(完整版)2018年中考数学试卷分析

合集下载

河北省中考数学试卷分析

河北省中考数学试卷分析

年河北省中考数学试卷分析————————————————————————————————作者:————————————————————————————————日期:2018年中考数学试卷分析一、考试总体分析(一)、总体特点近几年的中考命题特点及趋势如下:1 、不变的主旋律——基础知识和基本技能中考试题中约有 60% 至 80% 的题是用来考查学生数学基础知识和基本技能的,都是常见题,在解题时要尽量少失分,提高解题速度和准确性,并使学生养成自我检查和反思的习惯,防止只做难题而忽略基础题现象的发生。

2 、发展趋势——综合应用重視结果的教学转向重视知识形成过程的教学。

3 、能力培养近几年中考题还侧重能力的考察,所以在教学中还要侧重学生能力的培养,尤其是建模能力、思维能力 (发散性、多样性、创新思维 )、探究能力的培养(二)、试卷主要特点1.命题范围,重点考查七至九年级所学数学基础知识与技能、数学活动过程与思考以及用数学解决问题的意识2.注重基本数学能力数学核心素养和学习潜能的评价,考查学生对基础知识和基本技能的理解和掌握程度;设计有层次的试题评价学生的不同水平;关注学生的答题过程,作出客观的整体评价:考查学生知识技能,数学思考,问题解决和数学态度等方面的表现;强调通性通法,注意数学应用考查学生分析、解决综合问题的能力.3.试题充分体现初中数学的核心观念:数感、符号意识、空间观念、几何直观、数据分析观念、推理能力,运算能力和模型思想.4.数学思想方法是数学的精髓,也是历年中考对学生的重点考察之一。

数学思想方法是指对数学知识和方法形成的规律性的理性认识,是解决数学问题的根本策略。

数学思想方法揭示概念、原理、规律的本质,是沟通基础知识与能力的桥梁,是数学知识的重要组成部分。

数学思想方法是数学知识在更高层次上的抽象和概括,它蕴含于数学知识的发生、发展和应用的过程中。

数学思想的掌握及灵活运用程度是学生对整体知识学习理解的重要体现。

2018中考数学试题及解析

2018中考数学试题及解析

2018中考数学试题及解析第一篇:2018中考数学试题及解析2018中考数学试题及解析科学安排、合理利用,在这有限的时间内中等以上的学生成绩就会有明显的提高,为了复习工作能够科学有效,为了做好中考复习工作全面迎接中考,下文为各位考生准备了中考数学试题及解析。

A级基础题1.(2018年浙江丽水)若二次函数y=ax2的图象经过点P(-2,4),则该图象必经过点()A.(2,4)B.(-2,-4)C.(-4,2)D.(4,-2)2.抛物线y=x2+bx+c的图象先向右平移2个单位长度,再向下平移3个单位长度,所得图象的函数解析式为y=(x-1)2-4,则b,c的值为()A.b=2,c=-6B.b=2,c=0C.b=-6,c=8D.b=-6,c=23.(2018年浙江宁波)如图3-4-11,二次函数y=ax2+bx+c的图象开口向上,对称轴为直线x=1,图象经过(3,0),下列结论中,正确的一项是()A.abc0;②b>a>c;③若-1图3-4-1312.(2018年广东)已知二次函数y=x2-2mx+m2-1.(1)当二次函数的图象经过坐标原点O(0,0)时,求二次函数的解析式;(2)如图3-4-14,当m=2时,该抛物线与y轴交于点C,顶点为D,求C,D两点的坐标;(3)在(2)的条件下,x轴上是否存在一点P,使得PC+PD最短?若P点存在,求出P点的坐标;若P点不存在,请说明理由.C级拔尖题13.(2018年黑龙江绥化)如图3-4-15,已知抛物线y=1a(x-2)(x+a)(a>0)与x轴交于点B,C,与y轴交于点E,且点B在点C的左侧.(1)若抛物线过点M(-2,-2),求实数a的值;(2)在(1)的条件下,解答下列问题;①求出△BCE的面积;②在抛物线的对称轴上找一点H,使CH+EH的值最小,直接写出点H的坐标.14.(2018年广东肇庆)已知二次函数y=mx2+nx+p图象的顶点横坐标是2,与x轴交于A(x1,0),B(x2,0),x10且二次函数图象与直线y=x+3仅有一个交点时,求二次函数的最大值.15.(2018年广东湛江)如图3-4-16,在平面直角坐标系中,顶点为(3,4)的抛物线交y轴于A点,交x轴与B,C两点(点B在点C的左侧),已知A点坐标为(0,-5).(1)求此抛物线的解析式;(2)过点B作线段AB的垂线交抛物线于点D,如果以点C为圆心的圆与直线BD相切,请判断抛物线的对称轴与⊙C的位置关系,并给出证明;(3)在抛物线上是否存在一点P,使△ACP是以AC为直角边的直角三角形.若存在,求点P的坐标;若不存在,请说明理由.参考答案:1.A2.B 解析:利用反推法解答,函数y=(x-1)2-4的顶点坐标为(1,-4),其向左平移2个单位长度,再向上平移3个单位长度,得到函数y=x2+bx+c,又∵1-2=-1,-4+3=-1,∴平移前的函数顶点坐标为(-1,-1),函数解析式为y=(x+1)2-1,即y=x2+2x,∴b=2,c=0.3.D4.C5.C6.B7.k=0或k=-1 8.y=x2+1(答案不唯一)9.解:(1)∵抛物线y=-x2+bx+c经过点A(3,0),B(-1,0),∴抛物线的解析式为y=-(x-3)(x+1),即y=-x2+2x+3.(2)∵y=-x2+2x+3=-(x-1)2+4,∴抛物线的顶点坐标为(1,4).10.B 11.①③④12.解:(1)将点O(0,0)代入,解得m=±1,二次函数关系式为y=x2+2x或y=x2-2x.(2)当m=2时,y=x2-4x+3=(x-2)2-1,∴D(2,-1).当x=0时,y=3,∴C(0,3).(3)存在.接连接C,D交x轴于点P,则点P为所求.由C(0,3),D(2,-1)求得直线CD为y=-2x+3.当y=0时,x=32,∴P32,0.13.解:(1)将M(-2,-2)代入抛物线解析式,得-2=1a(-2-2)(-2+a),解得a=4.(2)①由(1),得y=14(x-2)(x+4),当y=0时,得0=14(x-2)(x+4),解得x1=2,x2=-4.∵点B在点C的左侧,∴B(-4,0),C(2,0).当x=0时,得y=-2,即E(0,-2).∴S△BCE=12×6×2=6.②由抛物线解析式y=14(x-2)(x+4),得对称轴为直线x=-1,根据C与B关于抛物线对称轴x=-1对称,连接BE,与对称轴交于点H,即为所求.设直线BE的解析式为y=kx+b,将B(-4,0)与E(0,-2)代入,得-4k+b=0,b=-2,解得k=-12,b=-2.∴直线BE的解析式为y=-12x-2.将x=-1代入,得y=12-2=-32,则点H-1,-32.希望为大家提供的中考数学试题及解析的内容,能够对大家有用,更多相关内容,请及时关注!第二篇:大连市2015年中考数学试题(含解析)辽宁省大连市20XX年中考数学试题(word版含解析)2015辽宁省大连市中考数学试卷(解析版)(满分150分,考试时间120分钟)一、选择题(本大题共10小题,每小题3分,满分24分,在每小题给出的四个选项中,只有一项是符合题目要求的。

