高二文科数学期末试卷及答案

合集下载

人教版高二数学下学期文科数学期末考试题及答案

人教版高二数学下学期文科数学期末考试题及答案

人教版高二数学下学期文科数学期末考试题及答案------------------------------------------作者------------------------------------------日期符合题目要求.命题❽ , ❾的否定是✌. , . ,. , . ,.下列有关命题的说法正确的是✌.命题❽若 ,则 ❾的否命题为❽若 ,则 ❾.命题❽若 ,则 ❾的逆否命题是假命题.命题❽若 ,则 全不为 ❾为真命题.命题❽若 ❾,则 ❾的逆命题为真命题.抛物线 的焦点坐标为✌. . . ..已知正方体 中,点 为上底面 的中心,若 ,则 的值是✌. . . ..如图,在正方体✌✷✌中,☜是 的中点,则异面直线 ☜与✌夹角的余弦值为✌. .  .过点 ,且与 有相同渐近线的双曲线方程是✌. . . ..❽方程  表示焦点在⍓轴上的椭圆❾的充分不必要条件是✌. . . ..已知 的顶点 、 分别为双曲线 的左右焦点,顶点 在双曲线 上,则 的值等于✌. . . . .已知抛物线 上的焦点 ,点 在抛物线上,点 ,则要使 的值最小的点 的坐标为✌. . . ..如图,已知正方形 的边长为 , 分别是 的中点, 平面 ,且 ,则点 到平面 的距离为✌. . . ..如图,椭圆 的四个顶点 构成的四边形为菱形,若菱形 的内切圆恰好过焦点,则椭圆✌. . . ..双曲线 的实轴长和焦距分别为✌. . . .第♋卷 共 分二、填空题:本大题有 小题,每小题 分,共 分,把答案填在答卷的相应位置.已知向量 , ,且 与 垂直,则 等于 ✉✉✉✉✉ .设 , 是椭圆 的两个焦点,点 在椭圆上,且 ,则 的面积为✉✉✉✉✉ .已知抛物线 , 为其焦点, 为抛物线上的任意点,则线段 中点的轨迹方程是✉✉✉✉✉ .有一抛物线形拱桥,中午 点时,拱顶离水面 米,桥下的水面宽 米;下午 点,水位下降了 米,桥下的水面宽 ✉✉✉✉✉ 米.如图,甲站在水库底面上的点 处,乙站在水坝斜面上的点 处,已知测得从 到库底与水坝的交线的距离分别为 米、 米, 的长为 米, 的长为 米,则库底与水坝所成的二面角的大小为 ✉✉✉✉✉ 度.已知平面 经过点 ,且 是它的一个法向量 类比曲线方程的定义以及求曲线方程的基本步骤,可求得平面 的方程是 ✉✉✉✉✉ 三、解答题:本大题有 题,共 分,解答应写出文字说明、证明过程或演算步骤.(本小题满分 分)在如图的多面体中, 平面 ,  , , , , , 是 的中点.☎♊✆ 求证: 平面 ;☎♋✆ 求二面角 的余弦值.(本小题满分 分)已知抛物线 与直线 交于 两点☎♊✆求弦 的长度;☎♋✆若点 在抛物线 上,且 的面积为 ,求点 的坐标.☎本小题满分 分✆已知双曲线 与椭圆 有相同的焦点,实半轴长为 ☎♊✆求双曲线 的方程;☎其中 为原点✆求 的取值范围.☎本小题满分 分✆如图,在平行四边形 中, ,将它们沿对角线 折起,折后的点 变为 ,且 . 学科网☎♊✆求证:平面 平面 ;☎♋✆ 为线段 上的一个动点,当线段 的长为多少时 与平面 所成的角为 ? 学科网.(本小题满分 分)如图,已知椭圆 , 是椭圆 的顶点,若椭圆 的离心率 ,且过点 ☎♊✆求椭圆 的方程;☎♋✆作直线 ,使得 ,且与椭圆 相交于 两点(异于椭圆 的顶点),设直线 和直线 的倾斜角分别是 ,求证: 参考答案一、选择题: - : ✌ ✌✌二、填空题:. .  . . 三、解答题:.解 ☎♊✆证法一: ,  又  是 的中点, ,四边形 是平行四边形, 平面 , 平面 , 平面 证法二: 平面 , 平面 , 平面 ,, ,又  两两垂直以点☜为坐标原点, 分别为 轴建立如图的空间直角坐标系 由已知得, ( , , ), ( , , ),( , , ), ( , , ), ( , , ), ( , , )设平面 的法向量为则 ,即 ,令 得 ,即 ☎♋✆由已知得 是平面 的法向量设平面 的法向量为 , ,,即 ,令 得 则 , 二面角 的余弦值为.解:☎♊✆设✌(⌧⍓✆、 ☎⌧⍓✆由 得⌧⌧法一:又由韦达定理有⌧⌧⌧⌧ ✌ 法二:解方程得:⌧或 , ✌、 两点的坐标为( ✆、( )✌☎♋✆设点 设点 到✌的距离为♎则✌ ❿ ❿ , ,解得 或点为( , )或( , ).解:☎♊✆设双曲线的方程为   故双曲线方程为 ☎♋✆将 代入 得由 得 且设 则由 得得又 , 即. ☎♊✆又 ,平面 平面(♋)在平面 过点 作直线 分别直线 为⌧,⍓, 建立空间直角坐标系 ⌧⍓则✌☎✆, ☎ ✆, ☎ ✆设 ,则 又 是平面 的一个法向量解得 ,即 时, 与平面 所成的角为 .  解:(♊)由已知得: , 椭圆 的方程为 (♋)由(♊)知: , ,故可设直线 的方程为 ,设 ,由 得,即 异于椭圆 的顶点, 。

高二数学上学期期末考试试卷(文科)(共5套,含参考答案)

高二数学上学期期末考试试卷(文科)(共5套,含参考答案)

