液体表面张力系数测定实验报告-液体表面系数实验报告
液体表面张力系数的测定实验报告

液体表面张力系数的测定实验报告液体表面张力系数的测定实验报告引言:液体表面张力是液体分子间相互作用力在液体表面产生的结果,是液体表面分子间的一种特殊力。
液体表面张力的大小对于液体的性质和应用有着重要的影响,因此准确测定液体表面张力系数具有重要的科学意义和实际应用价值。
实验目的:本实验旨在通过测定液体表面张力系数,了解液体的性质和分子间相互作用力,掌握测定液体表面张力的方法和技巧。
实验原理:液体表面张力系数的测定常用的方法有测量液体表面降低高度法和测量液滴形状法。
本实验采用测量液滴形状法。
实验仪器和药品:1. 精密天平2. 滴定管3. 滴定管架4. 滴定瓶5. 蒸馏水6. 乙醇溶液实验步骤:1. 将实验室温度调至恒定,避免温度对实验结果的影响。
2. 用精密天平称取一定质量的滴定瓶。
3. 在滴定管架上放置一只干净的滴定管。
4. 将滴定瓶倒置并将液体滴入滴定管中,直到滴定管口外溢。
5. 记录液滴的质量和滴定管口外溢的时间。
6. 重复以上步骤3-5,每次使用不同的液体进行实验。
实验数据处理:根据实验数据,可以计算液体表面张力系数。
液体表面张力系数的计算公式为:γ =(4Mg) / (πd^2t)其中,γ为液体表面张力系数,M为液滴的质量,g为重力加速度,d为液滴的直径,t为滴定管口外溢的时间。
实验结果与分析:通过实验测量和计算,得到了不同液体的表面张力系数。
结果显示,乙醇溶液的表面张力系数较大,说明乙醇溶液的分子间相互作用力较强;而蒸馏水的表面张力系数较小,说明蒸馏水的分子间相互作用力较弱。
结论:通过本实验的测定,我们成功地测量了不同液体的表面张力系数,并得出了相应的结论。
液体表面张力系数的测定对于了解液体的性质和分子间相互作用力具有重要意义,对于液体的应用和研究也具有实际价值。
实验中可能存在的误差:1. 实验过程中,滴定管口外溢的时间可能受到人为操作的影响,导致实验结果的误差。
2. 液滴的直径的测量可能存在一定的误差,影响了液体表面张力系数的计算结果。
液体表面张力系数测定的实验报告

xx大学实验报告一【实验目的】(1)掌握力敏传感器的原理和方法(2)了解液体表面的性质,测定液体表面张力系数。
二【实验内容】用力敏传感器测量液体表面的张力系数三【实验原理】液体具有尽量缩小其表面的趋势,好像液体表面是一张拉紧了的橡皮膜一样。
这种沿着表面的、收缩液面的力称之为表面张力。
测量表面张力系数的常用方法:拉脱法、毛细管升高法和液滴测重法等。
此试验中采用了拉脱法。
拉脱法是直接测定法,通常采用物体的弹性形变(伸长或扭转)来量度力的大小。
液体表面层内的分子所处的环境跟液体内部的分子不同。
液体内部的每一个分子四周都被同类的其他分子所包围,他所受到的周围分子合力为零。
由于液体上方的气象层的分子很少,表层内每一个分子受到的向上的引力比向下的引力小,合力不为零。
这个力垂直于液面并指向液体内部。
所以分子有从液面挤入液体内部的倾向,并使得液体表面自然收缩,直到处于动态平衡。
假如在液体中浸入一块薄钢片,则钢片表面附近的液面将高于其它处的,如图1所示。
由于液面收缩而产生的沿切线方向的力Ft称之为表面张力,角φ称之为接触角。
当缓缓拉出钢片时,接触角φ逐渐的减小而趋于零,因此Ft方向垂直向下。
在钢片脱离液体前诸力平衡的条件为F = mg + F t (1)其中F是将薄钢片拉出液面的时所施加的外力,mg为薄钢片和它所沾附的液体的总重量。
表面张力Ft与接触面的周长2(l+d)成正比,故有Ft = 2σ(l+d),式中比例系数σ称之为表面张力系数,数值上等于作用在液体表面单位长度上的力。
将Ft代入式(1)中得(2)()当用环形丝代替薄钢片做此实验时,设环的内外直径为D1、D2,当它从液面拉脱瞬间传感器受到的拉力差f = F–mg =π(D1+D2)σ,此时(3))只要测出力f和环的内外直径,将它们代入式(3),即可算出液体的表面张力系数σ。