河南2018年中考数学试卷分析

河南2018年中考数学试卷分析
主要考查的内容是“数与代数”、“图形与几何”“统计与概 率”“综合与实践”四个领域的内容。主要考查的方面有:基础知识、 基本技能、基本思想、基本活动经验;数学思考、发现、提出并分析、 解决问题的能力等。关注并体现的方面:数感、符号、空间理念、几 何直观、数据分析能力、运算能力、推理能力、创新意识和应用意识, 模型思想等。设计一定的结合实际情景的问题、开放性问题、探究性 问题等,以体现对学生综合数学能力的考查。
河南2018年 中考数学试卷分析
整体分析
1.今年的河南中考(数学)试卷,相较往年,难度有所降低; 2. 三大题型题目数量不变(选择题10道,填空题5道,解答 题8道); 3. 题目考查知识点和考查形式发生了些许变化。 ①选择第10题舍去了规律探索换成了动点与函数图象结合的 一个题目; ②题目顺序,反比例函数综合题由第20题的位置提到了第18 题,考查形式的开放性; ③第21题由二元一次方程组与不等式结合的题目换成了函数 (一次函数求关系式、二次函数最值问题)与不等式结合的 题目,而把二元一次方程组的应用单独考查,在选择题第6题 出现。
一.选择题
题号 第1题 第2题 第3题 第4题 第5题 第6题 第7题 第8题 第9题 第10题
考点 有理数 科学记数法 三视图 分式方程 统计数据 二元一次方程 一元二次方程实数根 概率 求坐标 动点
考点及分值
知识点 相反数 有理数 立体图形 分式 统计数据 二元一次方程应用 四边形 概率 三角形 菱形,函数图像
4. 下面是此次中考从各个方面分值占比的分析统计图:
试卷考点分析
1.命题要体现《义务教育数学课程标准》所确立的课程理念,从知识 技能、数学思考、问题解决、情感态度四个方面进行评价,体现了整 体性、综合性与实践性、突出学生数学思想的全面考查。

山东枣庄市2018年中考数学试题(含答案解析)

山东枣庄市2018年中考数学试题(含答案解析)