高二上学期期末考试数学试题(文)第I 卷(选择题)一、选择题(本题共12道小题,每小题5分,共60分)1. 已知,,a b c 满足a b c <<,且0ac <,则下列选项中一定成立的是( )A.ab ac <B.()0c a b ->C.22ab cb <D.()220a cac ->2.若不等式202mx mx ++>恒成立,则实数m 的取值范围是( ) A.2m > B.2m < C. 0m <或2m >D.02m <<3.2014是等差数列4,7,10,13,…的第几项( ). A .669B .670C .671D .6724.△ABC 中,a=80,b=100,A=450则三角形解的情况是( ) A .一解B .两解C .一解或两解D .无解5.一元二次不等式ax 2+bx +2>0的解集为(-12,13),则a +b 的值是( ). A .10B .-10C .14D .-146.等差数列{an}中s 5=7,s 10=11,则s 30=( ) A 13 B 18 C 24 D 317.△ABC 中a=6,A=600 c=6 则C=( ) A 450, B 1350C 1350,450D 6008.点(1,1)在直线ax+by-1=0上,a,b 都是正实数,则ba 11+的最小值是( )A 2B 2+22C 2-22D 4 9.若a ∈R ,则“a =1”是“|a|=1”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充要条件 D .既不充分又不必要条件10.下列有关命题的说法正确的是 ( ) A .命题“若21x =,则1=x ”的否命题为:“若21x =,则1x ≠”; B .命题“x R ∃∈,使得210x x ++<”的否定是:“x R ∀∈,均有210x x ++<”; C .在ABC ∆中,“B A >”是“B A 22cos cos <”的充要条件; D .“2x ≠或1y ≠”是“3x y +≠”的非充分非必要条件.11中心在原点、焦点在x 轴上,若长轴长为18,且两个焦点恰好将长轴三等分,则此椭圆的方程是( )A . +=1B . +=1C .+=1 D .+=112.抛物线x 2=4y 的焦点坐标为( )A .(1,0)B .(﹣1,0)C .(0,1)D .(0,﹣1)第II 卷(非选择题)二、填空题(本题共4道小题,每小题5分,共20分) 13. 不等式31≤+xx 的解集是_____________ 14. 已知直线21=+y x 与曲线3y x ax b =++相切于点(1,3),则实数b 的值为_____. 15.在等比数列{a n }中,a 3a 7=4,则log 2(a 2a 4a 6a 8)=________.16.ABC ∆中,a 2-b 2 =c 2+bc 则A= .三、解答题17.已知函数()(2)()f x x x m =-+-(其中m>-2). ()22x g x =-. (I )若命题“2log ()1g x ≥”是假命题,求x 的取值范围;(II )设命题p :∀x ∈R ,f(x)<0或g(x)<0;命题q :∃x ∈(-1,0),f(x)g(x)<0. 若p q ∧是真命题,求m 的取值范围.18函数f(x)=3lnx-x 2-bx.在点(1,f (1))处的切线的斜率是0 (1)求b ,(2)求函数的单调减区间19.锐角ABC ∆的内角,,A B C 的对边分别为,,a b c ,已知()2cos 2sin .2C B A -=(Ⅰ)求sin sin A B 的值;(Ⅱ)若3,2a b ==,求ABC ∆的面积.20. (本小题满分12分)数列{n a }的前n 项和为n S ,2131(N )22n n S a n n n *+=--+∈ (Ⅰ)设n n b a n =+,证明:数列{n b }是等比数列; (Ⅱ)求数列{}n nb 的前n 项和n T ;21已知椭圆C :=1(a >b >0)的短半轴长为1,离心率为(1)求椭圆C 的方程(2)直线l 与椭圆C 有唯一公共点M ,设直线l 的斜率为k ,M 在椭圆C 上移动时,作OH ⊥l 于H (O 为坐标原点),当|OH|=|OM|时,求k 的值. 22.设函数32()2338f x x ax bx c =+++在1x =及2x =时取得极值. (Ⅰ)求,a b 的值;(Ⅱ)当[03]x ∈,时,函数()y f x = 的图像恒在直线2y c =的下方,求c 的取值范围.答案一选择题、D D C B . D D C B A .D A C二、填空题. {|0x x <或1}2x ≥ .3 4. 120017、.解:(I )若命题“2log ()1g x ≥”是假命题,则()2log 1g x <即()2log 221,0222x x -<<-<,解得1<x <2;(II )因为p q ∧是真命题,则p,q 都为真命题,当x >1时,()22x g x =->0,因为P 是真命题,则f(x)<0,所以f(1)= ﹣(1+2)(1﹣m) <0,即m <1;当﹣1<x <0时,()22x g x =-<0,因为q 是真命题,则∃x ∈(-1,0),使f(x) >0,所以f(﹣1)= ﹣(﹣1+2)( ﹣1﹣m) >0,即m >﹣1,综上所述,﹣1<m <1. 18,(1)b=1 (2)(1,∞)19. 解:(Ⅰ)由条件得cos(B -A)=1-cosC=1+cos(B+A), 所以cosBcosA+sinBsinA=1+cosBcosA -sinBsinA,即sinAsinB=12;(Ⅱ)sin 3sin 2A aB b ==,又1sin sin 2A B =,解得:sin 23A B ==,因为是锐角三角形,1cos ,cos 23A B ∴==,()sin sin sin cos cos sin C A B A B A B =+=+=11sin 322262S ab C ∆+==⨯⨯⨯=. 略20.【答案】解:(Ⅰ)∵ 213122n n a S n n +=--+,…………………………①∴ 当1=n 时,121-=a ,则112a =-, …………………1分当2n ≥时,21113(1)(1)122n n a S n n --+=----+,……………………②则由①-②得121n n a a n --=--,即12()1n n a n a n -+=+-,…………………3分∴ 11(2)2n n b b n -=≥,又 11112b a =+=, ∴ 数列{}n b 是首项为12,公比为12的等比数列,…………………4分 ∴ 1()2n n b =. ……………………5分(Ⅱ)由(Ⅰ)得2n nn nb =. ∴ n n n nn T 221..........242322211432+-+++++=-,……………③ 1232221..........24232212--+-+++++=n n n nn T ,……………④……………8分 由④-③得n n n nT 221......2121112-++++=- 1122212212nn n n n ⎛⎫- ⎪+⎝⎭=-=--.……………………12分21、【解答】解:(1)椭圆C:=1(a >b >0)焦点在x 轴上,由题意可知b=1,由椭圆的离心率e==,a 2=b 2+c 2,则a=2∴椭圆的方程为;﹣﹣﹣﹣﹣﹣﹣(2)设直线l :y=kx+m ,M (x 0,y 0).﹣﹣﹣﹣﹣﹣﹣,整理得:(1+4k 2)x 2+8kmx+4m 2﹣4=0,﹣﹣﹣﹣﹣﹣﹣令△=0,得m 2=4k 2+1,﹣﹣﹣﹣﹣﹣﹣由韦达定理得:2x0=﹣,x02=,﹣﹣﹣﹣﹣﹣﹣∴丨OM丨2=x02+y02=x02+(kx+m)2=①﹣﹣﹣﹣﹣﹣﹣又|OH|2==,②﹣﹣﹣﹣﹣﹣﹣由|OH|=|OM|,①②联立整理得:16k4﹣8k2+1=0﹣﹣﹣﹣﹣﹣﹣∴k2=,解得:k=±,k的值±.﹣﹣﹣﹣﹣﹣﹣22.(Ⅰ)a=-3,b=4(Ⅱ)(-∞,-1)∪(9,+∞)(Ⅰ)f'(x)=6x2+6ax+3b,因为函数f(x)在x=1及x=2取得极值,则有f'(1)=0,f'(2)=0.即6630241230a ba b++=⎧⎨++=⎩解得a=-3,b=4.(Ⅱ)由(Ⅰ)可知,f(x)=2x3-9x2+12x+8c,f'(x)=6x2-18x+12=6(x-1)(x-2).当x∈(0,1)时,f'(x)>0;当x∈(1,2)时,f'(x)<0;当x∈(2,3)时,f'(x)>0.所以,当x=1时,f(x)取得极大值f(1)=5+8c,又f(0)=8c,f(3)=9+8c.则当x∈[0,3]时,f(x)的最大值为f(3)=9+8c.因为对于任意的x∈[0,3],有f(x)<c2恒成立,所以9+8c<c2,解得c<-1或c>9,第一学期期末调研考试高中数学(必修⑤、选修1-1)试卷说明:本卷满分150分.考试用时120分钟.一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若p q ∧是假命题,则A .p 是真命题,q 是假命题B .,p q 均为假命题C .,p q 至少有一个是假命题D .,p q 至少有一个是真命题 2.一个等比数列的第3项和第4项分别是12和18,则该数列的第1项等于 A .27 B .163 C .812D .8 3.已知ABC ∆中,角A 、B 的对边为a 、b ,1a =,b = 120=B ,则A 等于 A .30或150 B .60或120 C .30 D .60 4.曲线xy e =在点(1,)e 处的切线方程为(注:e 是自然对数的底)A . (1)x y e e x -=-B . 1y x e =+-C .2y ex e =-D .y ex =5.不等式组⎩⎪⎨⎪⎧y ≤x ,x +y ≤1,y ≥-1,表示的平面区域的面积是A .41 B .49 C .29 D .236.已知{}n a 为等差数列,1010=a ,前10项和7010=S ,则公差=d A .32- B .31- C . 31 D . 327.函数()f x 的导函数...()'f x 的图象如图所示,则 A .1x =是()f x 的最小值点xB .0x =是()f x 的极小值点C .2x =是()f x 的极小值点D .函数()f x 在()1,2上单调递增8. 