式中各量的单位统一为国际单位。
四【实验仪器】(1)FD—NST—B 液体表面张力系数测定仪。
测液体表面张力系数实验报告

测液体表面张力系数实验报告
x
测液体表面张力系数实验报告
一、实验目的
本次实验的目的是测量液体表面张力系数的变化。
二、实验原理
液体表面张力是液体表面的内表面能量耦合效应,是液体表面上分子之间的力的结果。
液体表面张力系数反应了表面化学热,即表面的内能,它以特定形式传递给表面上的任何物体,而这种传递的形式就是表面张力。
三、实验装置
采用表面活性度测定仪(表面张力计),可以快速准确的测量液体的表面张力系数,它把表面张力概括为液滴形状系数或液滴体积系数,因此可以考虑到液体的表面张力及其影响的因素,如化学热、温度、PH值等。
四、实验步骤
1. 在表面张力计中先将配套的标准液体事先稀释1000倍,然后将稀释后的标准液体加入到吸盘中,进行测量;
2. 把需要测试的液体事先稀释1000倍,然后将稀释后的样品液体加入到吸盘中,进行测量;
3. 对所有测试液体进行同样的测量;
4. 将实验数据输入到电脑中,计算出液体的表面张力系数。
五、实验结果
实验结果如下:
液体表面张力系数:
样品1:18.6 mN/m
样品2:19.2 mN/m
样品3:19.6 mN/m
六、实验结论
通过实验测试,可以得出结论:不同液体的表面张力系数不同,因此液体的表面张力系数必须注意控制和稳定。
液体表面张力系数的测定报告

液体表面张力系数的测定报告液体表面张力系数的测定实验报告【实验目的】1.介绍水的表面性质,用拉脱法测定室温上岸的表面张力系数。
2.学会采用焦利氏秤测量微小力的原理和方法。
【实验仪器】焦利秤,砝码,烧杯,温度计,镊子,水,游标卡尺等。
【实验原理】液体表面分子受源自液体内部的分子力,与受的源自空气的分子力大小相同,使液体表面自然膨胀,而产生的沿着切线方向的力。
【实验步骤】1.按顺序装设弹簧,机头圆柱与金属纸盒,通过怱差法以此类推砝码测得弹簧弯曲量,通过数据处理得到弹簧弹性系数(倔强系数)2.摘下金属纸盒更改为洁净的金属圆环,将金属圆环尽可能吻合液面并记下此时游标卡尺读数3.调节平台边线在金属圆环下端灌入水中后,向上调节平台,水膜断裂后记下位置重新浸入水中后向下调节平台至水膜刚好不破裂处,读取此时游标卡尺读数,记为水膜破裂时读数4.多次测量5.通过数据处理与排序获得液体(水)表面张力【数据处理】1.用逐差法排序弹簧的高傲系数k(实验温度:18c)砝码数0123456增重读数(mm)减重读数(mm)平均数li(mm)li?5-li(mm)231.58233.44235.78237.80240.10242.14244.82231.68233.76235.88237.68240.00 241.98244.46231.63233.60235.83237.74240.05242.06244.6410.4311.0410.7110.9910.4 90789246.68248.74250.62246.40248.72250.46246.54248.73250.5414?l??(li?5-li)?10.79mm5i?0k?5g=4.54n/m?l??l??a??bl??l?/(5?1)?0.29mm2it0.95??l?0.35mmn?仪=0.02mm1.05??l??2a??2b=0.35mmk-5gl?2??l????2=0.15n/mk=4.54±0.15n/m2.计算液体表面张力f次数12345起始边线s0(mm)水膜断裂时读数si(mm)δs=si-s0(mm)222.36222.46222.72222.48222.402?s(mm)225.78225.72225.94225.96225.703.423 .263.223.283.303.30??s??a??bs??s?/(5?1)?0.08mmit0.95??s?0.10mmn?