2018年山东省枣庄市中考数学试卷(解析版)一、选择题:本大题共12小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来.每小题选对得3分,选错、不选或选出的答案超过一个均计零分1.(3分)的倒数是()A.﹣2 B.﹣ C.2 D.【分析】根据倒数的定义,直接解答即可.【解答】解:的倒数是﹣2.故选:A.【点评】主要考查倒数的概念及性质.倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.2.(3分)下列计算,正确的是()A.a5+a5=a10B.a3÷a﹣1=a2C.a•2a2=2a4D.(﹣a2)3=﹣a6【分析】根据合并同类项法则、同底数幂的除法法则、幂的乘方法则、单项式乘单项式的运算法则计算,判断即可.【解答】解:a5+a5=2a5,A错误;a3÷a﹣1=a3﹣(﹣1)=a4,B错误;a•2a2=2a3,C错误;(﹣a2)3=﹣a6,D正确,故选:D.【点评】本题考查的是合并同类项、同底数幂的除法、幂的乘方、单项式乘单项式,掌握它们的运算法则是解题的关键.3.(3分)已知直线m∥n,将一块含30°角的直角三角板ABC按如图方式放置(∠ABC=30°),其中A,B两点分别落在直线m,n上,若∠1=20°,则∠2的度数为()A.20°B.30°C.45°D.50°【分析】根据平行线的性质即可得到结论.【解答】解:∵直线m∥n,∴∠2=∠ABC+∠1=30°+20°=50°,故选:D.【点评】本题考查了平行线的性质,熟练掌握平行线的性质是解题的关键.4.(3分)实数a,b,c,d在数轴上的位置如图所示,下列关系式不正确的是()A.|a|>|b|B.|ac|=ac C.b<d D.c+d>0【分析】本题利用实数与数轴的对应关系结合实数的运算法则计算即可解答.【解答】解:从a、b、c、d在数轴上的位置可知:a<b<0,d>c>1;A、|a|>|b|,故选项正确;B、a、c异号,则|ac|=﹣ac,故选项错误;C、b<d,故选项正确;D、d>c>1,则a+d>0,故选项正确.故选:B.【点评】此题主要考查了数轴的知识:从原点向右为正数,向左为负数.右边的数大于左边的数.5.(3分)如图,直线l是一次函数y=kx+b的图象,若点A(3,m)在直线l 上,则m的值是()A.﹣5 B.C.D.7【分析】待定系数法求出直线解析式,再将点A代入求解可得.【解答】解:将(﹣2,0)、(0,1)代入,得:解得:,∴y=x+1,将点A(3,m)代入,得:+1=m,即m=,故选:C.【点评】本题主要考查直线上点的坐标特点,熟练掌握待定系数法求函数解析式是解题的关键.6.(3分)如图,将边长为3a的正方形沿虚线剪成两块正方形和两块长方形.若拿掉边长2b的小正方形后,再将剩下的三块拼成一块矩形,则这块矩形较长的边长为()A.3a+2b B.3a+4b C.6a+2b D.6a+4b【分析】观察图形可知,这块矩形较长的边长=边长为3a的正方形的边长﹣边长2b的小正方形的边长+边长2b的小正方形的边长的2倍,依此计算即可求解.【解答】解:依题意有3a﹣2b+2b×2=3a﹣2b+4b=3a+2b.故这块矩形较长的边长为3a+2b.故选:A.【点评】考查了列代数式,关键是得到这块矩形较长的边长与两个正方形边长的关系.7.(3分)在平面直角坐标系中,将点A(﹣1,﹣2)向右平移3个单位长度得到点B,则点B关于x轴的对称点B′的坐标为()A.(﹣3,﹣2)B.(2,2)C.(﹣2,2)D.(2,﹣2)【分析】首先根据横坐标右移加,左移减可得B点坐标,然后再根据关于x轴对称点的坐标特点:横坐标不变,纵坐标符号改变可得答案.【解答】解:点A(﹣1,﹣2)向右平移3个单位长度得到的B的坐标为(﹣1+3,﹣2),即(2,﹣2),则点B关于x轴的对称点B′的坐标是(2,2),故选:B.【点评】此题主要考查了坐标与图形变化﹣平移,以及关于x轴对称点的坐标,关键是掌握点的坐标变化规律.8.(3分)如图,AB是⊙O的直径,弦CD交AB于点P,AP=2,BP=6,∠APC=30°,则CD的长为()A. B.2 C.2D.8【分析】作OH⊥CD于H,连结OC,如图,根据垂径定理由OH⊥CD得到HC=HD,再利用AP=2,BP=6可计算出半径OA=4,则OP=OA﹣AP=2,接着在Rt△OPH中根据含30度的直角三角形的性质计算出OH=OP=1,然后在Rt△OHC中利用勾股定理计算出CH=,所以CD=2CH=2.【解答】解:作OH⊥CD于H,连结OC,如图,∵OH⊥CD,∴HC=HD,∵AP=2,BP=6,∴AB=8,∴OA=4,∴OP=OA﹣AP=2,在Rt△OPH中,∵∠OPH=30°,∴∠POH=60°,∴OH=OP=1,在Rt△OHC中,∵OC=4,OH=1,∴CH==,∴CD=2CH=2.故选:C.【点评】本题考查了垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.也考查了勾股定理以及含30度的直角三角形的性质.9.(3分)如图是二次函数y=ax2+bx+c图象的一部分,且过点A(3,0),二次函数图象的对称轴是直线x=1,下列结论正确的是()A.b2<4ac B.ac>0 C.2a﹣b=0 D.a﹣b+c=0【分析】根据抛物线与x轴有两个交点有b2﹣4ac>0可对A进行判断;由抛物线开口向上得a>0,由抛物线与y轴的交点在x轴下方得c<0,则可对B进行判断;根据抛物线的对称轴是x=1对C选项进行判断;根据抛物线的对称性得到抛物线与x轴的另一个交点为(﹣1,0),所以a﹣b+c=0,则可对D选项进行判断.【解答】解:∵抛物线与x轴有两个交点,∴b2﹣4ac>0,即b2>4ac,所以A选项错误;∵抛物线开口向上,∴a>0,∵抛物线与y轴的交点在x轴下方,∴c<0,∴ac<0,所以B选项错误;∵二次函数图象的对称轴是直线x=1,∴﹣=1,∴2a+b=0,所以C选项错误;∵抛物线过点A(3,0),二次函数图象的对称轴是x=1,∴抛物线与x轴的另一个交点为(﹣1,0),∴a﹣b+c=0,所以D选项正确;故选:D.【点评】本题考查了二次函数的图象与系数的关系:二次函数y=ax2+bx+c(a≠0)的图象为抛物线,当a>0,抛物线开口向上;对称轴为直线x=﹣;抛物线与y轴的交点坐标为(0,c);当b2﹣4ac>0,抛物线与x轴有两个交点;当b2﹣4ac=0,抛物线与x轴有一个交点;当b2﹣4ac<0,抛物线与x轴没有交点.10.(3分)如图是由8个全等的矩形组成的大正方形,线段AB的端点都在小矩形的顶点上,如果点P是某个小矩形的顶点,连接PA、PB,那么使△ABP为等腰直角三角形的点P的个数是()A.2个 B.3个 C.4个 D.5个【分析】根据等腰直角三角形的判定即可得到结论.【解答】解:如图所示,使△ABP为等腰直角三角形的点P的个数是3,故选:B.【点评】本题考查了等腰直角三角形的判定,正确的找出符合条件的点P是解题的关键.11.(3分)如图,在矩形ABCD中,点E是边BC的中点,AE⊥BD,垂足为F,则tan∠BDE的值是()A.B.C.D.【分析】证明△BEF∽△DAF,得出EF=AF,EF=AE,由矩形的对称性得:AE=DE,得出EF=DE,设EF=x,则DE=3x,由勾股定理求出DF==2x,再由三角函数定义即可得出答案.【解答】解:∵四边形ABCD是矩形,∴AD=BC,AD∥BC,∵点E是边BC的中点,∴BE=BC=AD,∴△BEF∽△DAF,∴=,∴EF=AF,∴EF=AE,∵点E是边BC的中点,∴由矩形的对称性得:AE=DE,∴EF=DE,设EF=x,则DE=3x,∴DF==2x,∴tan∠BDE===;故选:A.【点评】本题考查了相似三角形的判定和性质,矩形的性质,三角函数等知识;熟练掌握矩形的性质,证明三角形相似是解决问题的关键.12.(3分)如图,在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足为D,AF平分∠CAB,交CD于点E,交CB于点F.