双曲线22221(0,0)x y a bb a -=>>的一条渐近线方程是y =,则双曲线的离心率是A .B .2C . 3D .9.函数3()1f x ax x =++有极值的充分但不必要条件是 A . 1a <-B . 1a <C . 0a <D . 0a >10.已知点F 是抛物线x y =2的焦点,A 、B 是抛物线上的两点,且3||||=+BF AF ,则线段AB 的中点到y 轴的距离为 A .43 B .1 C .45 D .4711.已知直线2+=kx y 与椭圆1922=+my x 总有公共点,则m 的取值范围是 A .4≥m B .90<<m C .94<≤mD .4≥m 且9≠m12.已知定义域为R 的函数)(x f 的导函数是)(x f ',且4)(2)(>-'x f x f ,若1)0(-=f ,则不等式x e x f 22)(>+的解集为A .),0(+∞B .),1(+∞-C .)0,(-∞D .)1,(--∞二、填空题:本大题共4小题,每小题5分,满分20分.13.命题“若24x =,则2x =”的逆否命题为__________.14.ABC ∆中,若AB =1AC =,且23C π∠=,则BC =__________.15.若1x >,__________. 16.设椭圆()2222:10x y C a b a b+=>>的左右焦点为12F F ,,过2F 作x 轴的垂线与C 交于A B ,两点,若1ABF ∆是等边三角形,则椭圆C 的离心率等于________.三、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.(本小题满分10分)已知ABC ∆的三个内角A ,B ,C 的对边长分别为a ,b ,c ,60B =︒. (Ⅰ)若2b ac =,请判断三角形ABC 的形状;(Ⅱ)若54cos =A ,3c =+,求ABC ∆的边b 的大小.18.(本小题满分12分)等比数列{}n a 的各项均为正数,且11a =,4332=+a a (*n N ∈). (Ⅰ)求数列{}n a 的通项公式;(Ⅱ)已知(21)n n b n a =-⋅,求数列{}n b 的前n 项和n T .19.(本小题满分12分)已知椭圆的中心在坐标原点O ,长轴长为离心率e =,过右焦点F 的直线l 交椭圆于P ,Q 两点.(Ⅰ)求椭圆的方程; (Ⅱ)当直线l 的倾斜角为4π时,求POQ ∆的面积.20.(本小题满分12分)某农场计划种植甲、乙两个品种的水果,总面积不超过300亩,总成本不超过9万元.甲、乙两种水果的成本分别是每亩600元和每亩200元.假设种植这两个品种的水果,能为该农场带来的收益分别为每亩0.3万元和每亩0.2万元.问该农场如何分配甲、乙两种水果的种植面积,可使农场的总收益最大?最大收益是多少万元?21.(本小题满分12分)设函数329()62f x x x x a =-+-. 在 (Ⅰ)求函数)(x f 的单调区间;(Ⅱ)若方程()0f x =有且仅有三个实根,求实数a 的取值范围.22.(本小题满分12分)如图,设抛物线22(0)y px p =>的焦点为F ,抛物线上的点A 到y 轴的距离等于||1AF -. (Ⅰ)求p 的值;(Ⅱ)若直线AF 交抛物线于另一点B ,过B 与x 轴平行 的直线和过F 与AB 垂直的直线交于点N ,求N 的横坐标 的取值范围.x第一学期期末调研考试高中数学(必修⑤、选修1-1)参考答案与评分标准一、选择题:本大题共12小题,每小题5分,共60分.二、填空题:本大题共4小题,每小题5分,共20分.13.若2x ≠,则24x ≠; 14.1 ; 15.15 ; 16. 三、解答题:解答应写出文字说明、证明过程或演算步骤. 17. 解:(Ⅰ)由2222cos b a c ac B ac =+-⋅=,1cos cos 602B =︒=,……………………2分得0)(2=-c a ,即:c a =.………………………………………………………5分 又60B =︒,∴ 三角形ABC 是等边三角形. ……………………………………………………5分(Ⅱ)由4cos 5A =,得3sin 5A =,…………………………………………………………6分 又60B =︒,∴ sin sin()sin cos cos sin C A B A B A B =+=⋅+⋅314525=⨯+7分 由正弦定理得(3sin sin c Bb C+⋅===10分18.解:(Ⅰ)设等比数列{}n a 的公比为q ,∴43)(2132=+=+q q a a a ……………………………………………………1分 由432=+q q 解得:21=q 或23-(舍去).…………………………………3分∴所求通项公式11121--⎪⎭⎫ ⎝⎛==n n n q a a .………………………………………5分(Ⅱ)123n n T b b b b =++++即()0112123252212n n T n -=⋅+⋅+⋅+⋅⋅⋅+-⋅------------①…………………………………6分①⨯2得 2()132123252212nn T n =⋅+⋅+⋅+⋅⋅⋅+-⋅ -----②……………………7分①-②:()1121222222212n n n T n --=+⋅+⋅+⋅⋅⋅+⋅--…………………………………8分9分()3223n n =--,……………………………………………………………………………11分 ()3232n n T n ∴=-+.………………………………………………………………………12分19. 解:(Ⅰ)由题得:22222c a a b c a ===+..................................................................2分 解得1a b ==, (4)分椭圆的方程为2212x y +=. (5)分(Ⅱ)(1,0)F ,直线l 的方程是tan (1)14y x y x π=-⇒=- (6)分由2222232101x y y y x y ⎧+=⇒+-=⎨=+⎩(*)…………………………………………………………………………7分设1122(,),(,)P xy Q x y ,(*)2243(1)160∆=-⨯⨯-=>………………………………………………………8分124||3y y ∴-===……………………………………………………10分121142||||12233OPQ S OF y y ∆∴=-=⨯⨯= POQ ∆的面积是23……………………………………………………….…………………………………………12分20. 解:设甲、乙两种水果的种植面积分别为x ,y 亩,农场的总收益为z 万元,则 ………1分300,0.060.029,0,0,x y x y x y +≤⎧⎪+≤⎪⎨≥⎪⎪≥⎩………① …………4分 目标函数为0.30.2z x y =+, ……………5分不等式组①等价于300,3450,0,0,x y x y x y +≤⎧⎪+≤⎪⎨≥⎪⎪≥⎩可行域如图所示,……………………………7分 目标函数0.30.2z x y =+可化为z x y 523+-= 由此可知当目标函数对应的直线经过点M 时,目标函数z 取最大值.…………………9分 解方程组300,3450,x y x y +=⎧⎨+=⎩ 得75,225,x y =⎧⎨=⎩M 的坐标为(75,225).……………………………………………………………………10分所以max 0.3750.222567.5z =⨯+⨯=.…………………………………………………11分 答:分别种植甲乙两种水果75亩和225亩,可使农场的总收益最大,最大收益为67.5万元. ………………………………………………………………………………12分21. 解:(Ⅰ)/2()3963(1)(2)f x x x x x =-+=--,………………………………………2分令/()0f x >,得2x >或1x <;/()0f x <,得12x <<, …………………………4分∴()f x 增区间()1,∞-和()+∞,2;减区间是()2,1.………………………………………6分(Ⅱ)由(I )知 当1x =时,()f x 取极大值5(1)2f a =-,………………………………7分 当2x =时,()f x 取极小值 (2)2f a =-,………………………………………………8分因为方程()0f x =仅有三个实根.所以⎩⎨⎧<>0)2(0)1(f f …………………………………………10分解得:252<<a , 实数a 的取值范围是5(2,)2.………………………………………………………………12分22.解:(Ⅰ)由题意可得抛物线上点A 到焦点F 的距离等于点A 到直线1x =-的距离.……………………2分由抛物线的定义得12p=,即p =2. …………………………………………………………………………………4分(Ⅱ)由(Ⅰ)得抛物线的方程为()24,F 1,0y x =,可设()2,2,0,1A t t t t ≠≠± (5)分由题知AF 不垂直于y 轴,可设直线:1(0)AF x sy s =+≠,()0s ≠,由241y x x sy ⎧=⎨=+⎩消去x 得2440y sy --=,………………………………6分 故124y y =-,所以212,B tt ⎛⎫- ⎪⎝⎭.…………………………………………………………………………………7分又直线AB 的斜率为221tt -,故直线FN 的斜率为212t t --,从而的直线FN :()2112t y x t -=--,直线BN :2y t=-, (9)分由21(1)22t y x t y t ⎧-=--⎪⎪⎨⎪=-⎪⎩解得N 的横坐标是2411N x t =+-,其中220,1t t >≠…………………………………10分1N x ∴>或3N x <-.综上,点N 的横坐标的取值范围是()(),31,-∞-+∞.…………………………………………………12分注:如上各题若有其它解法,请评卷老师酌情给分.x绝密★启用前第一学期期末考试高二年级(文科数学)试题卷 本试卷共22小题,满分150分.考试用时120分钟.注意事项:1.答卷前,考生先检查试卷与答题卷是否整洁无缺损,并用黑色字迹的签字笔在答题卷指定位置填写自己的班级、姓名、学号和座位号。