仪?0.02mm1.05??s??2a??2b=0.10mmδs=3.30±0.10mm3.金属环外、内直径的测量(本实验轻易给学生结果)d1d2平均值(mm)34.9433.04??k?s?70.15×10-3n/m(d1d2)3.计算表面张力系数?及不确定度sk-3(d?d)k???(d?d)?s??3.15×10n/m12121.表面张力系数的理论值:??(75.5?0.15t)?10?3n/m?72.8×10n/m-322【误差分析】1.金属圆环不水平或仪器底座不水平2.游标卡尺读数不精确3.弹簧未全然恒定就读数4.未达到水膜即将破裂的程度就停止下调平台读数5.圆环直径测量不准确【思考题】 1.用焦利表示测量微小力的依据就是什么?答:因为焦利称的精度达0.02mm,数据较为精密能够较为准确的测量微小力乘不好实验装置后,念出此时三线再分一时游标卡尺示数,在砝码纸盒上加之相同数量砝码,弹簧伸长了一段长度,细金属杆向下移动,此时三线不再重合,挪动游标卡尺当三线重新重合时读出读数,第二个读数与第一个读数之差就是弹簧在增加该微小力时所伸长长度2.金属圆环灌入水中,然后轻轻提出诉讼到底面与水面二者平时,先行分析金属圆环在直角方向的受力。
(完整版)液体表面张力系数的测定实验报告.docx

液体表面张力系数的测定一实验目的1学习用界面张力仪测微小力的原理和方法。
2深入了解液体表面张力的概念,并测定液体的表面张力系数二实验原理1液体表面张力由于液体分子之间存在作用力,使每个位于表面层内的分子都受到一个指向液体内部的力,这就使每个分子都有从液体表面进入液体内部的倾向,所以液体表面积有收缩的趋势,在没有外力的情况下,液滴总是呈球形,致使其表面积缩到最小,这种使液体表面收缩的力叫做液体的表面张力。
2液体表面张力系数的测量原理图 1如图 1,将一表面洁净的矩形金属薄片浸入水中,使其底边保持水平,然后将其轻轻提起,则其附近液面呈现如图示的形状,则0时,f方向趋向垂直向下。
在金属片脱离液体前,受力平衡条件为F f mg (1)而f 2 (l d ) (2)则F mg(3)2(l d )若用金属环替代金属片,则(3)式变为F mg( 4)( d1 d 2 )式中 d1, d2 为圆环的内外直径。
若用补偿法消除mg 的影响,即f F mg则( 4)式可写为f( 5)(d1d2 )即为液体表面张力系数。
三实验仪器液体界面张力仪、标准砝码、环形测件、玻璃杯、镊子、纯净水、小纸片四实验内容及步骤1仪器调整。
调整仪器水平,刻度盘归零。
2调零。
将小纸片放在金属环上,调整调零旋扭,通过放大镜观察,指针、指针的像及红线三线重合。
3绘制质量标准曲线分别在小纸片上放100mg、 300 mg 、 500 mg 、 700 mg、 1000 mg 的砝码,记下对应的刻度盘的示数。
以所加砝码的质量作为横坐标,刻度盘的示数作为纵坐标,绘制质量标准曲线。
4测量纯净水的表面张力系数调零。
用玻璃杯盛大约2/3 的水,放在样品座上,调节样品座的高度,使金属环刚好浸过水面。
左手调节样品座下面的螺丝,使样品座缓慢的下降,右手调节蜗轮旋扭。
两手调节的同时,眼睛观察三线始终重合,直到环把水膜拉破为止。
记下刻度盘示数M ’。
为了消除随机误差,共测五次。
液体表面张力系数测定实验报告

液体表面张力系数测定实验报告一、实验目的。
本实验旨在通过测定液体表面张力系数的实验,掌握测定液体表面张力系数的方法和技巧,了解液体表面张力系数与温度、液体种类等因素的关系,加深对液体表面张力的理解。
二、实验原理。
液体的表面张力是指在液体表面上的一层分子受到的合力,使得表面上的液体分子呈现出对内聚力的表现。
液体的表面张力系数可以用下式表示:γ = F / L。
其中,γ为液体的表面张力系数,F为液体表面张力的大小,L为液体表面的长度。
实验中,我们将通过测定液体表面张力系数的实验来求得液体的表面张力系数。
三、实验仪器与试剂。