若AC=3,AB=5,则CE的长为()A.B.C.D.【分析】根据三角形的内角和定理得出∠CAF+∠CFA=90°,∠FAD+∠AED=90°,根据角平分线和对顶角相等得出∠CEF=∠CFE,即可得出EC=FC,再利用相似三角形的判定与性质得出答案.【解答】解:过点F作FG⊥AB于点G,∵∠ACB=90°,CD⊥AB,∴∠CDA=90°,∴∠CAF+∠CFA=90°,∠FAD+∠AED=90°,∵AF平分∠CAB,∴∠CAF=∠FAD,∴∠CFA=∠AED=∠CEF,∴CE=CF,∵AF平分∠CAB,∠ACF=∠AGF=90°,∴FC=FG,∵∠B=∠B,∠FGB=∠ACB=90°,∴△BFG∽△BAC,∴=,∵AC=3,AB=5,∠ACB=90°,∴BC=4,∴=,∵FC=FG,∴=,解得:FC=,即CE的长为.故选:A.【点评】本题考查了直角三角形性质、等腰三角形的性质和判定,三角形的内角和定理以及相似三角形的判定与性质等知识,关键是推出∠CEF=∠CFE.二、填空题:本大题共6小题,满分24分,只填写最后结果,每小题填对得4分13.(4分)若二元一次方程组的解为,则a﹣b=.【分析】把x、y的值代入方程组,再将两式相加即可求出a﹣b的值.【解答】解:将代入方程组,得:,①+②,得:4a﹣4b=7,则a﹣b=,故答案为:.【点评】本题考查二元一次方程组的解,解题的关键是观察两方程的系数,从而求出a﹣b的值,本题属于基础题型.14.(4分)如图,某商店营业大厅自动扶梯AB的倾斜角为31°,AB的长为12米,则大厅两层之间的高度为 6.18米.(结果保留两个有效数字)【参考数据;sin31°=0.515,cos31°=0.857,tan31°=0.601】【分析】根据题意和锐角三角函数可以求得BC的长,从而可以解答本题.【解答】解:在Rt△ABC中,∵∠ACB=90°,∴BC=AB•sin∠BAC=12×0.515=6.18(米),答:大厅两层之间的距离BC的长约为6.18米.故答案为:6.18.【点评】本题考查解直角三角形的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用锐角三角函数和数形结合的思想解答.15.(4分)我国南宋著名数学家秦九韶在他的著作《数书九章》一书中,给出了著名的秦九韶公式,也叫三斜求积公式,即如果一个三角形的三边长分别为a,b,c,则该三角形的面积为S=.现已知△ABC的三边长分别为1,2,,则△ABC的面积为1.【分析】根据题目中的面积公式可以求得△ABC的三边长分别为1,2,的面积,从而可以解答本题.【解答】解:∵S=,∴△ABC的三边长分别为1,2,,则△ABC的面积为:S==1,故答案为:1.【点评】本题考查二次根式的应用,解答本题的关键是明确题意,利用题目中的面积公式解答.16.(4分)如图,在正方形ABCD中,AD=2,把边BC绕点B逆时针旋转30°得到线段BP,连接AP并延长交CD于点E,连接PC,则三角形PCE的面积为9﹣5.【分析】根据旋转的思想得PB=BC=AB,∠PBC=30°,推出△ABP是等边三角形,得到∠BAP=60°,AP=AB=2,解直角三角形得到CE=2﹣2,PE=4﹣2,过P 作PF⊥CD于F,于是得到结论.【解答】解:∵四边形ABCD是正方形,∴∠ABC=90°,∵把边BC绕点B逆时针旋转30°得到线段BP,∴PB=BC=AB,∠PBC=30°,∴∠ABP=60°,∴△ABP是等边三角形,∴∠BAP=60°,AP=AB=2,∵AD=2,∴AE=4,DE=2,∴CE=2﹣2,PE=4﹣2,过P作PF⊥CD于F,∴PF=PE=2﹣3,∴三角形PCE的面积=CE•PF=×(2﹣2)×(2﹣3)=9﹣5,故答案为:9﹣5.【点评】本题考查了旋转的性质,正方形的性质,等边三角形的判定和性质,解直角三角形,正确的作出辅助线是解题的关键.17.(4分)如图1,点P从△ABC的顶点B出发,沿B→C→A匀速运动到点A,图2是点P运动时,线段BP的长度y随时间x变化的关系图象,其中M为曲线部分的最低点,则△ABC的面积是12.【分析】根据图象可知点P在BC上运动时,此时BP不断增大,而从C向A运动时,BP先变小后变大,从而可求出BC与AC的长度.【解答】解:根据图象可知点P在BC上运动时,此时BP不断增大,由图象可知:点P从B向C运动时,BP的最大值为5,即BC=5,由于M是曲线部分的最低点,∴此时BP最小,即BP⊥AC,BP=4,∴由勾股定理可知:PC=3,由于图象的曲线部分是轴对称图形,∴PA=3,∴AC=6,∴△ABC的面积为:×4×6=12故答案为:12【点评】本题考查动点问题的函数图象,解题的关键是注意结合图象求出BC与AC的长度,本题属于中等题型.18.(4分)将从1开始的连续自然数按以下规律排列:第1行1第2行234第3行98765第4行10111213141516第5行252423222120191817…则2018在第45行.【分析】通过观察可得第n行最大一个数为n2,由此估算2018所在的行数,进一步推算得出答案即可.【解答】解:∵442=1936,452=2025,∴2018在第45行.故答案为:45.【点评】本题考查了数字的变化规律,解题的关键是通过观察,分析、归纳并发现其中的规律,并应用发现的规律解决问题.三、解答题:本大题共7小题,满分60分.解答时,要写出必要的文字说明、证明过程或演算步骤19.(8分)计算:|﹣2|+sin60°﹣﹣(﹣1)2+2﹣2【分析】根据特殊角的三角函数值、负整数指数幂的意义和绝对值的意义计算.【解答】解:原式=2﹣+﹣3﹣+=﹣.【点评】本题考查了实数的运算:实数的运算和在有理数范围内一样,值得一提的是,实数既可以进行加、减、乘、除、乘方运算,又可以进行开方运算,其中正实数可以开平方.20.(8分)如图,在4×4的方格纸中,△ABC的三个顶点都在格点上.(1)在图1中,画出一个与△ABC成中心对称的格点三角形;(2)在图2中,画出一个与△ABC成轴对称且与△ABC有公共边的格点三角形;(3)在图3中,画出△ABC绕着点C按顺时针方向旋转90°后的三角形.【分析】(1)根据中心对称的性质即可作出图形;(2)根据轴对称的性质即可作出图形;(3)根据旋转的性质即可求出图形.【解答】解:(1)如图所示,△DCE为所求作(2)如图所示,△ACD为所求作(3)如图所示△ECD为所求作【点评】本题考查图形变换,解题的关键是正确理解图形变换的性质,本题属于基础题型.21.(8分)如图,一次函数y=kx+b(k、b为常数,k≠0)的图象与x轴、y轴分别交于A、B两点,且与反比例函数y=(n为常数,且n≠0)的图象在第二象限交于点C.CD⊥x轴,垂足为D,若OB=2OA=3OD=12.(1)求一次函数与反比例函数的解析式;(2)记两函数图象的另一个交点为E,求△CDE的面积;(3)直接写出不等式kx+b≤的解集.【分析】(1)根据三角形相似,可求出点C坐标,可得一次函数和反比例函数解析式;(2)联立解析式,可求交点坐标;(3)根据数形结合,将不等式转化为一次函数和反比例函数图象关系.【解答】解:(1)由已知,OA=6,OB=12,OD=4∵CD⊥x轴∴OB∥CD∴△ABO∽△ACD∴∴∴CD=20∴点C坐标为(﹣4,20)∴n=xy=﹣80∴反比例函数解析式为:y=﹣把点A(6,0),B(0,12)代入y=kx+b得:解得:∴一次函数解析式为:y=﹣2x+12(2)当﹣=﹣2x+12时,解得x1=10,x2=﹣4当x=10时,y=﹣8∴点E坐标为(10,﹣8)∴S△CDE =S△CDA+S△EDA=(3)不等式kx+b≤,从函数图象上看,表示一次函数图象不低于反比例函数图象∴由图象得,x≥10,或﹣4≤x<0【点评】本题考查了应用待定系数法求一次函数和反比例函数解析式以及用函数的观点通过函数图象解不等式.22.