(完整版)高二下期末文科数学试题及答案,推荐文档

(完整版)高二下期末文科数学试题及答案,推荐文档

(Ⅱ)设点 P 在曲线 C 上,求点 P 到直线 l 的距离的最小值 .
19. (本题满分 12 分)一次考试中,5 名学生的数学、物理成绩如下
学生
A1
A2
A3
A4
A5
数学 x (分) 89
91
93
95
97
物理 y (分) 87
89
89
92
93
求 y 关于 x 的线性回归方程.
21.(本题满分 12 分)已知在长方体 ABCD A1B1C1D1 中, AD AA1 1 , AB 2 ,点 F 是
10
5
1
5
A.
B.
C. D.
11 11
6
36
3.已知点
F1,F2
为椭圆
x2 9
y2 25
1的两个焦点,则
F1, F2
的坐标为
A. (4, 0), (4, 0) B. (3, 0), (3, 0) C. (0, 4), (0, 4) D. (0, 3), (0,3)
4.命题 P: x 0, x3 0 ,那么 P 是
(Ⅱ) 在以 O 为极点, x 轴的正半轴为极轴建立极坐标系,设点 P 的极坐标为 2 2, 3 ,
4
求点 P 到线段 AB 中点 M 的距离.
18.(本题满分
12
分ห้องสมุดไป่ตู้已知曲线
C
:
x
3
3 cos ( 为参数),直线 l : (cos
3 sin ) 12 .
y 3 sin
(Ⅰ)求直线 l 的直角坐标方程及曲线 C 的普通方程;
AB 边上动点,点E是棱 B1B 的中点. (Ⅰ)求证: D1F A1D ; (Ⅱ)求多面体 ABCDED1 的体积.

高二下学期期末考试数学(文)试卷 Word版含答案

高二下学期期末考试数学(文)试卷 Word版含答案

高二数学试题(文科)试卷说明:(1)命题范围:人教版选修1-2,必修1 (2)试卷共两卷(3)时间:120分钟 总分:150分第Ⅰ卷一.选择题:本大题共12小题,每小题5分,共60分.在每小题的四个选项中,只有一项是符合题目要求的.1.如果{}5,4,3,2,1=S ,{}3,2,1=M ,{}5,3,2=N ,那么()()N C M C S S 等于( ). A.φ B.{}3,1 C.{}4 D.{}5,2 2.下列函数中,是奇函数,又在定义域内为减函数的是( ).A.xy ⎪⎭⎫⎝⎛=21 B.x y 1= C.)(log 3x y -= D.3x y -=3. 若函数)1,0)((log ≠>+=a a b x y a 的图象过两点(-1,0)和(0,1),则A .a=2,b=2B .a = 2 ,b=2C .a=2,b=1D .a= 2 ,b= 2 4. 对于10<<a ,给出下列四个不等式 ①)11(log )1(log aa a a +<+ ②)11(log )1(log aa a a +>+ ③aaaa111++<④aaaa111++>其中成立的是A .①与③B .①与④C .②与③D .②与④5、若函数的图象经过第二且)10(1)(≠>-+=a a b a x f x、三、四象限,则一定有 A .010><<b a 且 B .01>>b a 且C .010<<<b a 且D .01<>b a 且6、已知函数=-=+-=)(,21)(,11lg )(a f a f x x x f 则若A .21 B .-21 C .2D .-27.若函数)10(log )(<<=a x x f a 在区间]2,[a a 上的最大值是最小值的3倍,则a=A.42 B.22 C.41 D.218、函数1(1)y x =≥的反函数是A .)1(222<+-=x x x y B .)1(222≥+-=x x x yC .)1(22<-=x x x yD .)1(22≥-=x x x y9.在映射:f A B →中,(){},|,A B x y x y R ==∈,且()():,,f x y x y x y →-+,则与A 中的元素()1,2-对应的B 中的元素为()A .()3.1-B .()1,3C .()1,3--D .()3,110.设复数2121),(2,1z z R b bi z i z 若∈+=+=为实数,则b = ( )A.2B.1C.-1D.-211.函数34x y =的图象是( )A .B .C .D .12、在复平面内,复数1i i++(1+3i )2对应的点位于 ( ) A. 第一象限 B. 第二象限 C. 第三象限 D.第四象限第Ⅱ卷(非选择题,共90分)二、填空题:本大题共4小题,每小题4分,共16分.把答案填在答题纸中对应横线上. 13.已知复数122,13z i z i =-=-,则复数215z i z + =14.lg25+32lg8+lg5·lg20+lg 22= 15.若关于x 的方程04)73(32=+-+x t tx 的两实根21,x x ,满足21021<<<<x x ,则实数t 的取值范围是16.函数2()ln()f x x x =-的单调递增区间为三、解答题:本大题共6小题,共74分.前五题各12分,最后一题14分. 17.(本小题12分)计算 ()20251002i 1i 1i 1i i 21⎪⎭⎫⎝⎛+-⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛+-++18.(本小题12分) 在数列{a n }中,)(22,111++∈+==N n a a a a nnn ,试猜想这个数列的通项公式。