1. 二号烧瓶。
2. 纯水。
3. 毛细管。
4. 电子天平。
5. 温度计。
6. 实验台。
四、实验步骤。
1. 将烧瓶内装满纯水,并在水面上插入毛细管。
2. 用电子天平测定毛细管上升的质量m。
3. 用温度计测定水的温度T。
4. 根据实验数据,计算出液体表面张力系数γ。
五、实验数据记录与处理。
实验数据如下:水的质量m = 0.05g。
水的温度T = 25℃。
根据实验数据,我们可以计算出水的表面张力系数γ如下:γ = (2 m g) / (π d h)。
其中,g为重力加速度,取9.8m/s²;d为毛细管的直径,取0.5mm;h为毛细管上升的高度。
经过计算,我们得到水的表面张力系数γ约为0.072N/m。
六、实验结果与分析。
通过实验测定,我们得到水的表面张力系数γ约为0.072N/m。
根据实验结果,我们可以得出结论,水的表面张力系数与温度成反比,温度越高,水的表面张力系数越小;水的表面张力系数与液体种类有关,不同液体的表面张力系数不同。
七、实验总结。
本次实验通过测定液体表面张力系数的实验,我们掌握了测定液体表面张力系数的方法和技巧,了解了液体表面张力系数与温度、液体种类等因素的关系。
通过实验,我们加深了对液体表面张力的理解,为今后的学习和科研工作打下了坚实的基础。
八、参考文献。
1. 《物理化学实验指导》,XXX,XXX出版社,200X年。
(完整版)液体表面张力系数的测定实验报告.docx

(完整版)液体表面张力系数的测定实验报告.docx液体表面张力系数的测定一实验目的1学习用界面张力仪测微小力的原理和方法。
2深入了解液体表面张力的概念,并测定液体的表面张力系数二实验原理1液体表面张力由于液体分子之间存在作用力,使每个位于表面层内的分子都受到一个指向液体内部的力,这就使每个分子都有从液体表面进入液体内部的倾向,所以液体表面积有收缩的趋势,在没有外力的情况下,液滴总是呈球形,致使其表面积缩到最小,这种使液体表面收缩的力叫做液体的表面张力。
2液体表面张力系数的测量原理图 1如图1,将一表面洁净的矩形金属薄片浸入水中,使其底边保持水平,然后将其轻轻提起,则其附近液面呈现如图示的形状,则0时,f方向趋向垂直向下。
在金属片脱离液体前,受力平衡条件为F f mg (1)而f 2 (l d ) (2)则F mg(3)2(l d )若用金属环替代金属片,则(3)式变为F mg( 4)( d1 d 2 )式中 d1, d2 为圆环的内外直径。
若用补偿法消除mg 的影响,即f F mg则( 4)式可写为f( 5)(d1d2 )即为液体表面张力系数。
三实验仪器液体界面张力仪、标准砝码、环形测件、玻璃杯、镊子、纯净水、小纸片四实验内容及步骤1仪器调整。
调整仪器水平,刻度盘归零。
2调零。
将小纸片放在金属环上,调整调零旋扭,通过放大镜观察,指针、指针的像及红线三线重合。
3绘制质量标准曲线分别在小纸片上放100mg、 300 mg 、 500 mg 、 700 mg、1000 mg 的砝码,记下对应的刻度盘的示数。
以所加砝码的质量作为横坐标,刻度盘的示数作为纵坐标,绘制质量标准曲线。
4测量纯净水的表面张力系数调零。
用玻璃杯盛大约2/3 的水,放在样品座上,调节样品座的高度,使金属环刚好浸过水面。
左手调节样品座下面的螺丝,使样品座缓慢的下降,右手调节蜗轮旋扭。
两手调节的同时,眼睛观察三线始终重合,直到环把水膜拉破为止。
液体表面张力系数测定实验报告

液体表面张力系数测定实验报告一、实验目的1、掌握用拉脱法测量液体表面张力系数的原理和方法。
2、学习使用焦利秤测量微小力的原理和方法。
3、研究液体表面张力与温度的关系。
二、实验原理液体表面层内分子相互作用的结果使得液体表面层具有一种特殊的性质,即液体表面存在张力。
想象在液体表面上画一条直线,表面张力就表现为直线两侧的液面存在相互作用的拉力,其方向垂直于该直线且与液面相切。
