勾股定理全章知识点典型例习题.doc

合集下载

勾股定理的题目

勾股定理的题目

1、直角三角形中,一直角边长为3,斜边长为5,则另一直角边的长为:A. 1B. 2C. 4D. 6(答案:C)2、设直角三角形两直角边分别为a和b,斜边为c,若a = 6,c = 10,则b等于:A. 16B. 8C. 4D. 2√11(答案:B)3、在直角三角形中,如果一条直角边长度是7,斜边长度是25,那么另一条直角边的长度是:A. 24B. 18C. 15D. √(252 - 72)(答案:D,即24)4、已知直角三角形的一条直角边长为5,斜边长为13,则另一条直角边的平方是:A. 144B. 169C. 104D. 64(答案:A)5、直角三角形中,若斜边长为25,且其中一直角边长为15,则另一直角边长为:A. 10B. 20C. 25√2D. 5√14(答案:B)6、一个直角三角形的两条直角边分别是6和8,那么它的斜边长度是:A. 10B. 12C. 14D. 16(答案:A)7、直角三角形中,若其中一直角边长为3cm,斜边长为5cm,则另一直角边的平方为:A. 4cm²B. 16cm²C. 9cm²D. 25cm² - 9cm²(答案:B)8、设直角三角形的两直角边分别为x和y,斜边为z,若x=9,z=15,则y2等于:A. 144B. 225C. 108D. z2 - x2(答案:A)9、一个直角三角形的斜边长为17,其中一条直角边长为8,那么另一条直角边的长度为:A. 9B. 15C. √(172 - 82)D. 17 - 8(答案:C,即15)10、直角三角形的一条直角边为12,斜边为13,则它的另一条直角边长为:A. 5B. 6C. 7D. √(132 - 122)(答案:A)。

完整版勾股定理知识点及典型例题

完整版勾股定理知识点及典型例题

(2)在直角三角形中,如果一个锐角等于 30° ,那么它所对的直角边等于斜边的一半。

(3 )在直角三角形中,如果一条直角边等于斜边的一半,那么这条直角边所对的角 等于30°。

5.勾股定理的作用:(1)已知直角三角形的两边求第三边。

(2)已知直角三角形的一边,求另两边的关系。

(3) 用于证明线段平方关系的问题。

(4) 利用勾股定理,作出长为j n 的线段6、2、勾股定理的证明勾股定理的证明方法很多,常见的是拼图的方法八下第18章《勾股定理》勾股定理知识点导航一、勾股定理:1、勾股定理定义:如果直角三角形的两直角边长分别为a 2+ b 2= C 2.即直角三角形两直角边的平方和等于斜边的平方勾:直角三角形较短的直角边 股:直角三角形较长的直角边 弦:斜边勾股定理的逆定理:如果三角形的三边长a ,b ,c 有下面关系:a 2+ b 2= c 2,那么这个三角形是直角三角形。

2.勾股数:满足 a 2+ b 2= C 2的三个正整数叫做勾股数(注意:若a ,b ,c 、为勾股数,那么 ka ,kb ,kc 同样也是勾股数组。

)* 附:常见勾股数:3,4,5 ; 6,8,10 ; 9,12,15 ; 5,12,13 如果三角形的三边长a 、b 、c 满足a 2+b 2=c 2,那么这个三角形是直角三角形。

(经典直角三角形:勾三、股四、弦五)用它判断三角形是否为直角三角形的一般步骤是:(1)确定最大边(不妨设为 C ); (2)若c 2= 3 +孑,则^ ABC 是以/ C 为直角的三角形;若a 2+ b 2< C 2,则此三角形为钝角三角形(其中若a 2+ b 2> C 2,则此三角形为锐角三角形(其中4. 注意:(1)直角三角形斜边上的中线等于斜边的一半a ,b ,斜边长为C ,那么3.判断直角三角形: 其他方法:(1) 有一个角为90°的三角形是直角三角形。

勾股定理典型练习题(含答案)

勾股定理典型练习题(含答案)

勾股定理典型练习题(含答案)1.勾股定理典型练题勾股定理是几何中的一个重要定理。

在我国古算书《周髀算经》中就有“若勾三,股四,则弦五”的记载。

如图1所示,由边长相等的小正方形和直角三角形构成,可以用其面积关系验证勾股定理。

图2是由图1放入矩形内,已知AC = 4,点D,E,F,G,H,I都在矩形KLMJ的边上,则矩形KLMJ的面积为多少?已知AB = 3,得到∠BAC = 90°。

根据勾股定理,BC = 5.所以矩形KLMJ的面积为 4 × 5 + 3 × 4 = 32.因此,答案为C。

2.勾股定理典型练题XXX所示,是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角形。

若正方形A,B,C,D的边长分别是3,5,2,3,则最大正方形E的面积是多少?根据图中所示,正方形E的边长为2,所以面积为2 × 2 = 4.因此,答案为C。

3.勾股定理典型练题如图所示,在边长为4的等边三角形ABC中,AD是BC边上的高,点E,F是AD上的两点。

则图中阴影部分的面积是多少?首先,根据勾股定理,AC = 4,BC = 4,AB = 4√2.因此,三角形ABC的面积为4√2 × 4 / 2 = 8√2.由于三角形ADE和三角形ABF相似,所以ADE的面积是ABF的面积的一半。