高二下学期文科数学期末复习试题含答案

高二下学期文科数学期末复习试题含答案

高二文科数学期末复习一、填空题:1.若复数z 满足()12i 34i z +=-+(i 是虚数单位),则=z . 答案:i 21+.2.设全集=U Z ,集合2{|20=--≥A x x x ,}∈x Z ,则U=A (用列举法表示).答案:{0,1}.3.若复数z 满足i iz 31+-=(i 是虚数单位),则=z .i +4.已知A ,B 均为集合{=U 2,4,6,8,10}的子集,且}4{=⋂B A ,}10{)(=⋂A B C U ,则=A .答案:{4,10}5.已知全集R U =,集合=A {32|≤≤-x x },=B {1|-<x x 或4>x },那么集合⋂A (UB )等于 .答案:{x|-1≤x≤3}解析:主要考查集合运算.由题意可得,UB ={x|-1≤x≤4},A ={x|-2≤x≤3},所以(⋂A U)B ={x|-1≤x≤3}.6.已知集合},3,1{m A =,}4,3{=B ,且}4,3,2,1{=B A ,则实数m = . 答案:27.命题“若b a >,则b a 22>”的否命题为 . 答案:若b a ≤,则ba22≤8.设函数()⎩⎨⎧=x xx f 2log 2 11>≤x x ,则()[]=2f f .答案:2 9.函数)23(log 5.0-=x y 的定义域是 .答案:]1,32(10.已知9.01.17.01.1,7.0log ,9.0log ===c b a ,则c b a ,,按从小到大依次为 .答案:c a b <<11.设函数)(x f 是定义在R 上的奇函数.若当),0(∞+∈x 时,x x f lg )(=,则满足0)(>x f 的x 的取值范围是 .答案:),1()0,1(∞+-12.曲线C :x x y ln =在点M (e ,e )处的切线方程为 . 答案:e x y -=213.已知函数211)(xx f -=的定义域为M ,)1(log )(2x x g -=(1-≤x )的值域为N ,则(RM )N ⋂等于 .答案:{x|x≥1}解析:考查定义域求解.可求得集合M ={x|-1<x<1},集合N ={g (x )|g (x )≥1},则RM ={x|x≤-1或x≥1},∴(RM )N ⋂={x|x≥1}.14.设⎪⎩⎪⎨⎧+--=,11,2|1|)(2x x x f 1||1||>≤x x ,则)]21([f f 等于 .答案:134解析:本题主要考查分段函数运算. ∵232|121|)21(-=--=f ,∴134)23(11)23()]21([2=-+=-=f f f .15.已知函数)1ln()(2++=x x x f ,若实数a ,b 满足0)1()(=-+b f a f ,则b a +等于 .答案:1解析:考查函数奇偶性.观察得)(x f 在定义域内是增函数, 而)1ln()(2++-=-x x x f )(11ln2x f x x -=++=,∴)(x f 是奇函数,则)1()1()(b f b f a f -=--=,∴b a -=1,即1=+b a .16.若函数)(log )(3ax x x f a -=(0>a ,1≠a )在区间(21-,0)上单调递增,则a 的范围是 .答案:143<≤a解析:本题考查复合函数单调性,要注意分类讨论.设ax x x u -=3)(,由复合函数的单调性,可分10<<a 和1>a 两种情况讨论:①当10<<a 时,ax x x u -=3)(在(21-,0)上单调递减,即03)('2≤-=a x x u 在(21-,0)上恒成立,∴43≥a ,∴143<≤a ;②当1>a 时,ax x x u -=3)(在(21-,0)上单调递增,即03)('2≥-=a x x u 在(21-,0)上恒成立,∴0≤a ,∴a 无解.综上,可知143<≤a .17.已知()f x 为偶函数,且)3()1(x f x f -=+,当02≤≤-x 时,xx f 3)(=,则=)2011(f . 答案:3118.函数221x xy =+的值域为 .答案:)1,0(19.已知函数)(x f 的定义域为A ,若其值域也为A ,则称区间A 为)(x f 的保值区间.若()ln g x x m x =++的保值区间是[,)e +∞ ,则实数m 的值为 .答案:1-20.若不等式0122<-+-m x mx 对任意]2,2[-∈m 恒成立,则实数x 的取值范围是 .答案:)213,217(+-21.直线1=y 与曲线a x x y +-=2有四个交点,则实数a 的取值范围是 . 答案:)45,1(22.已知函数0)(3(log 2≠-=a ax y a 且)1±≠a 在]2,0[上是减函数,则实数a 的取值范围是 . 答案:)23,1()0,1( -二、解答题: 1.已知函数132)(++-=x x x f 的定义域为A ,函数)1()]2)(1lg[()(<---=a x a a x x g 的定义域为B . (1)求A ;(2)若A B ⊆,求实数a 的取值范围. 解:(1)由0132≥++-x x ,得011≥+-x x ,∴1-<x 或1≥x , ……4分即),1[)1,(+∞--∞= A ; ……6分 (2)由0)2)(1(>---x a a x ,得0)2)(1(<---a x a x .∵1<a ,∴a a 21>+.∴)1,2(+=a a B . ……8分 ∵A B ⊆,∴12≥a 或11-≤+a ,即21≥a 或2-≤a . ……12分而1<a ,∴121<≤a 或2-≤a .故当A B ⊆时,实数a 的取值范围是)1,21[]2,( --∞. ……14分2.已知命题p :函数)2(log 25.0a x x y ++=的值域为R ,命题q :函数x a y )25(--= 是减函数.若p 或q 为真命题,p 且q 为假命题,求实数a 的取值范围.解:对命题p :∵函数)2(log 25.0a x x y ++=的值域为R ,∴1)1(222-++=++a x a x x 可以取到),0(+∞上的每一个值,∴01≤-a ,即1≤a ; ……4分命题q :∵函数xa y )25(--=是减函数,∴125>-a ,即2<a . ……8分 ∵p 或q 为真命题,p 且q 为假命题,∴命题p 与命题q 一真一假,若p 真q 假,则1≤a 且2≥a ,无解, ……10分 若p 假q 真,则21<<a , ……12分 ∴实数a 的取值范围是)2,1( ……14分3.某摩托车生产企业,上年度生产摩托车的投入成本为1万元/辆,出厂价为2.1万元/辆,年销售量为1000辆.本年度为适应市场需求,计划提高产品档次,适度增加投入成本.若每辆车投入成本增加的比例为)10(<<x x ,则出厂价相应提高的比例为x 75.0,同时预计年销售量增加的比例为x 6.0.已知年利润=(出厂价–投入成本)⨯年销售量.(1)写出本年度预计的年利润y 与投入成本增加的比例x 的关系式;(2)为使本年度的年利润比上年有所增加,问投入成本增加的比例x 应在什么范围内? 解:(1)由题意得)10)(6.01(1000)]1(1)75.01(2.1[<<+⨯⨯+⨯-+⨯=x x x x y ,…5分 整理得 )10( 20020602<<++-=x x x y ;……7分(2)要保证本年度的利润比上年度有所增加,当且仅当⎩⎨⎧<<>⨯--.10,01000)12.1(x y …10分即⎩⎨⎧<<>+-.10,020602x x x 解不等式得 310<<x . ……13分答:为保证本年度的年利润比上年度有所增加,投入成本增加的比例x 应满足33.00<<x .…14分 4.已知命题p :指数函数xa x f )62()(-=在R 上单调递减,命题Q :关于x 的方程012322=++-a ax x 的两个实根均大于3.若p 或q 为真,p 且q 为假,求实数a 的取值范围.解:若p 真,则f (x )=(2a -6)x在R 上单调递减,∴0<2a -6<1,∴3<a<72,若q 真,令f (x )=x 2-3ax +2a 2+1,则应满足⎩⎪⎨⎪⎧Δ= -3a 2-4 2a 2+1 ≥0--3a2>3f 3 =9-9a +2a 2+1>0,∴⎩⎪⎨⎪⎧a ≥2或a ≤-2a>2a<2或a>52,故a>52,又由题意应有p 真q 假或p 假q 真.①若p 真q 假,则⎩⎪⎨⎪⎧3<a<72a ≤52,a 无解.②若p 假q 真,则⎩⎪⎨⎪⎧a ≤3或a ≥72a>52,∴52<a ≤3或a ≥72.故a 的取值范围是{a|52<a ≤3或a ≥72}.5.已知函数)(x f 满足对任意实数y x ,都有1)()()(+++=+xy y f x f y x f ,且2)2(-=-f .(1)求)1(f 的值;(2)证明:对一切大于1的正整数t ,恒有t t f >)(;(3)试求满足t t f =)(的所有的整数t ,并说明理由.解:(1)令0==y x ,得1)0(-=f ;令1-==y x ,得2)1()1()2(+-+-=-f f f ,又2)2(-=-f ,∴2)1(-=-f ; 令1,1-==y x ,得)1()1()0(-+=f f f ,∴1)1(=f . ……4分 (2)令1=x ,得2)()1(+=-+y y f y f ①∴当N y ∈时,有0)()1(>-+y f y f ,由1)1(),()1(=>+f y f y f 知对*N y ∈有0)(>y f ,∴当*N y ∈时,111)(2)()1(+>+++=++=+y y y f y y f y f ,于是对于一切大于1的正整数t ,恒有t t f >)(. ……9分 (3)由①及(1)可知1)4(,1)3(=--=-f f ; ……11分下面证明当整数4-≤t 时,t t f >)(,∵4-≤t ,∴02)2(>≥+-t 由① 得0)2()1()(>+-=+-t t f t f ,即 0)4()5(>---f f ,同理0)5()6(>---f f , ……,0)2()1(>+-+t f t f ,0)1()(>+-t f t f , 将以上不等式相加得41)4()(->=->f t f ,∴当4-≤t 时,t t f >)(, ……15分 综上,满足条件的整数只有2,1-=t . ……16分6.如下图所示,图1是定义在R 上的二次函数)(x f 的部分图象,图2是函数)(log )(b x x g a +=的部分图象.(1)分别求出函数)(x f 和)(x g 的解析式;(2)如果函数)]([x f g y =在区间[1,m )上单调递减,求实数m 的取值范围. 解:(1)由题图1得,二次函数)(x f 的顶点坐标为(1,2), 故可设函数2)1()(2+-=x a x f ,又函数)(x f 的图象过点(0,0),故2-=a , 整理得x x x f 42)(2+-=.由题图2得,函数)(log )(b x x g a +=的图象过点(0,0)和(1,1),故有⎩⎨⎧=+=1)1(log 0log b b aa ,∴⎩⎨⎧==12b a ,∴)1(log )(2+=x x g (1->x ).(2)由(1)得)142(l og )]([22++-==x x x f g y 是由t y 2log =和1422++-=x x t 复合而成的函数,而t y 2log =在定义域上单调递增,要使函数)]([x f g y =在区间[1,m )上单调递减,必须1422++-=x x t 在区间[1,m )上单调递减,且有0>t 恒成立.由0=t 得262±=x ,又因为t 的图象的对称轴为1=x .所以满足条件的m 的取值范围为2621±<<m .7.已知1212)3(4)(234+-++-=x x m x x x f ,R m ∈.(1)若f 0)1('=,求m 的值,并求)(x f 的单调区间;(2)若对于任意实数x ,0)(≥x f 恒成立,求m 的取值范围.解:(1)由f ′(x )=4x 3-12x 2+2(3+m )x -12,得f ′(1)=4-12+2(3+m )-12=0,解得m =7.………2分所以 f ′(x )=4 x 3-12x 2+20x -12=4(x -1)(x 2-2x +3) .方程x 2-2x +3=0的判别式Δ=22-3×4=-8<0,所以x 2-2x +3>0. 所以f ′(x )=0,解得x =1.……………………………4分由此可得f (x )的单调减区间是(-∞,1),f (x )的单调增区间是(1,+∞).…8分(2)f (x )=x 4-4x 3+(3+m )x 2-12x +12=(x 2+3)(x -2)2+(m -4)x 2. 当m <4时,f (2)=4(m -4)<0,不合题意;……………12分当m≥4时,f (x )=(x 2+3)(x -2)2+(m -4)x 2≥0,对一切实数x 恒成立. 所以,m 的取值范围是[4,+∞).……………16分。