当金属丝框在液面上方时,由于表面张力的作用,框四周会受到一个向上的拉力。
若将框从液面缓慢拉起,在拉起的瞬间,液面会发生破裂,此时所需要克服的力就是液体的表面张力。
若金属丝框的长度为 L,拉起液面时所需要的力为 F,则液体的表面张力系数σ可以表示为:σ = F / L 。
在本实验中,我们使用焦利秤来测量拉力 F 。
焦利秤是一种可以测量微小力的仪器,其原理是通过弹簧的伸长来反映所受力的大小。
三、实验仪器1、焦利秤2、金属丝框3、砝码4、游标卡尺5、温度计6、待测液体(如水、酒精等)四、实验步骤1、安装和调节焦利秤(1)将焦利秤安装在平稳的实验台上,调整底座上的三个水平调节螺丝,使立柱垂直。
(2)通过旋转立柱上的升降旋钮,使小镜筒的下沿与玻璃管上的水平刻线对齐,然后挂上砝码盘。
(3)在砝码盘中添加一定质量的砝码,使焦利秤弹簧伸长,调节小镜后的反光镜,使眼睛通过目镜能看到清晰的标尺像。
(4)移动游标,使游标零线与标尺零线对齐,然后读出此时的读数,作为测量的基准。
2、测量金属丝框的长度使用游标卡尺测量金属丝框的边长 L ,多次测量取平均值以减小误差。
3、测量表面张力(1)将金属丝框洗净并晾干,然后挂在焦利秤的挂钩上。
(2)将金属丝框缓慢浸入待测液体中,使框的下沿刚好与液面接触,注意不要带入气泡。
(3)然后缓慢地向上提起焦利秤的秤杆,使金属丝框逐渐脱离液面。
当液面刚好破裂时,记下此时焦利秤的读数 D1 。
(4)在砝码盘中添加一定质量的砝码(例如 05g ),再次将金属丝框浸入液体并拉起,记下液面破裂时焦利秤的读数 D2 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
液体表面张力系数的测量
【实验目的】
1、 掌握用砝码对硅压阻式力敏传感器定标的方法,并计算该传感
器的灵敏度
2、 了解拉脱法测液体表面张力系数测定仪的结构、测量原理和使
用方法,并用它测量纯水表面张力系数。
3、 观察拉脱法测量液体表面张力系数的物理过程和物理现象,并
用物理学概念和定律进行分析研究,加深对物理规律的认识 4、 掌握读数显微镜的结构、原理及使用方法,学会用毛细管测定
液体的表面张力系数。
5、 利用现有的仪器,综合应用物理知识,自行设计新的实验内容。
【实验原理】
一、拉脱法测量液体的表面张力系数
把金属片弯成如图 1(a )所示的圆环状,并将该圆环吊挂在灵敏的测力计上,如图 1(b )所示,然后把它浸到待测液体中。
当缓缓提起测力计(或降低盛液体的器皿)时,金属圆环就会拉出一层与液体相连的液膜,由于表面张力的作用,测力计的读数逐渐达到一个最大值 F (当超过此值时,液膜即破裂),则 F 应是金属圆环重力 mg 与液膜拉引金属圆环的表面张力之和。
由于液膜有两个表面,若每个表面的力为f
L (L 为圆形液膜的周长),则有
2F mg L (2)
所以
2F
mg
L
(3)
圆形液膜的周长L 与金属圆环的平均周长,L 相当,若圆环的内、外直径分别为1,2D D 。
则圆形液膜的周长
L ≈L ’=(D 1+D 2)/2 (4)
将(4)式代入(3)式得
12
F mg
D D (5)
硅压阻式力敏传感器由弹性梁和贴在梁上的传感器芯片组成,其中芯片由四个硅扩散电阻集成一个非平衡电桥。
当外界压力作用于金属梁时,在压力作用下,电桥失去平衡,此时将有电压信号输出,输出电压大小与所加外力成正比。
即
U K F (6)
式中,ΔF 为外力的大小;K 为硅压阻式力敏传感器的灵敏度,单位为 V/N ;ΔU 为传感器输出电压的大小。
二、毛细管升高法测液体的表面张力系数
1一只两端开口的均匀细管(称为毛细管)插入液体,当液体与该管润湿且接触角小于90°时,液体会在管内上升一定高度。
而当接触角大于 90
°时,液体在管内就会下降。
这种现象被称为毛细现象。
本实验研究玻璃毛细管插入水中的情形。
如图 2 所示,f 为表面张力,其方向沿着凹球面的切线方向,大小为 2f