同理,三角形BDF和三角形BCE相似,所以BDF的面积是BCE的面积的一半。

因此,阴影部分的面积为8√2 - 2 × 2 - 2 ×1 = 8√2 - 6.因此,答案为C。

4.勾股定理典型练题如图所示,直线l上有三个正方形a,b,c,若a,c的面积分别为5和11,则b的面积为多少?根据图中所示,正方形a和正方形c的边长分别为√5和√11.因此,正方形b的边长为√11 - √5,所以面积为(√11 - √5)² = 6.因此,答案为C。

5.勾股定理典型练题如图所示,分别以直角△ABC的三边AB、BC、CA为直径向外作半圆,设直线AB左边阴影部分面积为S1,右边阴影部分面积为S2,则S1和S2的大小关系是什么?首先,根据勾股定理,AB = √(BC² + AC²) = 2√2.因此,半圆的面积为π × (2√2 / 2)² = 2π。

人教版习题word版:第十七章 勾股定理

人教版习题word版:第十七章  勾股定理

第十七章勾股定理17.1 勾股定理第1课时勾股定理01 基础题知识点1 勾股定理的证明1.利用图1或图2两个图形中的有关面积的等量关系都能证明数学中一个十分著名的定理,这个定理称为勾股定理,该定理结论的数学表达式是a2+b2=c2.2.在一张纸上画两个全等的直角三角形,并把它们拼成如图形状,请用两种方法表示这个梯形的面积.利用你的表示方法,能得到勾股定理吗?解:∵梯形的面积为12(a+b)(a+b)=12ab+12ab+12c2,∴a2+2ab+b2=ab+ab+c2.∴a2+b2=c2.知识点2 利用勾股定理进行计算3.在△ABC中,∠A,∠B,∠C的对应边分别是a,b,c,若∠B=90°,则下列等式中成立的是(C)A.a2+b2=c2 B.b2+c2=a2C.a2+c2=b2 D.c2-a2=b24.(2019·平顶山期末)在△ABC中,∠B=90°.若BC=3,AC=5,则AB等于(C) A.2 B.3 C.4 D.345.已知直角三角形中30°角所对的直角边的长是2 3 cm,则另一条直角边的长是(C)A.4 cm B.4 3 cmC.6 cm D.6 3 cm6.(2019·毕节)如图,点E在正方形ABCD的边AB上.若EB=1,EC=2,则正方形ABCD的面积为(B)A. 3 B.3 C. 5 D.57.(2019·洛阳期中)如图,在△ABC中,AB⊥AC,AB=5 cm,BC=13 cm,BD是AC边上的中线,则△BCD的面积是15__cm2.8.(2019·郑州高新区期末)如图,两个较大正方形的面积分别为225,289,则字母A 所代表的正方形的面积为64.【变式】如图,以Rt△ABC的三边为直径分别向外作三个半圆S1,S2,S3.若S2=32π,S3=18π,则斜边上半圆的面积S1=50π.知识点3 赵爽弦图9.【关注数学文化】(2019·咸宁)勾股定理是“人类最伟大的十个科学发现之一”.我国对勾股定理的证明是由汉代的赵爽在注解《周髀算经》时给出的,他用来证明勾股定理的图案被称为“赵爽弦图”.2002年在北京召开的国际数学大会选它作为会徽.下列图案中是“赵爽弦图”的是(B),A) ,B) ,C) ,D)10.(2019·大庆)我国古代数学家赵爽的“勾股圆方图”是由四个全等的直角三角形与中间的一个小正方形拼成的一个大正方形(如图所示).如果大正方形的面积是13,小正方形的面积是1,直角三角形的两直角边长分别为a,b,那么(a-b)2的值是1.易错点直角边不确定时漏解11.(2019·洛阳期中)已知Rt△ABC的三边长为a,4,5,则a的值是(C)A.3 B.41C.3或41 D.9或4102 中档题12.(本课时T8变式)如图,分别以Rt△ABC的三边为边长向外作等边三角形.若AB=4,则三个等边三角形的面积之和是(A)A.8 3 B.6 3C.18 D.1213.如图,将两个大小、形状完全相同的△ABC和△A′B′C′拼在一起,其中点A′与点A重合,点C′落在边AB上,连接B′C.若∠ACB=∠AC′B′=90°,AC=BC=3,则B′C的长为(A)A.3 3 B.6C.3 2 D.2114.(2019·河南)如图,在四边形ABCD中,AD∥BC,∠D=90°,AD=4,BC=3.分别以点A ,C 为圆心,大于12AC 长为半径作弧,两弧交于点E ,作射线BE 交AD 于点F ,交AC 于点O.若点O 是AC 的中点,则CD 的长为(A)A .2 2B .4C .3 D.1015.(2018·荆州)为了比较5+1与10的大小,可以构造如图所示的图进行推算,其中∠C=90°,BC =3,D 在BC 上且BD =AC =1.通过计算可得5+1>10.(填“>”“<”或“=”)16.在△ABC 中,AB =15,AC =13,高AD =12,则△ABC 的周长为32或42.17.