(8分)现今“微信运动”被越来越多的人关注和喜爱,某兴趣小组随机调查了我市50名教师某日“微信运动”中的步数情况进行统计整理,绘制了如下的统计图表(不完整):步数频数频率0≤x<40008a4000≤x<8000150.38000≤x<1200012b12000≤x<16000c0.216000≤x<2000030.0620000≤x<24000d0.04请根据以上信息,解答下列问题:(1)写出a,b,c,d的值并补全频数分布直方图;(2)本市约有37800名教师,用调查的样本数据估计日行走步数超过12000步(包含12000步)的教师有多少名?(3)若在50名被调查的教师中,选取日行走步数超过16000步(包含16000步的两名教师与大家分享心得,求被选取的两名教师恰好都在20000步(包含20000步)以上的概率.【分析】(1)根据频率=频数÷总数可得答案;(2)用样本中超过12000步(包含12000步)的频率之和乘以总人数可得答案;(3)画树状图列出所有等可能结果,根据概率公式求解可得.【解答】解:(1)a=8÷50=0.16,b=12÷50=0.24,c=50×0.2=10,d=50×0.04=2,补全频数分布直方图如下:(2)37800×(0.2+0.06+0.04)=11340,答:估计日行走步数超过12000步(包含12000步)的教师有11340名;(3)设16000≤x<20000的3名教师分别为A、B、C,20000≤x<24000的2名教师分别为X、Y,画树状图如下:由树状图可知,被选取的两名教师恰好都在20000步(包含20000步)以上的概率为=.【点评】此题考查了频率分布直方图,用到的知识点是频率=频数÷总数,用样本估计整体让整体×样本的百分比,读懂统计表,运用数形结合思想来解决由统计图形式给出的数学实际问题是本题的关键.23.(8分)如图,在Rt△ACB中,∠C=90°,AC=3cm,BC=4cm,以BC为直径作⊙O交AB于点D.(1)求线段AD的长度;(2)点E是线段AC上的一点,试问:当点E在什么位置时,直线ED与⊙O相切?请说明理由.【分析】(1)由勾股定理易求得AB的长;可连接CD,由圆周角定理知CD⊥AB,易知△ACD∽△ABC,可得关于AC、AD、AB的比例关系式,即可求出AD的长.(2)当ED与⊙O相切时,由切线长定理知EC=ED,则∠ECD=∠EDC,那么∠A 和∠DEC就是等角的余角,由此可证得AE=DE,即E是AC的中点.在证明时,可连接OD,证OD⊥DE即可.【解答】解:(1)在Rt△ACB中,∵AC=3cm,BC=4cm,∠ACB=90°,∴AB=5cm;连接CD,∵BC为直径,∴∠ADC=∠BDC=90°;∵∠A=∠A,∠ADC=∠ACB,∴Rt△ADC∽Rt△ACB;∴,∴;(2)当点E是AC的中点时,ED与⊙O相切;证明:连接OD,∵DE是Rt△ADC的中线;∴ED=EC,∴∠EDC=∠ECD;∵OC=OD,∴∠ODC=∠OCD;∴∠EDO=∠EDC+∠ODC=∠ECD+∠OCD=∠ACB=90°;∴ED⊥OD,∴ED与⊙O相切.【点评】此题综合考查了圆周角定理、相似三角形的判定和性质、直角三角形的性质、切线的判定等知识.24.(10分)如图,将矩形ABCD沿AF折叠,使点D落在BC边的点E处,过点E作EG∥CD交AF于点G,连接DG.(1)求证:四边形EFDG是菱形;(2)探究线段EG、GF、AF之间的数量关系,并说明理由;(3)若AG=6,EG=2,求BE的长.【分析】(1)先依据翻折的性质和平行线的性质证明∠DGF=∠DFG,从而得到GD=DF,接下来依据翻折的性质可证明DG=GE=DF=EF;(2)连接DE,交AF于点O.由菱形的性质可知GF⊥DE,OG=OF=GF,接下来,证明△DOF∽△ADF,由相似三角形的性质可证明DF2=FO•AF,于是可得到GE、AF、FG的数量关系;(3)过点G作GH⊥DC,垂足为H.利用(2)的结论可求得FG=4,然后再△ADF中依据勾股定理可求得AD的长,然后再证明△FGH∽△FAD,利用相似三角形的性质可求得GH的长,最后依据BE=AD﹣GH求解即可.【解答】解:(1)证明:∵GE∥DF,∴∠EGF=∠DFG.∵由翻折的性质可知:GD=GE,DF=EF,∠DGF=∠EGF,∴∠DGF=∠DFG.∴GD=DF.∴DG=GE=DF=EF.∴四边形EFDG为菱形.(2)EG2=GF•AF.理由:如图1所示:连接DE,交AF于点O.∵四边形EFDG为菱形,∴GF⊥DE,OG=OF=GF.∵∠DOF=∠ADF=90°,∠OFD=∠DFA,∴△DOF∽△ADF.∴,即DF2=FO•AF.∵FO=GF,DF=EG,∴EG2=GF•AF.(3)如图2所示:过点G作GH⊥DC,垂足为H.∵EG2=GF•AF,AG=6,EG=2,∴20=FG(FG+6),整理得:FG2+6FG﹣40=0.解得:FG=4,FG=﹣10(舍去).∵DF=GE=2,AF=10,∴AD==4.∵GH⊥DC,AD⊥DC,∴GH∥AD.∴△FGH∽△FAD.∴,即=.∴GH=.∴BE=AD﹣GH=4﹣=.【点评】本题主要考查的是四边形与三角形的综合应用,解答本题主要应用了矩形的性质、菱形的判定和性质、相似三角形的性质和判定、勾股定理的应用,利用相似三角形的性质得到DF2=FO•AF是解题答问题(2)的关键,依据相似三角形的性质求得GH的长是解答问题(3)的关键.25.(10分)如图1,已知二次函数y=ax2+x+c(a≠0)的图象与y轴交于点A (0,4),与x轴交于点B、C,点C坐标为(8,0),连接AB、AC.(1)请直接写出二次函数y=ax2+x+c的表达式;(2)判断△ABC的形状,并说明理由;(3)若点N在x轴上运动,当以点A、N、C为顶点的三角形是等腰三角形时,请写出此时点N的坐标;(4)如图2,若点N在线段BC上运动(不与点B、C重合),过点N作NM∥AC,交AB于点M,当△AMN面积最大时,求此时点N的坐标.【分析】(1)根据待定系数法即可求得;(2)根据抛物线的解析式求得B 的坐标,然后根据勾股定理分别求得AB 2=20,AC 2=80,BC10,然后根据勾股定理的逆定理即可证得△ABC 是直角三角形. (3)分别以A 、C 两点为圆心,AC 长为半径画弧,与x 轴交于三个点,由AC 的垂直平分线与x 轴交于一个点,即可求得点N 的坐标;(4)设点N 的坐标为(n ,0),则BN=n +2,过M 点作MD ⊥x 轴于点D ,根据三角形相似对应边成比例求得MD=(n +2),然后根据S △AMN =S △ABN ﹣S △BMN 得出关于n 的二次函数,根据函数解析式求得即可.【解答】解:(1)∵二次函数y=ax 2+x +c 的图象与y 轴交于点A (0,4),与x 轴交于点B 、C ,点C 坐标为(8,0), ∴, 解得. ∴抛物线表达式:y=﹣x 2+x +4;(2)△ABC 是直角三角形.令y=0,则﹣x 2+x +4=0,解得x 1=8,x 2=﹣2,∴点B 的坐标为(﹣2,0),由已知可得,在Rt △ABO 中AB 2=BO 2+AO 2=22+42=20,在Rt △AOC 中AC 2=AO 2+CO 2=42+82=80,又∵BC=OB +OC=2+8=10,∴在△ABC 中AB 2+AC 2=20+80=102=BC 2∴△ABC 是直角三角形.(3)∵A (0,4),C (8,0),∴AC==4,①以A 为圆心,以AC 长为半径作圆,交x 轴于N ,此时N 的坐标为(﹣8,0),②以C 为圆心,以AC 长为半径作圆,交x 轴于N ,此时N 的坐标为(8﹣4,0)或(8+4,0) ③作AC 的垂直平分线,交x 轴于N ,此时N 的坐标为(3,0),综上,若点N 在x 轴上运动,当以点A 、N 、C 为顶点的三角形是等腰三角形时,点N 的坐标分别为(﹣8,0)、(8﹣4,0)、(3,0)、(8+4,0). (4)如图,设点N 的坐标为(n ,0),则BN=n +2,过M 点作MD ⊥x 轴于点D , ∴MD ∥OA ,∴△BMD ∽△BAO , ∴=,∵MN ∥AC ∴=, ∴=,∵OA=4,BC=10,BN=n +2∴MD=(n +2),∵S △AMN =S △ABN ﹣S △BMN =BN•OA ﹣BN•MD =(n +2)×4﹣×(n +2)2=﹣(n﹣3)2+5,当n=3时,△AMN面积最大是5,∴N点坐标为(3,0)。