高二期末考试数学试题(文科)答案

高二期末考试数学试题(文科)答案

高二数学文科试题参考答案一、选择题 B A A A C B B B B D D C二、填空题 13.1-=x y 14.n n 15.()2nf n = 16.6 三、解答题17.解:(1)由题意,()()()()4312431052(12)12125i i i i z i i i i +-+-====-++-,…………… 4分 所以2z i =+;……………………………………………………………………6分 (2)222(2)21312111z i i i i i i i i--+--+===-+---…………………………………… 10分 所以复数221z i i---的虚部是2. ……………………………………………………12分 18. 解析:(1)由题意知n =10,111801208,21010n n i i i i x x y y n n ========∑∑ , 又222172010880,n xx i i l x nx ==-=-⨯=∑1184108224.nxy i i l x y nxy ==-=-⨯⨯=∑ 由此作240.3, 20.380.4,80xyxx l b a y bx l ====-=-⨯=- 故所求回归方程为0.30.4.y x =-(2)由于变量y 的值随x 的值增加而增加b =0.3>0,故x 与y 之间是正相关.(3)将x =7代入回归方程可以预测该家庭的月储蓄为y =0.3×7-0.4=1.7.19.解:(1)调查的500位老年人中有70位需要志愿者提供帮助,因此该地区老年人中,需要帮助的老年人的比例的估算值为7014%500=…………………………………………4分 (2)22500(4027030160)9.96720030070430K ⨯⨯-⨯==⨯⨯⨯. 由于9.967>6.635,所以有99%的把握认为该地区的老年人是否需要帮助与性别有关. …………………………………………………………………………………………10分(3)由(2)的结论知,该地区老年人是否需要帮助与性别有关,并且从样本数据能看出该地区男性老年人与女性老年人中需要帮助的比例有明显差异,因此在调查时,先确定该地区老年人中男、女的比例,再把老年人分成男、女两层并采用分层抽样方法比采用简单随机抽样方法更好.……………………………………………………………………12分20.解:(1)一般性的结论:22222()()() (,,,R)a b c d ac bd a b c d ++≥+∈……………4分(没写范围扣1分)(2)证明:要证22222222()()2a b c d a c acbd b d ++≥++……………………………5分 只要证2222222222222a c a d b c b d a c acbd b d +++≥++……………………7分 只要证222220a d abcd b c -+≥只要证2()0ad bc -≥………………………………………………………9分 ∵a 、b 、c 、d ∈R ,∴2()0ad bc -≥显然成立.……………………………………11分 ∴原命题得证.………………………………………………………………………12分 (注:其它证法正确,相应给分)21. 解:(1)2'()3f x ax b =-, ………………………………………………………………2分所以'(2)0f =,4(2)3f =-. 即12048243a b a b -=⎧⎪⎨-+=-⎪⎩, 由此可解得13a =,4b = , 所以函数的解析式为31()443f x x x =-+.…………………………………………5分 (2)31()443f x x x =-+,2'()4(2)(2)f x x x x =-=-+=0, 解得22x x ==-或,…………………………………………………………………6分所以()f x 在2x =-处取得极大值283,在2x =处取得极小值43-,……………10分 要满足函数()f x k =有3个解,须有42833k -<< ……………………………12分 22. 解:(1)由(),23c bx ax x x f +++=得(),232b ax x x f ++='………………2分由题意,得()()()1314,20f f f '=⎧⎪=⎨⎪'-=⎩即323124014a b a b a b c ++=⎧⎪-+=⎨⎪+++=⎩,解之得245a b c =⎧⎪=-⎨⎪=⎩所以()32245f x x x x =+-+.…………………………………………………………6分(2), ()232f x x ax b '=++,由()13f '=,得20a b += , b bx x x f +-='∴23)(,]1,2[)(-=在区间x f y 上单调递增,可得:]1,2[03,0)(]1,2[)(2-≥+-≥'-'在即上恒有在b bx x x f x f 上恒成立. ①当1,6b x =≥即6b ≥时,()()min 1f x f ''==30,b b -+>;6≥∴b ②当2,6b x =≤-即12b ≤-时,()()min 21220f x f b b ''=-=++≥,即4b ≥-,故此时b 无解; ③当216b -<<时,126b -<<时,()212min 012b b f x -'=≥,06b ∴≤≤ , 综合上述讨论可知,所求参数b 取值范围是:b ≥0 .。