如图,在△ABC 中,AB =15,BC =14,AC =13,求△ABC 的面积.某学习小组经过合作交流,给出了下面的解题思路,请你按照他们的解题思路完成解答过程.解:在△ABC 中,AB =15,BC =14,AC =13,设BD =x ,则CD =14-x.由勾股定理,得AD 2=AB 2-BD 2=152-x 2,AD 2=AC 2-CD 2=132-(14-x)2.∴152-x 2=132-(14-x)2.解得x =9.∴AD=12.∴S△ABC=12BC·AD=12×14×12=84., 03 综合题)18.(2019·毕节改编)三角板是我们学习数学的好帮手.将一对直角三角板如图放置,点C在FD的延长线上,点B在ED上,AB∥CF,∠F=∠ACB=90°,∠E=45°,∠A =60°,AC=10,求CD的长度.解:过点B作BM⊥FD于点M,在△ACB中,∠ACB=90°,∠A=60°,AC=10,∴∠ABC=30°.∴AB=2AC=20,BC=AB2-AC2=10 3.∵AB∥CF,∴∠BCM=∠ABC=30°.∴BM=12BC=12×103=5 3.∴CM=BC2-BM2=15.在△EFD中,∠F=90°,∠E=45°,∴∠EDF=45°.∴MD=BM=5 3.∴CD=CM-MD=15-5 3.第2课时勾股定理的应用01 基础题知识点1 勾股定理在平面图形中的应用1.如图,有两棵树,一棵高12米,另一棵高6米,两树相距8米.一只鸟从一棵树的树梢飞到另一棵树的树梢,则小鸟至少飞行10米.2.八(2)班小明和小亮同学学习了“勾股定理”之后,为了测得如图风筝的高度CE,他们进行了如下操作:①测得BD的长度为15米;(注:BD⊥CE)②根据手中剩余线的长度计算出风筝线BC的长为25米;③牵线放风筝的小明身高为1.6米.求风筝的高度CE.解:在Rt△CDB中,由勾股定理,得CD=CB2-BD2=252-152=20(米).∴CE=CD+DE=20+1.6=21.6(米).答:风筝的高度CE为21.6米.3.(2019·郑州管城区月考)如图所示,甲渔船以8海里/时的速度离开港口O向东北方向航行,乙渔船以6海里/时的速度离开港口O向西北方向航行,它们同时出发,一个半小时后,甲、乙两渔船相距多少海里?解:由题意,得BO=1.5×6=9(海里),AO=1.5×8=12(海里),∠1=∠2=45°,故∠AOB=90°,AB=BO2+AO2=15(海里).答:甲、乙两渔船相距15海里.知识点2 两次勾股定理的应用4.如图,小巷左右两侧是竖直的墙,一架梯子斜靠在左墙时,梯子底端到左墙角的距离为0.7米,顶端距离地面2.4米.如果保持梯子底端位置不动,将梯子斜靠在右墙时,顶端距离地面2米,那么小巷的宽度为(C)A.0.7米 B.1.5米C.2.2米 D.2.4米5.(教材P25例2变式)如图,滑竿在机械槽内运动,∠ACB为直角,已知滑竿AB长2.5米,顶点A在AC上滑动,量得滑竿下端B距C点的距离为1.5米,当端点B向右移动0.5米时,滑竿顶端A下滑0.5米.知识点3 利用勾股定理求两点间的距离6.(2019·常州)平面直角坐标系中,点P(-3,4)到原点的距离是5.7.(教材P26练习T2变式)如图,在平面直角坐标系中,A(4,4),B(1,0),C(0,1),则B,C两点间的距离是2;A,C两点间的距离是5;A,B两点间的距离是5.8.(2019·大庆)如图,一艘船由A港沿北偏东60°方向航行10 km至B港,然后再沿北偏西30°方向航行10 km至C港.(1)求A,C两港之间的距离(结果保留到0.1 km,参考数据:2≈1.414,3≈1.732);(2)确定C港在A港的什么方向.解:(1)由题意,得∠PBC=30°,∠MAB=60°.∴∠CBQ=60°,∠BAN=30°.∴∠ABQ=30°.∴∠ABC=∠ABQ+∠CBQ=90°.∵AB=BC=10,∴在Rt△ABC中,AC=AB2+BC2=102≈14.1.答:A,C两港之间的距离约为14.1 km.(2)由(1)知,△ABC为等腰直角三角形,∴∠BAC=45°.∴∠CAM=60°-45°=15°.∴C港在A港北偏东15°的方向上.02 中档题9.如图为某楼梯,测得楼梯的长为5米,高3米,计划在楼梯表面铺地毯,地毯的长度至少为(D)A.4米 B.8米C.9米 D.7米10.(2019·南京)无盖圆柱形杯子的展开图如图所示.将一根长为20 cm的细木筷斜放在该杯子内,木筷露在杯子外面的部分至少有5cm.11.【方程思想】如图是一副秋千架,左图是从正面看,当秋千绳子自然下垂时,踏板离地面0.5 m(踏板厚度忽略不计),右图是从侧面看,当秋千踏板荡起至点B位置时,点B离地面垂直高度BC为1 m,离秋千支柱AD的水平距离BE为1.5 m(不考虑支柱的直径).求秋千支柱AD的高.