2018年中考数学试卷及答案解析

2018年中考数学试卷及答案解析

2018年中考数学试卷及答案解析一、试卷概述2018年中考数学试卷总分为150分,分为选择、填空、解答三个部分。

选择题和填空题共计65分,解答题共计85分。

试卷难度适中,覆盖了中学数学的各个知识点,考查重点突出,难度适中,题型形式多样。

二、选择题分析选择题共计15道,每道2分,共计30分。

选择题难度适中,覆盖了中学数学基础知识点,考查了学生的记忆和理解能力,其中有几道题需要细心审题,避免失分。

如下是部分选择题:1.若$a>b>0$,则$\frac{a+b}{a-b}$的值为()A.$-\frac{a+b}{b-a}$B.$\frac{a+b}{b-a}$C.$-\frac{a-b}{b-a}$D.$\frac{a-b}{b-a}$2.有一只蚂蚁位于正方形的一个顶点上,若此蚂蚁只能在正方形边界上爬行,并且每次只能向左或向下,那么它到对角线对面的点至少需要爬行多少条边长?A.1B.2C.3D.43.一根梯子,顶端靠在13米高的树上,底端离树8米,求梯子长。

A.15B.16C.17D.24四、解答题分析解答题共计10道,每道8分,共计80分。

解答题部分难度适中,考查了学生的运算能力和理解能力。

基础题型占多数,部分题目需要思维拓展,需要学生多加思考。

如下是部分解答题:1.已知$\frac{1}{\sqrt{u_1}}+\frac{1}{\sqrt{u_2}}=\frac{3}{2}$,求$\frac{1}{2u_1}+\frac{1}{u_2}$的值。

2.如图,在$\triangle ABC$中,点$E$和$F$分别是$\overline{AC}$和$\overline{AB}$的中点,$\overline{BE}$交$\overline{CF}$于点$G$。

如果$AG=4$,$GB=6$,$CG=8$,那么$\overline{BC}$的长为多少?总体来看,2018年中考数学试卷难度适中,考查范围覆盖了中学数学基础知识点,不易出偏题,对于实力较强的学生来说,可以拿到不错的成绩。

2018年云南省中考数学试卷及答案解析(精析版)

2018年云南省中考数学试卷及答案解析(精析版)

2018年云南中考数学试题解析一、选择题(共8小题,每小题3分,满分24分)1.5的相反数是()A.B.﹣5 C.D. 5考点:相反数。

分析:根据相反数的定义,即只有符号不同的两个数互为相反数,进行求解.解答:解:5的相反数是﹣5.故选B.点评:此题考查了相反数的概念.求一个数的相反数,只需在它的前面加“﹣”号.2.如图是由6个形同的小正方体搭成的一个几何体,则它的俯视图是()A.B.C.D.考点:简单组合体的三视图。

分析:根据俯视图是从上面看到的识图分析解答.解答:解:从上面看,是1行3列并排在一起的三个正方形.故选A.点评:本题考查了三视图的知识,俯视图是从物体的上面看得到的视图.3.下列运算正确的是()A.x2•x3=6 B.3﹣2=﹣6 C.(x3)2=x5D.40=1考点:负整数指数幂;同底数幂的乘法;幂的乘方与积的乘方;零指数幂。

分析:利用同底数幂、负指数、零指数以及幂的乘方的性质求解即可求得答案,注意排除法在解选择题中的应用.解答:解:A、x2•x3=x6,故本选项错误;B、3﹣2==,故本选项错误;C、(x3)2=x6,故本选项错误;D、40=1,故本选项正确.故选D.点评:此题考查了同底数幂、负指数、零指数以及幂的乘方的性质.注意掌握指数的变化是解此题的关键.4.不等式组的解集是()A. x<1 B. x>﹣4 C.﹣4<x<1 D. x>1考点:解一元一次不等式组。

分析:先求出不等式组中每一个不等式的解集,再求出它们的公共部分,即可得到不等式组的解集.解答:解:,由①得﹣x>﹣1,即x<1;由②得x>﹣4;由以上可得﹣4<x<1.故选C.点评:主要考查了一元一次不等式解集的求法,其简便求法就是用口诀求解,求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).5.如图,在△ABC中,∠B=67°,∠C=33°,AD是△ABC的角平分线,则∠CAD的度数为()A. 40°B. 45°C. 50°D. 55°考点:三角形内角和定理。

2018年数学 考试质量分析

2018年数学 考试质量分析

2018年中考数学考试质量分析立达中学沈怡试卷考查的知识点符合《上海市初中数学教学学科基本要求》,试卷知识覆盖面广,结构、题量与往年相同。

重视对基础知识、基本技能的考查,部分试题源于教材,没有偏题、怪题,突出了重点知识的考查。

(一)中考总体情况(二)试卷分析1、重视基础,回归课本。

如19题考查了不等式的解法,20题考查了分式的基本运算,21题考查了基本几何计算,都是基础知识,基本技能的考查。

而部分试题源于教材,如第17题的填空题,与初三数学相似三角形内容中的例题几乎是相似的,图形也是一样的,解答第22题的加油问题同样也出现在教材的应用问题中。

2、联系实际,突出应用。

如选择题第4题以居民垃圾分类为素材,要求学生找出相关数据中的中位数和众数;第12题以某校学生自主建立学生用品义卖平台为素材,求义卖所得中20~30元这个小组的组频率;第22题是以汽车加油为背景的函数应用问题,让学生在解题的过程中,感受生活中的数学。

3、关注理解,注重基本数学思想注重阅读理解能力,引导学生利用转化思想,把文字语言转化成数字与图形,如第18题的新定义题,就是需要学生仔细阅读,才能理解题意,找出合适的数学方法解决。

如16题的求多边形内角和的度数问题,通过转化为三角形内角和问题来解决。

如25题中,求弦AC的长,对同圆或等圆中的弦、弧、圆心角三者之间关系的理解是问题解决的关键。

(三)经验与建议从此次的成绩来看,我校数学学科均分相比往年有所进步,在优秀率及及格率上也有提高,因此我们要继续延续有效的做法,再反思做的不够的地方,进行教学方面的改进,具体如下:1、重视教材,注重基础知识与基本技能。

