突出重点,空破难点,以学业生的发展为本,遵照学生的认识规律,本讲遵照以教师为主导,以学生为主体,训练为主线的指导思想,采用探究式课堂教学模式,即在教学过程中,在教师的启发引导下,以学生独立自主和合作交流为前提,以“正弦定理的发现”为基本探究内容,以生活实际为参照对象,让学生的思维由问题开始,到猜想的得出,猜想的探究,定理的推导,并逐步得到深化。

三学法:指导学生掌握“观察——猜想——证明——应用”这一思维方法,采取个人、小组、集体等多种解难释疑的尝试活动,将自己所学知识应用于对任意三角形性质的探究。

让学生在问题情景中学习,观察,类比,思考,探究,概括,动手尝试相结合,体现学生的主体地位,增强学生由特殊到一般的数学思维能力,形成了实事求是的科学态度,增强了锲而不舍的求学精神。

四教学过程(一)创设情境(3分钟)“兴趣是最好的老师”,如果一节课有个好的开头,那就意味着成功了一半,本节课由一个实际问题引入,“工人师傅的一个三角形模型坏了,只剩下如右图所示的部分,∠a=47°,∠b=53°,ab长为1m,想修好这个零件,但他不知道ac和bc的长度是多少好去截料,你能帮师傅这个忙吗?”激发学生帮助别人的热情和学习的兴趣,从而进入今天的学习课题。

(二)猜想—推理—证明(15分钟)激发学生思维,从自身熟悉的特例(直角三角形)入手进行研究,发现正弦定理。

提问:那结论对任意三角形都适用吗?(让学生分小组讨论,并得出猜想) a?bsinb?csinc 在三角形中,角与所对的边满足关系sina注意:1.强调将猜想转化为定理,需要严格的理论证明。

2.鼓励学生通过作高转化为熟悉的直角三角形进行证明。

3.提示学生思考哪些知识能把长度和三角函数联系起来,继而思考向量分析层面,用数量积作为工具证明定理,体现了数形结合的数学思想。

(三)总结--应用(3分钟)1.正弦定理的内容,讨论可以解决哪几类有关三角形的问题。

2.运用正弦定理求解本节课引入的三角形零件边长的问题。

自己参与实际问题的解决,能激发学生知识后用于实际的价值观。

(四)讲解例题(8分钟)1.例1. 在△abc中,已知a=32°,b=81.8°,a=42.9cm.解三角形.例1简单,结果为唯一解,如果已知三角形两角两角所夹的边,以及已知两角和其中一角的对边,都可利用正弦定理来解三角形。

2.例2. 在△abc中,已知a=20cm,b=28cm,a=40°,解三角形.例2较难,使学生明确,利用正弦定理求角有两种可能。

要求学生熟悉掌握已知两边和其中一边的对角时解三角形的各种情形。

完了把时间交给学生。

(五)课堂练习(8分钟)1.在△abc中,已知下列条件,解三角形.(1)a=45°,c=30°,c=10cm(2)a=60°,b=45°,c=20cm2. 在△abc中,已知下列条件,解三角形.(1)a=20cm,b=11cm,b=30°(2)c=54cm,b=39cm,c=115°学生板演,老师巡视,及时发现问题,并解答。

(六)小结反思(3分钟)1.它表述了三角形的边与对角的正弦值的关系。

2.定理证明分别从直角、锐角、钝角出发,运用分类讨论的思想。

3.会用向量作为数形结合的工具,将几何问题转化为代数问题。

五教学反思从实际问题出发,通过猜想、实验、归纳等思维方法,最后得到了推导出正弦定理。

我们研究问题的突出特点是从特殊到一般,我们不仅收获着结论,而且整个探索过程我们也掌握了研究问题的一般方法。

在强调研究性学习方法,注重学生的主体地位,调动学生积极性,使数学教学成为数学活动的教学。

六板书设计篇二:正弦定理说课稿教材地位与作用:本节知识是必修五第一章《解三角形》的第一节内容,与初中学习的三角形的边和角的基本关系有密切的联系与判定三角形的全等也有密切联系,在日常生活和工业生产中也时常有解三角形的问题,而且解三角形和三角函数联系在高考当中也时常考一些解答题。

因此,正弦定理的知识非常重要。

学情分析:作为高一学生,同学们已经掌握了基本的三角函数,特别是在一些特殊三角形中,而学生们在解决任意三角形的边与角问题,就比较困难。

教学重点:正弦定理的内容,正弦定理的证明及基本应用。

教学难点:正弦定理的探索及证明,已知两边和其中一边的对角解三角形时判断解的个数。

(根据我的教学内容与学情分析以及教学重难点,我制定了如下几点教学目标)教学目标分析:知识目标:理解并掌握正弦定理的证明,运用正弦定理解三角形。

能力目标:探索正弦定理的证明过程,用归纳法得出结论。

情感目标:通过推导得出正弦定理,让学生感受数学公式的整洁对称美和数学的实际应用价值。

教法学法分析:教法:采用探究式课堂教学模式,在教师的启发引导下,以学生独立自主和合作交流为前提,以“正弦定理的发现”为基本探究内容,以生活实际为参照对象,让学生的思维由问题开始,到猜想的得出,猜想的探究,定理的推导,并逐步得到深化。