解:设AD=x m,则由题意可得AB=(x-0.5)m,AE=(x-1)m.在Rt△ABE中,AE2+BE2=AB2,即(x-1)2+1.52=(x-0.5)2.解得x=3.答:秋千支柱AD的高为3 m.12.超速行驶是引发交通事故的主要原因.上周末,小鹏等三位同学在滨海大道红树林路段,尝试用自己所学的知识检测车速,观测点设在到公路l的距离为100 m的P 处.这时,一辆轿车由西向东匀速驶来,测得此车从A处行驶到B处所用的时间为3 s,并测得∠APO=60°,∠BPO=45°,试判断此车是否超过了80 km/h的限制速度?解:在Rt△APO中,∠APO=60°,则∠PAO=30°.∴AP=2OP=200 m,AO=AP2-OP2=2002-1002=1003(m).在Rt△BOP中,∠BPO=45°,则BO=OP=100 m.∴AB=AO-BO=(1003-100)m.∴从A到B小车行驶的速度为(1003-100)÷3≈24.4(m/s)=87.84 km/h>80 km/h. ∴此车超过80 km/h的限制速度.03 综合题13.【分类讨论思想】如图,在Rt△ABC中,∠C=90°,AB=5 cm,AC=3 cm,动点P 从点B出发沿射线BC以1 cm/s的速度移动,设运动的时间为t s.(1)求BC边的长;(2)当△ABP为直角三角形时,求t的值.解:(1)在Rt△ABC中,由勾股定理,得BC2=AB2-AC2=52-32=16.∴BC=4 cm.(2)由题意,知BP=t cm,①当∠APB为直角时,如图1,点P与点C重合,BP=BC=4 cm,∴t=4;②当∠BAP 为直角时,如图2,BP =t cm ,CP =(t -4)cm ,AC =3 cm ,在Rt△ACP 中,AP 2=AC 2+CP 2=32+(t -4)2.在Rt△BAP 中,AB 2+AP 2=BP 2,即52+[32+(t -4)2]=t 2.解得t =254. ∴当△ABP 为直角三角形时,t =4或254. 第3课时 利用勾股定理作图01 基础题知识点1 在数轴上表示无理数1.(教材P27练习T1变式)(2019·河南期末)如图,数轴上点A 对应的数是0,点B 对应的数是1,BC⊥AB,垂足为B ,且BC =2,以点A 为圆心,AC 长为半径画弧,交数轴于点D ,则点D 表示的数为(D)A .2.2B. 2C. 3D. 52.在数轴上作出表示10的点(保留作图痕迹,不写作法).解:略.知识点2 网格中的无理数3.如图,在平面直角坐标系中,已知点A(2,1),点B(3,-1),则线段AB 的长度为(C) A. 2 B. 3 C. 5 D .34.如图,△ABC 的顶点A ,B ,C 在边长为1的正方形网格的格点上,BD⊥AC 于点D ,则CD 的长为(A)A.255B.355C.455D.455.利用如图4×4的方格,作出面积为8平方单位的正方形,然后在数轴上表示实数8和-8.解:如图所示.知识点3 等腰三角形中的勾股定理6.将一副三角尺按如图所示叠放在一起,若AB =12 cm ,则AF =62cm.7.(2019·天水)如图,等边△OAB 的边长为2,则点B 的坐标为(B)A .(1,1)B .(1,3)C .(3,1)D .(3,3)8.(教材P27练习T2变式)如图,在△ABC 中,AB =AC =13 cm ,BC =10 cm ,求等腰三角形的底边上的高与面积.解:过点A 作AD⊥BC 于点D ,∵AB=AC =13 cm ,∴BD=CD =12BC =12×10 =5(cm).∴AD=AB 2-BD 2=132-52=12(cm),即等腰三角形底边上的高为12 cm.∴S △ABC =12BC·AD=12×10×12=60(cm 2).02 中档题9.(2019·驻马店汝南县期末)如图,在Rt△ABC 中,∠ACB=90°,以点A 为圆心,AC 长为半径作圆弧交边AB 于点D.若 AC =3,BC =4,则BD 的长是(A)A .2B .3C .4D .510.如图,图中小正方形的边长为1,△ABC 的周长为(B)A .16B .12+4 2C .7+7 2D .5+11 211.(教材P27练习T1变式)如图,数轴上点A 所表示的实数是5-1.12.点A ,B ,C 在格点图中的位置如图所示,格点小正方形的边长为1,则点C 到线段AB 所在直线的距离为355.13.如图,△ABC 和△DCE 都是边长为4的等边三角形,点B ,C ,E 在同一条直线上,连接BD ,求BD 的长.解:∵△ABC 和△DCE 都是边长为4的等边三角形,∴CB=CD ,∠CDE=∠DCE=60°.∴∠BDC=∠DBC=12∠DCE=30°. ∴∠BDE=90°.在Rt△BDE 中,DE =4,BE =8,∴BD=BE 2-DE 2=82-42=4 3.14.