中考试卷又一次提醒我们数学教师要重视教材,要认真对待书中的例题,与知识点形成的过程。

此次多边形内角和的转化问题就是书本中多边形内角和公式的推导过程的体现,让学生认识到多边形与三角形这一基本图形的关系。

由于我们在平时的备课中,注重概念教学,力求让学生理解知识点的形成,而不是急于求成,只记公式就行,所以我们学生在这一题中都表示答题很顺利。

2018年初中数学试卷分析-word范文 (6页)

2018年初中数学试卷分析-word范文 (6页)

2018年初中数学试卷分析-word范文本文部分内容来自网络,本司不为其真实性负责,如有异议或侵权请及时联系,本司将予以删除!== 本文为word格式,下载后可随意编辑修改! ==初中数学试卷分析初中数学试卷分析范文(一)这次数学试卷检测的范围应该说内容是非常全面的,难易也适度,比较能如实反映出学生的实际数学知识的掌握情况。

也应证了平常我对学生说的那句话:“书本知识真正掌握了,试卷的85分就能拿下了,还有的15分来源于你的理解、分析、拓展能力了。

”而从考试成绩来看,基本达到了预期的目标。

一、从卷面看,大致可以分为两大类,第一类是基础知识,通过填空、判断、选择、口算、列竖式计算和画图以及操作题的检测。

第二类是综合应用,主要是考应用实践题。

无论是试题的类型,还是试题的表达方式,都可以看出出卷老师的别具匠心的独到的眼光。

试卷能从检测学生的学习能力入手,细致、灵活地来抽测每册的数学知识。

打破了学生的习惯思维,能测试学生思维的多角度性和灵活性。

二、学生的基本检测情况如下:总体来看,学生都能在检测中发挥出自己的实际水平,合格率都在96%以上,优秀率在55%左右。

1、在基本知识中,填空的情况基本较好。

应该说题目类型非常好,而且学生在先前也已练习过,因此正确较高,这也说明学生初步建立了数感,对数的领悟、理解能力有了一定的发展,学生良好思维的培养就在于做像这样的数学题,改变以往的题目类型,让学生的思维很好的调动起来,而学生缺少的就是这个,以致失分严重。

2、此次计算题的考试,除了一贯有的口算、递等式计算以外,最要的是多了学生自主编题、用不同方法计算的题型,通过本次测验,我认识到学生的计算习惯真的要好好培养。

3、对于应用题,培养学生的读题能力很关键。

自己读懂题意,分析题意在现在来看是一种不可或缺的能力,很多学生因为缺少这种能力而在自己明明会做的题上失了分,太可惜了。

4、还有平时应该多让学生动手操作,从自己的操作中学会灵活运用知识。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2108年呼伦贝尔市初中毕业生学业考试数学学科质量分析呼伦贝尔市教育研修学院初中教研室张丽莉一、试题特点1.试题综合性强,突出综合运用能力的考查。

以选择题为例:6至12题均考查多个知识点,对综合运用能力、知识迁移能力、逆向思维能力等要求较高。

2.试题难度大。

整套试题难度值0.42。

难度值低于0.3的较难题共8道题,总分值为45分,占37.5%。

难度介于0.3—0.7之间的中等难度的题目总分值50分,占41.67%。

难度值高于0.7的容易题分值为25分,占20.83%。

试题明显高于6:3:1的难度。

3.试题计算量偏大,答题时间紧。

如2题、11题、15题、16题、17题、25题解题过程中计算耗时较长,比如25题部分学生只能列,但没有时间求解。

4. 空间与图形部分的内容所占比例偏高。

分值为50分,占41.67%。

5.试题突出了数学思想方法的考查。

突出考查了数形结合思想、化归思想、分类讨论、统计思想等初中阶段重要的数学思想方法。

二、试题及成绩统计分析(一)题型结构表一:非选择题包括:填空题、基本解答题、统计题、证明题、推理求值题、应用题、综合解答题。

(二)试题难易分布14、15、17、19、22、24(2)、25(2)较难题45分37.5%(3)26(2)(3)(三)试题难度系数表二:题号一二三四五六七八总分分值36 15 24 7 7 8 10 13 120 平均分22.23 4.46 11.47 1.12 5.58 1.87 2.22 1.67 50.59 难度值0.618 0.297 0.478 0.16 0.797 0.234 0.22 0.13 0.42 以上统计数据反映出试题难度大,较难题与中等难度的题目占比偏多。

(四):成绩统计分析图二:全市合格率:21.86%,优秀率0.65%,十三个地区中海拉尔区、牙克石市、“两率”均高于全市平均水平,根河市、鄂温克旗、新左旗、满洲里市合格率高于全市平均水平,其中根河的合格率进入全市前三名。

优秀率整体偏低,比较好的有海拉尔区优秀人数76人,牙克石市12人,鄂伦春旗3人(大一中2人、阿里河中学1人),扎兰屯(民中)、额尔古纳(二中)、鄂温克旗、莫旗(汉中、三中各1人)优秀人数均为2人。

全市优秀人数共计99人。

其他几个地区两率均低于全市平均水平。

(注:以上数据按学籍人数统计)与2017年相比全市合格率下浮24.6个百分点,优秀率下浮3.04个百分点,十三个旗市区降幅较大的有陈旗、满洲里市、额尔古纳市、鄂温克旗,降幅分别达到30.84%、30.21%、29.93%、29.27%。

(五)数学合格率位于前二十名的学校(表三)序号学校参考人数合格人数合格率优秀人数优秀率1 海拉尔区第五中学682 438 64.22% 55 8.06%2 海拉尔区新海中学137 80 58.39% 4 2.92%3 海拉尔区第七中西校340 176 51.76% 10 2.94%4 牙克石育才中学439 215 48.97% 5 1.14%5 根河市阿龙山中学43 20 46.51% --6 牙克石七中284 126 44.37% 4 1.41%7 鄂温克大雁二中113 50 44.25% 2 1.77%8 牙克石乌林一中57 23 40.35% 1 1.75%9 牙克石市塔尔气中学67 26 38.81% 1 1.49%10 鄂温克大雁一中97 37 38.14% --11 海拉尔谢尔塔拉中心校37 14 37.84% --12 牙克石绰河原中学35 13 37.14% --13 海拉尔学府路中学398 146 36.68 3 0.75%14 牙克石四中173 63 36.42% 1 0.58%15 海拉尔南开路中学109 39 35.78% 1 0.92%根河市2所,满洲里市1所,我市122所初中学校中,海五中两率均居全市第一,均远远高于全市平均水平。