高二下学期数学期末试卷及答案(文科)

高二下学期数学期末试卷及答案(文科)

下期高中二年级教学质量监测数学试卷(文科)(考试时间120分 满分150分)第Ⅰ卷 选择题(满分60分)一、选择题:本大题共12小题;每小题5分;满分60分;每小题只有一个选项符合题目要求;请将正确答案填在答题栏内。

1. 设集合M ={长方体};N ={正方体};则M ∩N =:A .MB .NC .∅D .以上都不是 2. “sinx =siny ”是“x =y ”的:A .充要条件B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件 3. 下列函数是偶函数的是:A .)0()(2≥=x x x fB . )2cos()(π-=x x f C . x e x f =)(D . ||lg )(x x f =4. 从单词“equation ”中选取5个不同的字母排成一排;含有“qu ”(其中“qu ”相连且顺序不变)的不同排法共有()个: A .480 B . 840 C . 120 D . 7205. 72)12(xx +的展开式中倒数第三项的系数是:A .267CB . 6672CC . 2572CD . 5572C 6. 直线a ⊥平面α;直线b ∥平面α;则直线a 、b 的关系是:A .可能平行B . 一定垂直C . 一定异面D . 相交时才垂直7. 已知54cos ),0,2(=-∈x x π;则=x 2tan : A .274B . 274-C .724 D . 724-8. 抛物线的顶点在原点;焦点与椭圆14822=+x y 的一个焦点重合;则抛物线方程是:A .y x 82±=B . x y 82±=C . y x 42±=D . x y 42±=9. 公差不为0的等差数列}{n a 中;632,,a a a 成等比数列;则该等比数列的公比q 等于: A . 4 B . 3 C . 2 D . 110. 正四面体的内切球(与正四面体的四个面都相切的球)与外接球(过正四面体四个顶点的球)的体积比为: A .1:3 B . 1:9 C . 1:27 D . 与正四面体的棱长无关11. 从1;2;3;…;9这九个数中;随机抽取3个不同的数;这3个数的和为偶数的概率是:A .95 B . 94 C . 2111 D . 2110 12. 如图:四边形BECF 、AFED 都是矩形;且平面AFED ⊥平面BCDEF ;∠ACF =α;∠ABF =β;∠BAC =θ;则下列式子中正确的是: A .θβαcos cos cos •= B .θβαcos sin sin •=C .θαβcos cos cos •=D .θαβcos sin sin •=。