如图,正方形网格中,每个小正方形的边长均为1,每个小正方形的顶点叫格点.(1)在图1中,以格点为端点,画线段MN=13;(2)在图2中,以格点为顶点,画正方形ABCD,使它的面积为10.解:(1)如图.(2)如图.03 综合题15.仔细观察图形,认真分析下列各式,然后解答问题.OA22=(1)2+1=2,S1=1 2;OA23=(2)2+1=3,S2=2 2;OA24=(3)2+1=4,S3=3 2;…(1)请用含有n(n是正整数)的等式表示上述变化规律;(2)推算出OA10的长;(3)求出S21+S22+S23+…+S210的值.解:(1)OA2n=(n-1)2+1=n,S n =n 2(n 为正整数). (2)OA 210=(9)2+1=10, ∴OA 10=10.(3)S 21+S 22+S 23+…+S 210=(12)2+(22)2+(32)2+…+(92)2+(102)2 =14+24+34+…+94+104=1+2+3+…+9+104=1+102×104=554.小专题(二) 利用勾股定理解决最短路径问题——教材P39复习题T12的变式与应用【例】 如图,有一个圆柱,它的高等于12 cm ,底面半径等于3 cm ,在圆柱的底面A 点有一只蚂蚁,它想吃到上底面上与A 点相对的B 点的食物,需要爬行的最短路程是多少?(π取3)【思路点拨】 要求蚂蚁爬行的最短路程,需将空间图形转化为平面图形(即立体图形的平面展开图),把圆柱沿着过A 点的直线AA′剪开,因为“两点之间,线段最短”,所以蚂蚁应沿着平面展开图中线段AB 这条路线走.解:如图,由题意可得:AA′=12,A′B=12×2π×3=9.在Rt△AA′B中,根据勾股定理,得AB2=A′A2+A′B2=122+92=225.∴AB=15.∴需要爬行的最短路程是15 cm.几何体中最短路径基本模型如下:图例圆柱――→展开长方体阶梯问题基本思路将立体图形展开成平面图形→利用“两点之间,线段最短”确定最短路线→构造直角三角形→利用勾股定理求解.1.(2018·禹州期中)如图,圆柱形玻璃杯高为14 cm,底面周长为32 cm,在杯内壁离杯底5 cm的点B处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿3 cm与蜂蜜相对的点A处,则蚂蚁从外壁A处到内壁B处的最短距离为20cm.(杯壁厚度不计)2.如图是一个三级台阶,它的每一级的长、宽、高分别为24 dm,3 dm,3 dm,点A 和点B是这个台阶上两个相对的端点,A点有一只蚂蚁,想到B点处去吃可口的食物,则蚂蚁沿着台阶面爬行到点B的最短路程是30__dm.3.如图,长方体的高为5 cm,底面长为4 cm,宽为1 cm.(1)点A1到点C2之间的距离是多少?(2)若一只蚂蚁从点A2爬到C1,则爬行的最短路程是多少?解:(1)∵长方体的高为5 cm,底面长为4 cm,宽为1 cm,∴A2C2=42+12=17(cm).∴A1C2=52+(17)2=42(cm).(2)如图1所示,A2C1=52+52=52(cm).如图2所示,A2C1=92+12=82(cm).如图3所示,A2C1=62+42=213(cm).∵52<213<82,∴一只蚂蚁从点A2爬到C1,爬行的最短路程是5 2 cm.小专题(三) 方程思想在勾股定理中的应用——教材P39复习题T10的解法剖析及变式应用【教材母题】 一根竹子高1丈,折断后竹子顶端落在离竹子底端3尺处.折断处离地面的高度是多少?(这是我国古代数学著作《九章算术》中的一个问题.其中的丈、尺是长度单位,1丈=10尺.)解:设AB =x 尺,根据题意,得∠BAC=90°,AB +BC =10尺,∴BC=(10-x)尺.∵AC 2+AB 2=BC 2,∴32+x 2=(10-x)2,解得x =41120. 答:折断处离地面41120尺.在一个直角三角形中,若已知两边长,可直接运用勾股定理求第三边长,若已知一边长,且知另两边具有一定的数量关系,可利用方程思想,设出一边长,利用数量关系表示另一边长,借助勾股定理这一等量关系列出方程解决问题,其中两边的数量关系主要有两种呈现形式:一是直角三角形中有特殊角,二是出现图形的折叠.类型1 利用直角三角形中的特殊角揭示两边的数量关系1.求下列直角三角形中未知的边长.解:如图1,设AC =x ,∵∠ACB=90°,∠B=30°,∴AB=2x.∵A B 2=AC 2+BC 2,∴(2x)2=x 2+32.∴x=3或-3(负值舍去). ∴AC=3,AB =2 3.如图2,设AC =x ,∵∠ACB=90°,∠A=45°,∴BC=AC =x.∵AB 2=AC 2+BC 2,∴x 2+x 2=(32)2.∴x=3或-3(负值舍去).∴AC=BC =3.类型2 利用图形的折叠找两边的数量关系2.