(注:以上数据按学籍人数统计)三、答题情况及答题反映出的问题(一)选择题:共12小题,满分36分,平均得分22.23分,得分率61.75%。

(表四)选择题1至5题突出对基础知识、基本技能的考查,得分情况较好。

其中⑴⑶⑸题得分率80%以上,涉及知识点有倒数、三视图、平行线的性质等基础知识,这些知识教学中落的比较好。

6至12题均考查多个知识点,对综合运用能力、知识迁移能力、逆向思维能力等要求较高。

答题反映出以下问题:1.⑵题整式的运算,涉及知识点有多项式乘法、合并同类项、同底数幂的乘法、积的乘方、幂的乘方。

36.5%的学生没有得分,反映出相当一部分学生基础知识不扎实,基本技能没形成,计算能力薄弱。

2.⑹题呈现方式较灵活,题干的表述为作已知角的平分线的作法,考查学生对运用尺规作角平分线方法的认知情况以及特殊点坐标的特征,60%以上的学生没得分,反映出教学中对于源于教材、源于课标的内容落实不到位。

本题正确答案为D,误选A的占3.18%,误选B的占43.54%,错因忽略第二象限角平分线上的点的特征是横纵坐标互为相反数,误选C的占19.29%,错因是答题不细心考虑到第二象限角平分线上的点横纵坐标之和为零,但是没有看清选项中符号的变化。

3.⑻题考查旋转的性质的理解和应用,问题呈现在坐标系中,给出定点坐标解决问题需要学生动手建系、描点,作出旋转后的图形,利用勾股定理及点坐标值求出旋转半径,再根据旋转角确定旋转后点的位置,从而确A /点坐标,不仅考查知识的综合运用,同时考查作图解决问题的能力。

近60%的学生没有得分暴露出教学中对学生作图能力、综合运用能力培养欠缺。

从错误选项情况分析,误选A 的占8.8%,误选B 的占35.29%,误选C 的占13.8%,反映出大部分学生没有理解旋转性质,误选B 反映出在利用横、纵坐标求与X 轴的夹角时出现错误,将600度求为300了。

不作图凭想完成了此题导致出错,暴露出学生小题不动笔的不良习惯。

从A 、C 误选情况看部分学生顺时针与逆时针不区分。

⑼题综合考查一次函数的图像和性质与二次根式、零指数幂的意义。

通过0)1(1-+-m m 有意义,确定m 的取值范围,从而确定一次函数mx m y -+-=1)1(的图象可能是选项中的哪一个。

本题43.18%学生没得分。

正确选项为A ,误选B 的占16.3%,错因是一次函数b 值的正负确定有误,误选C 的占16.5%,误选D 的占8.5%,错因是m 的取值范围确定错误,说明学生对二次根式及负指数幂有意义的条件没有掌握。

⑽题二次根式的化简综合性强,涉及完全平方公式、a a =2、根据绝对值的意义去掉绝对值符号从而化为最简结果。

63.83%的学生没得分,反映出学生综合运用能力薄弱,基础知识掌握不扎实,应知应会的公式记忆不牢固。

误选B 的占26.53%,错因是化简到41---a a 时,去绝对值符号时没有考虑已知条件1<a <3,直接去掉绝对值符号导致错误。

误选C 的占15.44%,错因是去括号时括号前面的符号是负号忘记变号导致的错误。

误选D 的占20.59%,错因是在去掉绝对值符号时只考虑到第一个绝对值符号中式子的正负,而没有考虑第二个式子的正负情况,导致误选。

学生失分一方面是此题综合性强,涉及知识多,另一方面也反映出学生基础知识不扎实,综合运用能力薄弱。

⑾题综合考查扇形面积公式、等弧所对圆心角相等、正方形性质、等腰直角三角形性质等知识点。

学生误选A 占10.97%,错因扇形面积公式记忆不准确,等腰直角三角形面积计算有误,求阴影面积方法错误。

误选B 占18.52%,错因是错因扇形面积公式与弧长公式混淆;误选D 占16.52%,错因是求三角形面积时没有除2,答题不细心导致出错。

4.⑿题以平面直角坐标系中反比例函数的图像上两定点与x轴正半轴上一动点为问题背景,构成运动变化的三角形,寻求线段差达到最大值时动点坐标,解决问题的知识依据“两边之差小于第三边”。

考査综合运用能力、知识迁移能力、逆向思维、自主探究、动手操作的能力,关注知识间的联系与迁移。

此题正确答案D,误选A的占17.37%,误选B的占14.93%,误选C的占19.16%。

错因可能性较多,如计算失误、选最小值、随机选择等,最关键是这53%的学生没有考虑到解决问题的正确思路,不把线段之差最大值的问题迁移到“三角形两边之差小于第三边”的知识,思维定式严重,遇到最值问题就想到时最短路径问题及二次函数最值问题,缺少思维灵活性的训练,也暴露出专项复习时关注点片面。

(二)填空题:共5小题,满分15分,平均分4.46,得分率29.73%。

填空题注重对易错点的考查,对审题能力,计算能力,综合运用能力的考查。

在14729名考生中,得0分和3分占60%,6分占23.9%,得9分-15分仅占16.83%,87人满分占0.61%⒀题典型问题及错因:1.因式分解概念不清,与整式乘法混淆,结果是和或差的形式,例如:a(x-3)-(a+1)(a-1), a(x-3)+(a+1)(a-1)。

2.因式分解不彻底.如:(a3-a)(x-3) , a(x-3)(a2-1)3.符号问题,如:a(x+3)(a+1)(a-1) , -a(x-3)(a+1)(a-1)4.解法复杂,将原式展开重新分组,导致错误.如:a3(x-3)+(3-x)a=a3x-3a3+3a-ax=ax(a2-1)+3a(1-a2)=(a2-1)(ax-3a)=a(x-3)(a2-1) 或(ax-3a)(a+1)(a-1)5.答题粗心,误写字母。

如x(x-3)(x+1)(x-1) , a(a-3)(a+1)(a-1)⒁题典型问题及错因:1.不会用科学计数法表示数。

如:9600000000,0.96×10132. 审题不认真,没进行单位换算。

如:9.6×1063. 单位换算不准确,如1km 2=106m 2 ,例9.6×1015 ,9.6×109 ,9.6×1010 ⒂题考查知识点一元二次方程的根及其整式运算,运算过程中需要进行拆项、降次、运用整体代入法。

此题运用综合知识及方法解决问题的能力,因此得分率极低。

得分率仅达到3.67%。

⒄题考查的知识点:矩形的性质,轴对称图形的性质,全等三角形的性质及判定,勾股定理。

考查的思想方法:化归转化思想,方程思想,得分率4.78%。

典型问题:1不能综合运用矩形、轴对称、全等三角形的性质找到ME=DF 2 利用勾股定理列方程时,将直角边误认为是斜边,导致代入错误。

从⒂⒄题两题的得分率可反映出,导致得分率过低的主要因素是试题综合性太强,难度大。

(三) 计算题:⒅题是常见计算题,主要考查学生的运算能力及其相关基础知识,涉及知识点有负指数、零指数幂的计算、求立方根、特殊三角函数值、二次根式的计算,全市平均得分率63.67%,满分率51.32%,零分率19.85%,在全市13个旗市区中计算题成绩突出的有新左旗、海拉尔区、陈旗、鄂温克旗,得分率均在70%以上,满分率也分别高于全市平均水平18.42%、14.95%、6.43%、5.19%。

相关文档
最新文档