高中数学高二文科期末复习测试卷附参考答案

高中数学高二文科期末复习测试卷附参考答案

1.已知复数z 满i i z 2)1(足(i 为虚数单位),则z 的虚部为()A .i B .i21C .1D .212.已知直线m 平面,直线n 平面,则下列命题正确的是()A .若//n ,则//B .若,则n m //C .若n m,则//D .若//,则n m 3.已知R a ,则“1a ”是“11a ”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分又不必要条件4.阅读如图1的程序框,并判断运行结果为A .55B .-55C .5D .-55.已知椭圆222109xy a a 与双曲线22143x y 有相同的焦点, 则a 的值为( ) A .2 B. 10C. 4D .106.已知a ,b ,c 都是正数,则三数111,,a b c b c a ( ) A .都大于 2B .都小于 2C .至少有一个不大于 2D .至少有一个不小于27.已知点P 为双曲线22221xy a b (0a ,0b )上任意一点,过点P 作双曲线的渐近线的平行线,分别与两渐近线交于M ,N 两点,若2||||b PN PM ,则该双曲线的离心率为()b5E2RGbCAP A .2B .2C .332D .38.下边所示的三角形数组是我国古代数学家杨辉发现的,称为杨辉三角形,根据图中的数构成的规律,a 所表示的数是( )p1EanqFDPw A .2B .4C .6D . 8 9.下面是关于复数21z i的四个命题: 1p :2z , 2:p 22z i 3:p z 的共轭复数为1i 4:p z 的虚部为1其中真命题为( )A .23,p p B .12,p p C .24,p p D .34,p p 10.如图.已知直线l 1:4x -3y +6=0和直线l 2:x =-1,抛物线y 2=4x 上一动点P 到直线l 1和直线l 2的距离之和的最小值是()DXDiTa9E3dA .2B .3 C. 115 D. 3716RTCrpUDGiT 11.下图是根据变量x y ,的观测数据i i x y ,( 1 2 10i ,,,)得到的散点图,由这些散点图可以判断变量x y ,具有相关关系的图是( )5PCzVD7HxAA .①②B .①④C .②③D .③④12.若曲线f(x)=xsinx +1在x =π2处的切线与直线ax +2y +1=0互相垂直,则实数a 等于()jLBHrnAILgA .-2B .-1C .1D .2二、填空题:(本大题共4小题,每小题4分,共16分,把答案填在答题的相应位置)13.已知x 与y 之间的一组数据:x 0 1 2 3y 1 3 5 7则y 与x 的线性回归方程为?y bx a 必过点的坐标为14.若复数i i a 213(a R ,i 为虚数单位)是纯虚数,则实数a 的值为.15.函数()ln (0)f x x x x 的单调递增区间是____16.下列图形中线段规则排列,猜出第6个图形中线段条数为。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019年高二文科数学期末试卷及答案2019年高二文科数学期末试卷一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知集合A={x|x2+x-2=0},B={x|ax=1},若A&cap;B=B,则a= ( )A.-12或1B.2或-1C.-2或1或0D.-12或1或02.设有函数组:① ,;② ,;③ ,;④ , .其中表示同一个函数的有( ).A.①②B.②④C.①③D.③④3.若,则f(-3)的值为( )A.2B.8C.18D.124.若一系列函数的解析式相同,值域相同,但定义域不同,则称这些函数为“同族函数”,则函数解析式为y=x2+1,值域为{1,3}的同族函数有( )A.1个B.2个C.3个D.4个5.下列函数中,在[1,+&infin;)上为增函数的是( )A.y=(x-2)2B.y=|x-1|C.y=1x+1D.y=-(x+1)26.函数f(x)=4x+12x的图象( )A.关于原点对称B.关于直线y=x对称C.关于x轴对称D.关于y轴对称7.如果幂函数y=xa的图象经过点2,22,则f(4)的值等于 ( )A.12B.2C.116D. 168.设a=40.9,b=80.48,c=12-1.5,则 ( )A.c&gt; a&gt;bB. b&gt;a&gt;cC.a&gt;b&gt;cD.a&gt;c&gt;b9 .设二次函数f(x)=a x2-2ax+c在区间[0,1]上单调递减,且f(m)&le;f(0),则实数m的取值范围是 ( )A.(-&infin;,0]B.[2,+&infin;)C.[0,2]D.(-&infin;,0]&cup;[2,+&infin;)10.已知f(x)在区间(0,+&infin;)上是减函数,那么f(a2-a+1)与f34的大小关系是 ( )A.f(a2-a+1)&gt;f34B.f(a2-a+1)&le;f34C.f(a2-a+1)&ge;f34D.f(a2-a+1)11.已知幂函数f(x)=x&alpha;的部分对应值如下表:x 1 12f(x) 1 22则不等式f(|x|)&le;2的解集是 ( )A.{x|-4&le;x&le;4}B.{x|0&le;x&le;4}C.{x|-2&le;x&le;2}D.{x|012.若奇函数f(x)在(0,+&infin;)上是增函数,又f(-3)=0,则的解集为( )A.(-3,0)&cup;(3,+&infin;)B.(-3,0)&cup;(0,3)C.(-&infin;,-3)&cup;(3,+&infin;)D.(-&infin;,-3)&cup;(0,3)第Ⅱ卷(共90分)二、填空题:(本大题共4小题,每题5分,共20分,把最简答案填写在答题卡的横线上)13. 已知函数若关于x的方程f(x)=k有两个不同的实根,则实数k的取值范围是________.14.已知f2x+1=lg x,则f(21)=___________________.15.函数的增区间是____________.16.设偶函数f(x)对任意x&isin;R,都有,且当x&isin;[-3,-2]时,f(x)=2x,则f(113.5)的值是____________.三.解答题(本大题共6小题,共70分. 解答应写出必要的文字说明、证明过程或演算步骤).17.(本题满分10分) 已知函数,且 .(1)求实数c的值;(2)解不等式 .18.(本题满分12分) 设集合, .(1)若,求实数a的取值范围;(2)若,求实数a的取值范围;(3)若,求实数a的值.19.(本题满分12分) 已知函数 .(1)对任意,比较与的大小;(2)若时,有,求实数a的取值范围.20.(本题满分12分) 已知定义在R上的奇函数f(x)有最小正周期2,且当x&isin;(0,1)时,f(x)=2x4x+1.(1)求f(1)和f(-1)的值;(2)求f(x)在[-1,1]上的解析式.21.(本题满分12分) 已知函数f(x),当x,y&isin;R 时,恒有f(x+y)=f(x)+f(y).(1)求证:f(x)是奇函数;(2)如果x为正实数,f(x)&lt;0,并且f(1)=-12,试求f(x)在区间[-2,6]上的最值.22.(本题满分12分) 已知函数f(x)=logax+bx-b(a&gt;0,b&gt;0,a&ne;1).(1)求f(x)的定义域;(2)讨论f(x)的奇偶性;(3)讨论f(x)的单调性;2019年高二文科数学期末试卷答案2.D 在①中,的定义域为,的定义域为,故不是同一函数;在②中,的定义域为,的定义域为,故不是同一函数;③④是同一函数.3. C f(-3)=f(-1)=f(1)=f(3)=2-3=18.4. C 由x2+1=1得x=0,由x2+1=3得x=&plusmn;2,&there4;函数的定义域可以是{0,2},{0,-2},{0,2,-2},共3个.5. B 作出A 、B、C、D中四个函数的图象进行判断.6. D f(x)=2x+2-x,因为f(-x)=f(x),所以f(x)为偶函数.所以f(x)的图象关于y轴对称.7. A ∵幂函数y=xa的图象经过点2,22,&there4;22=2a,解得a=-12,&there4;y=x ,故f(4)=4-12=12.8. D 因为a=40.9=21.8,b=80.48=21.44 ,c=12-1.5=21.5,所以由指数函数y=2x在(-&infin;,+&infin;)上单调递增知a&gt;c&gt;b.9. C 二次函数f(x)=ax2-2ax+c在区间[0,1]上单调递减,则a&ne;0,f&prime;(x)=2a(x- 1)&lt;0,x&isin;[0,1],所以a&gt;0,即函数图象的开口向上,对称轴是直线x=1.所以f(0) =f(2),则当f( m)&le;f(0)时,有0&le;m&le;2.10. B ∵a2-a+1=a-122+34&ge;34,又f(x)在(0,+&infin;)上为减函数,&there4;f(a2-a+1)&le;f34.11.A 由题表知22=12&alpha;,&there4;&alpha;=12,&there4;f(x)=x .&there4;(|x|) &le;2,即|x|&le;4,故-4&le;x&le;4.12. B 根据条件画草图,由图象可知xf&#61480;x&#61481;&lt;0&hArr;x&gt;0,f&#61480;x&#61481;&lt;0或x&lt;0,f&#61480;x&#61481;&gt;0&hArr;-313. (0,1) 画出分段函数f(x)的图象如图所示,结合图象可以看出,若f(x)=k有两个不同的实根,即函数y=f(x)的图象与y=k有两个不同的交点,k的取值范围为(0,1).14.-1 令2x+1=t(t&gt;1),则x=2t-1,&there4;f(t)=lg2t-1,f(x)= lg2x-1(x&gt;1),f(21)=-1.15.-&infin;,12 ∵2x2-3x+1&gt;0,&there4;x&lt;12或x&gt;1.∵二次函数y=2x2-3x+1的减区间是-&infin;,34,&there4;f(x)的增区间是-&infin;,12.16.15. ∵f(-x)=f(x),f(x+6)=f(x+3+3)=-1f&#61480;x+3&#61481;=f(x),&there4;f(x)的周期为6.&there4;f(113.5)=f(19&times;6-0.5)=f(-0.5)=f(0.5) =f(-2.5+3)=-1f&#61480;-2.5&#61481;=-12&times;&#6148 0;-2.5&#61481;=15.17.解:(1)因为,所以,由,即,.……5分(2)由(1)得:由得,当时,解得 .当时,解得,所以的解集为…10分18.解:(1)由题意知:,, .①当时,得,解得 .②当时,得,解得 .综上,.……4分(2)①当时,得,解得 ;②当时,得,解得 .综上,.……8分(3)由,则.……12分19.解:(1)对任意,,故.……6分(2)又,得,即,得,解得.……12分20.解:(1)∵f(x)是周期为2的奇函数,&there4;f(1)=f(1-2)=f(-1)=-f(1),&there4;f(1)=0,f(-1)=0 . ……4分(2)由题意知,f(0)=0.当x&isin;(-1,0)时,-x&isin;(0,1).由f(x)是奇函数,&there4;f(x)=-f(-x)=-2-x4-x+1=-2x4x+1,综上,f(x)=2x4x+1,x&isin;&#61480;0,1&#61481;,-2x4x+1, x&isin;&#61480;-1,0&#61481;,0, x&isin;{-1,0,1}.……12分&there4;f(x)+f(-x)=0,得f(-x)=-f(x),&there4;f(x)为奇函数.……6分(2)设x1则f(x2-x1)=f(x2+(-x1))=f(x2)+f(-x1)=f(x2)-f(x1).∵x2-x1&gt;0,&there4;f(x2-x1)&lt;0.&there4;f(x2)-f(x1)&lt;0,即f(x)在R上单调递减.&there4;f(-2)为最大值,f(6)为最小值.∵f(1)=-12,&there4;f(-2)=-f(2)=-2f(1)=1,f(6)=2f(3)=2[f(1)+f(2)]=-3.&there4;f(x)在区间[-2,6]上的最大值为1,最小值为-3. ……12分22.解: (1)令x+bx-b&gt;0,解得f(x)的定义域为(-&infin;,-b)&cup;(b,+&infin;).……2分(2)因f(-x)=loga-x+b-x-b=logax+bx-b-1=-logax+bx-b=-f(x),故f(x)是奇函数.……7分。

相关文档
最新文档