如图,在Rt△ABC 中,AB =6,BC =4,∠B=90°,将△ABC 折叠,使A 点与BC 的中点D 重合,折痕为MN ,则线段BN 的长为(C)A.53B.52C.83D .53.如图,在长方形纸片ABCD 中,已知AD =8,折叠纸片使AB 边与对角线AC 重合,点B 落在点F 处,折痕为AE ,且EF =3,则AB =6.4.如图,把长方形纸片ABCD折叠,使其对角顶点A与C重合.若长方形的长BC为8,宽AB为4,则折痕EF的长度为25.类型3 利用勾股定理和方程思想求点的坐标5.如图,在平面直角坐标系中,A(1,3),试在x轴上找一点P,使△OAP为等腰三角形,求出P点的坐标.解:过点A作AB⊥x轴,垂足为B.∵A(1,3),∴OB=1,AB=3.∴OA=12+32=10.当AO=AP时,以A为圆心,AO长为半径画弧与x轴交于点O与点P1,∵AB⊥x轴,∴BP1=BO=1,即P1(2,0);当OA=OP时,以O为圆心,OA长为半径画弧与x轴交于点P2,P3,∵OA=10,∴P2(10,0),P3(-10,0);当PA=PO时,作OA的垂直平分线交x轴于点P4.设OP4=x,则BP4=x-1,AP4=OP4=x.在Rt△ABP4中,AP24=AB2+BP24,∴x2=32+(x-1)2.解得x=5,即P4(5,0).综上所述,使△OAP为等腰三角形的点P有:P1(2,0),P2(10,0),P3(-10,0),P4(5,0).17.2 勾股定理的逆定理01 基础题知识点1 互逆命题1.下列各命题的逆命题不成立的是(C)A.两直线平行,同旁内角互补B.若两个数的绝对值相等,则这两个数也相等C.对顶角相等D.如果a2=b2,那么a=b2.(2019·安徽)命题“如果a+b=0,那么a,b互为相反数”的逆命题为如果a,b 互为相反数,那么a+b=0.逆命题是真命题.(填“真命题”或“假命题”)知识点2 勾股定理的逆定理3.(2019·郑州期末)下面四组数,其中是勾股数组的是(A)A.3,4,5 B.0.3,0.4,0.5C.32,42,52 D.6,7,84.(2019·洛阳洛龙区期中)由线段a,b,c组成的三角形不是直角三角形的是(D) A.a2-b2=c2B.a=54,b=1,c=34C.a=2,b=3,c=7D.∠A∶∠B∶∠C=3∶4∶55.(2019·益阳)已知M,N是线段AB上的两点,AM=MN=2,NB=1,以点A为圆心,AN长为半径画弧;再以点B为圆心,BM长为半径画弧,两弧交于点C,连接AC,BC,则△ABC一定是(B)A.锐角三角形 B.直角三角形C.钝角三角形 D.等腰三角形6.将勾股数3,4,5扩大2倍,3倍,4倍,…,可以得到勾股数6,8,10;9,12,15;12,16,20;…,则我们把3,4,5这样的勾股数称为基本勾股数,请你写出两组不同于以上所给出的基本勾股数:答案不唯一,如:5,12,13;7,24,25.7.已知:在△ABC中,∠A,∠B,∠C的对边分别是a,b,c,三边分别为下列长度,判断该三角形是不是直角三角形,并指出哪一个角是直角.(1)a=3,b=22,c=5;(2)a=5,b=7,c=9;(3)a=5,b=26,c=1.解:(1)是,∠B是直角.(2)不是.(3)是,∠A是直角.8.如图是一个零件的示意图,测量AB=4 cm,BC=3 cm,CD=12 cm,AD=13 cm,∠ABC =90°,根据这些条件,你能求出∠ACD的度数吗?试说明理由.解:在△ABC中,∵AB=4,BC=3,∠ABC=90°,∴根据勾股定理,得AC2=AB2+BC2=42+32=52.∴AC=5.∵AC2+CD2=52+122=25+144=169,AD2=132=169,∴AC2+CD2=AD2.∴△ACD是直角三角形,且AD为斜边,即∠ACD=90°.02 中档题9.如图,AD为△ABC的中线,且AB=13,BC=10,AD=12,则AC等于(D)A.10 B.11 C.12 D.1310.下列定理中,没有逆定理的是(B)A .等腰三角形的两个底角相等B .对顶角相等C .三边对应相等的两个三角形全等D .直角三角形两个锐角的和等于90°11.【关注数学文化】(2018·长沙)我国南宋著名数学家秦九韶的著作《数书九章》里记载有这样一道题目:“问有沙田一块,有三斜,其中小斜五里,中斜十二里,大斜十三里,欲知为田几何?”这道题讲的是:有一块三角形沙田,三条边长分别为5里,12里,13里,问这块沙田面积有多大?题中的“里”是我国市制长度单位,1里=500米,则该沙田的面积为(A)A .7.5平方千米B .15平方千米C .75平方千米D .750平方千米12.如图,方格中的点A ,B 称为格点(横线的交点),以AB 为一边画△ABC,其中是直角三角形的格点C 的个数为(B)A .3B .4C .5D .613.