学法:指导学生掌握“观察——猜想——证明——应用”这一思维方法,采取个人、小组、集体等多种解难释疑的尝试活动,将自己所学知识应用于对任意三角形性质的探究。

让学生在问题情景中学习,观察,类比,思考,探究,动手尝试相结合,增强学生由特殊到一般的数学思维能力,锲而不舍的求学精神。

教学过程(一)创设情境,布疑激趣“兴趣是最好的老师”,如果一节课有个好的开头,那就意味着成功了一半,本节课由一个实际问题引入,“工人师傅的一个三角形的模型坏了,只剩下如右图所示的部分,∠a=47°,∠b=53°,ab长为1m,想修好这个零件,但他不知道ac和bc的长度是多少好去截料,你能帮师傅这个忙吗?”激发学生帮助别人的热情和学习的兴趣,从而进入今天的学习课题。

(二)探寻特例,提出猜想1.激发学生思维,从自身熟悉的特例(直角三角形)入手进行研究,发现正弦定理。

2.那结论对任意三角形都适用吗?指导学生分小组用刻度尺、量角器、计算器等工具对一般三角形进行验证。

3.让学生总结实验结果,得出猜想:在三角形中,角与所对的边满足关系这为下一步证明树立信心,不断的使学生对结论的认识从感性逐步上升到理性。

(三)逻辑推理,证明猜想1.强调将猜想转化为定理,需要严格的理论证明。

2.鼓励学生通过作高转化为熟悉的直角三角形进行证明。

3.提示学生思考哪些知识能把长度和三角函数联系起来,继而思考向量分析层面,用数量积作为工具证明定理,体现了数形结合的数学思想。

4.思考是否还有其他的方法来证明正弦定理,布置课后练习,提示,做三角形的外接圆构造直角三角形,或用坐标法来证明(四)归纳总结,简单应用1.让学生用文字叙述正弦定理,引导学生发现定理具有对称和谐美,提升对数学美的享受。

2.正弦定理的内容,讨论可以解决哪几类有关三角形的问题。

3.运用正弦定理求解本节课引入的三角形零件边长的问题。

自己参与实际问题的解决,能激发学生知识后用于实际的价值观。

(五)讲解例题,巩固定理1.例1。

在△abc中,已知a=32°,b=81.8°,a=42.9cm.解三角形.例1简单,结果为唯一解,如果已知三角形两角两角所夹的边,以及已知两角和其中一角的对边,都可利用正弦定理来解三角形。

2.例2. 在△abc中,已知a=20cm,b=28cm,a=40°,解三角形.例2较难,使学生明确,利用正弦定理求角有两种可能。

要求学生熟悉掌握已知两边和其中一边的对角时解三角形的各种情形。

完了把时间交给学生。

(六)课堂练习,提高巩固1.在△abc中,已知下列条件,解三角形.(1)a=45°,c=30°,c=10cm (2)a=60°,b=45°,c=20cm2. 在△abc中,已知下列条件,解三角形.(1)a=20cm,b=11cm,b=30° (2)c=54cm,b=39cm,c=115°学生板演,老师巡视,及时发现问题,并解答。

(七)小结反思,提高认识通过以上的研究过程,同学们主要学到了那些知识和方法?你对此有何体会?1.用向量证明了正弦定理,体现了数形结合的数学思想。

2.它表述了三角形的边与对角的正弦值的关系。

3.定理证明分别从直角、锐角、钝角出发,运用分类讨论的思想。

(从实际问题出发,通过猜想、实验、归纳等思维方法,最后得到了推导出正弦定理。

我们研究问题的突出特点是从特殊到一般,我们不仅收获着结论,而且整个探索过程我们也掌握了研究问题的一般方法。

在强调研究性学习方法,注重学生的主体地位,调动学生积极性,使数学教学成为数学活动的教学。

)(八)任务后延,自主探究如果已知一个三角形的两边及其夹角,要求第三边,怎么办?发现正弦定理不适用了,那么自然过渡到下一节内容,余弦定理。

布置作业,预习下一节内容。

(九)作业布置p10习题1.1a组习题1。

篇三:高二数学必修五正弦定理说课稿人教a版数学必修五《正弦定理》说课稿卢氏一高雷红艳尊敬的各位专家、评委:大家好!我是卢氏一高数学教师雷红艳,我今天说课的题目是:人教a版普通高中课程标准实验教科书数学必修5第一章第一节的第一课时《正弦定理》,依据新课程标准对教材的要求,结合我对教材的理解,我将从以下几个方面说明我的设计和构思。

一、教材分析“解三角形”既是高中数学的基本内容,又有较强的应用性,在这次课程改革中,被保留下来,并独立成为一章。

相关文档
最新文档