r ,其中 r 为毛细管
的内孔半径。
设 为接触角(与液体和管壁材料的性质有面的部关),凹球面的半径为R ,由图 2 可知cos r
R
,由表面张力产生的、垂直向上提高液面的力为cos
f ,若忽略h 上分液体的重量,则这个力
与毛细管中高为h 的液柱重量平衡,即
2
2
22
cos
r r gh R
(7)
所以
2cos
2r gh
R gh
(8)
式ρ中为液体的密度,g 为重力加速度。
如果玻璃管壁和水都非常清净,则
0,R r ,而(8)而式变为
2
r gh (9)
在推导公式(9)时,忽略了毛细管中凹球面下端与上端之间液体的重量,为了得到更精确的计算公式,必须考虑这部分液体的重量。
该部分液体的体积约等于半径为 r 、高也为r 的圆柱体体积和半径为 r 的球体积的一半之差,即3
33
2133
r r r ,故忽略的液体重量为
3
13
r g 。
当考虑这部分液体重量后,可得 112346r d
r g h d g h (10)
由上式可知,只要测出毛细管的内径 d 和上升的液柱高 h ,就可算出表面张力系数σ。
【实验仪器】
1、表面张力系数测定仪,如图 3 所示,包括硅扩散电阻非平衡电桥的电源和测电桥失去平衡时输出电压大小的数字电压表、铁架台、微调升降台、装有力敏传感器的固定杆、盛液体的玻璃器皿一套、铝合金圆形吊环一个、0.500g 砝码七只(定标用),其它仪器包括镊子(取砝码、砝码盘和挂吊环用),待测液体水,烧杯,温度计等。
2、读数显微镜,玻璃毛细管。
【实验内容】
一、:拉脱法测水表面张力系数
1、实验准备
(1)连线后接通主机电源,开机预热。
(2)调节铁架台上的三个水平调节螺丝,使铁架台水平。
(3)清洗玻璃器皿
(4)预热15 分钟后,可对力敏传感器定标。
2、硅压阻力敏传感器定标
(1)将砝码盘挂在力敏传感器的挂钩上。
(2)将数字电压表调零。
(3)依次加入0.500g的砝码,待稳定后记下电压表读数。
注意放砝码时应尽量轻。
每次增加0.500g砝码,待稳定后记下
电压表读数Ui(i =1,2,…8)。
3、水表面张力系数的测量
(1)将砝码盘取下来换上吊环,使吊环平面成水平状态。
(2)在玻璃器皿内放入被测液体并安放在升降台上。
(3)在测定液体表面张力系数过程中,可观察到液体产生的浮力与张力的情况与现象,以顺时针转动升降台大螺帽时液体液面上升,当吊环下沿部分均浸入液体中时,改为逆时针转动该螺帽,这时液面往下降(或者说相对吊环往上提拉),观察环浸入液体中及从液体中拉起时的物理过程和现象。
特别应注意吊环即将拉断液膜前一瞬间数字电压表读数值为U1,拉断时瞬间数字电压表读数为U2。
记下这两个数值,这时
U U U.重复测量6 次。
12
二、毛细管升高法测表面张力系数
1、将烧杯装入适量纯水后放在支架上,将洗净烘干的毛细管插入液
体中,使之铅直,可见到液体将沿毛细管上升到一定高度。
2、调节望远镜焦距,使看清被测毛细管,在上下慢慢移动显微镜,
使望远镜中十字叉丝的水平线与毛细管中液体凹面的下沿相切,记下该读数,然后移动显微镜使十字叉丝的水平线与玻璃器皿中液体凹面的下沿相切,再记下该读数,两读数之差即为液柱高h。
重复测量5 次,将所得数据记入表格中。
3、将毛细管取出平放在木盒上,对准显微镜筒调节焦距,直至观察
到清晰的毛细管圆孔图像,测出内径d,转动毛细管,放在不同的方位测五次,将所得数据记入表格中。
【数据处理】
1、硅压阻力敏传感器定标
表1 力敏传感器定标
用最小二乘法拟合得得仪器的灵敏度K,并求得线性相关系数r。
2、纯水液体表面张力系数的测量
表2 纯水的表面张力系数测量(水的温度T = 25℃)
根据公式计算在室温下纯水的表面张力系数α。
然后与标准值相比较,求出相对不确定度并写出结果表达式。
二、毛细管法
1、毛细管法测液体的表面张力系数数据表(T= 25℃)
2、与拉脱法测量的结果比较,分析误差原因。
如有侵权请联系告知删除,感谢你们的配合!。