把一根30米长的细绳折成3段,围成一个三角形,其中一条边的长度比较短边长7米,比较长边短1米,则这个三角形是直角三角形.14.(教材P34习题T6变式)如图,在正方形ABCD 中,E ,F 分别BC ,CD 边上的一点,且BE =2EC ,FC =29DC ,连接AE ,AF ,EF ,求证:△AEF 是直角三角形.证明:设FC =2a ,则DC =9a ,DF =7a.∴AB=BC =AD =CD =9a.∵BE=2CE ,∴BE=6a ,EC =3a.在Rt△ECF 中,EF 2=EC 2+FC 2=(3a)2+(2a)2=13a 2.在Rt△ADF 中,AF 2=AD 2+DF 2=(9a)2+(7a)2=130a 2.在Rt△ABE 中,AE 2=AB 2+BE 2=(9a)2+(6a)2=117a 2.∵13a 2+117a 2=130a 2,∴EF 2+AE 2=AF 2.∴△AEF 是以∠AEF 为直角的直角三角形.15.(教材P34习题T5变式)如图,在四边形ABCD 中,AB =BC =1,CD =3,DA =1,且∠B=90°.求:(1)∠BAD 的度数;(2)四边形ABCD 的面积(结果保留根号); (3)将△ABC 沿AC 翻折至△AB′C,如图所示,连接B′D,求四边形ACB′D 的面积.解:(1)∵AB=BC =1,∠B=90°,∴∠BAC=∠ACB=45°,AC =AB 2+BC 2= 2.又∵CD=3,DA =1,∴AC 2+DA 2=CD 2.∴△ADC 为直角三角形,∠DAC=90°.∴∠BAD=∠BAC+∠DAC=135°.(2)∵S △ABC =12AB·BC=12,S△ADC=12AD·AC=22,∴S四边形ABCD=S△ABC+S△ADC=1+22.(3)过点D作DE⊥AB′,垂足为E,由(1)知∠DAC=90°.根据折叠可知∠B′AC=∠BAC=45°,AB=AB′=1,S△AB′C=S△ABC=1 2 .∴∠DAE=∠DAC-∠B′AC=45°.∴AE=DE.设DE=AE=x,在Rt△ADE中,AE2+DE2=AD2. ∴x2+x2=1.∴x=2 2.∴S△ADB′=12×1×22=24.∴S四边形ACB′D=S△AB′C+S△ADB′=12+24=2+24.03 综合题16.(2019·呼和浩特改编)如图,在△ABC中,内角∠A,∠B,∠C所对应的边分别为a,b,c.(1)若a,b,c满足aa-b+c=12(a+b+c)c,求证:△ABC是直角三角形;(2)若a=m-n,b=2mn,c=m+n,(其中m,n都是正整数,且m>n),求证:△ABC 是直角三角形.证明:(1)原式可变形为a a +c -b =a +b +c 2c, ∴(a+c)2-b 2=2ac ,即a 2+2ac +c 2-b 2=2ac.∴a 2+c 2=b 2.∴△ABC 是以∠B 为直角的直角三角形.(2)∵a 2=(m -n)2,b 2=(2mn)2=4mn ,c 2=(m +n)2,∴(m-n)2+4mn =(m +n)2,即a 2+b 2=c 2.∴△ABC 是以∠C 为直角的直角三角形.章末复习(二) 勾股定理01 分点突破知识点1 勾股定理(河南中招2019T9选,2018T9选,2017T18(2)解,2016T6选,2015T7选,2014T7选)1.如图,在△ABC中,∠C=90°,∠A=30°,AB=12,则AC=(C)A.6 B.6 2C.6 3 D.122.如图,阴影部分是一个正方形,则此正方形的面积为64cm2.3.如图,在四边形ABCD中,∠B=90°,CD⊥AD,AD2+CD2=2AB2.求证:AB=BC.证明:连接AC.∵在△ABC中,∠B=90°,∴AB2+BC2=AC2.∵CD⊥AD,∴∠ADC=90°.∴在△ACD中,AD2+CD2=AC2.∵AD2+CD2=2AB2,∴AB2+BC2=2AB2.∴BC2=AB2.∵AB>0,BC>0,∴AB=BC.知识点2 勾股定理的应用4.如图,小亮将升旗的绳子拉到旗杆底端,绳子末端刚好接触到地面,然后将绳子末端拉到距离旗杆8 m处,发现此时绳子末端距离地面2 m,则旗杆的高度为(滑轮上方的部分忽略不计)(D)A.12 mB.13 mC.16 mD.17 m5.你听说过亡羊补牢的故事吧.为了防止羊的再次丢失,牧羊人要在宽0.9 m,长1.2 m的长方形栅栏门的相对角顶点间加固一条木板,则这条木板至少需1.5__m长.6.如图,O为数轴原点,A,B两点分别对应-3,3,作腰长为4的等腰△ABC,连接OC,以O为圆心,CO长为半径画弧交数轴于点M,则点M对应的实数为7.知识点3 逆命题及逆定理7.“同旁内角互补”的逆命题是互补的两个角是同旁内角,它是假命题.知识点4 勾股定理的逆定理及其应用8.在△ABC中,AB=6,AC=8,BC=10,则该三角形为(B)A.锐角三角形 B.直角三角形C.钝角三角形 D.等腰直角三角形9.在△ABC中,∠A,∠B,∠C的对边分别为a,b,c且a2-b2=c2,则下列说法正确的是(C)A.∠C是直角 B.∠B是直角C.∠A是直角 D.∠A是锐角02 易错题集训10.已知一个直角三角形的两边长分别为6和8,则第三边长的平方是100或28.11.(2018·襄阳)已知CD是△ABC的边AB上的高,若CD=3,AD=1,AB=2AC,则BC的长为23或27.03 河南常考题型演练12.如图,在△ABC中,∠C=90°,AC=2,点D在BC上,∠ADC=2∠B,AD=5,则BC的长为(D)A.3-1B.3+1C.5-1D.5+113.如果将长为6 cm,宽为5 cm的长方形纸片折叠一次,那么这条折痕的长不可能是(A)A.8 cm B.6 cmC.5.5 cm D.1 cm14.如图,在单位正方形组成的网格图中标有AB,CD,EF,GH四条线段,其中能构成一个直角三角形三边的线段是(B)A.CD,EF,GH B.AB,EF,GHC.AB,CD,EF D.GH,AB,CD15.(2019·信阳罗山县模拟)如图,在△ABC中,点M是AC边上一个动点.若AB=AC =10,BC=12,则BM的最小值为(B)A.8 B.9.6 C.10 D.4 516.若一个三角形的周长为12 3 cm,一边长为3 3 cm,其他两边之差为 3 cm,则这个三角形是直角三角形.17.(2019·枣庄)把两个同样大小的含45°角的三角尺按如图所示的方式放置,其中一个三角尺的锐角顶点与另一个的直角顶点重合于点A,且另三个锐角顶点B,C,D在同一直线上.若AB=2,则CD=6-2.18.(2019·河北)勘测队按实际需要构建了平面直角坐标系,并标示了A,B,C三地的坐标,数据如图(单位:km).笔直铁路经过A,B两地.(1)A,B间的距离为20km;(2)计划修一条从C到铁路AB的最短公路l,并在l上建一个维修站D,使D到A,C 的距离相等,则C,D间的距离为13km.19.如图,有一块空白地,∠ADC=90°,CD=6 m,AD=8 m,AB=26 m,BC=24 m.试求这块空白地的面积.解:连接AC.∵∠ADC=90°,∴△ADC是直角三角形.∴AD2+CD2=AC2,即82+62=AC2.解得AC=10.又∵AC2+CB2=102+242=262=AB2,∴△ACB是直角三角形,∠ACB=90°.∴S四边形ABCD=S Rt△ACB-S Rt△ACD=12×10×24-12×6×8=96(m2).故这块空白地的面积为96 m2.04 核心素养专练20.(2019·邵阳)公元3世纪初,中国古代数学家赵爽注《周髀算经》时,创造了“赵爽弦图”.如图,设勾a=6,弦c=10,则小正方形ABCD的面积是4.周测(第十七章)(时间:40分钟满分:100分)一、选择题(每小题3分,共30分)1.下列每一组数据中的三个数值分别为三角形的三边长,不能构成直角三角形的是(C) A.8,15,17 B.2,3, 5C.3,2, 5 D.1,2, 52.已知命题:等边三角形是等腰三角形,则下列说法正确的是(B)A.该命题为假命题B.该命题为真命题C.该命题的逆命题为真命题D.该命题没有逆命题3.点A(-3,-4)到原点的距离为(C)A .3B .4C .5D .74.如图,数轴上点A 表示的数是0,点B 表示的数是1,BC⊥AB,垂足为B ,且BC =1,以A 为圆心,AC 的长为半径画弧,与数轴交于点D ,则点D 表示的数为(B)A .1.4 B. 2 C. 3D .25.将直角三角形的三条边长同时扩大一倍,得到的三角形是(C)A .钝角三角形B .锐角三角形C .直角三角形D .等腰三角形6.在△ABC 中,∠A∶∠B∶∠C=1∶2∶3.若AC =4,则AB 的长为(D)A .8B .6C.433D.8337.下面各三角形中,面积为无理数的是(C)8.如图,将边长为12的正方形ABCD 折叠,使得点A 落在CD 边上的点E 处,折痕为MN.若CE 的长为7,则MN 的长为(B)A .10B .13C .15D .无法求出9.已知直角三角形两条直角边的长之和为6,斜边长为2,则这个三角形的面积是(B) A .0.25 B .0.5C .1D .2 310.已知一个直角三角形的斜边长为3,若以三边为斜边分别向外作等腰直角三角形,则所作的三个等腰直角三角形的面积和为(A)A.92B.94C .3D .9二、填空题(每小题4分,共20分)11.直角三角形斜边长是6,一直角边的长是5,则此直角三角形的另一直角边长为11.12.如图,在平面直角坐标系中,A(4,0),B(0,3),以点A 为圆心,AB 长为半径画弧,交x 轴的负半轴于点C ,则点C 的坐标为(-1,0).13.如图,每个小正方形的边长均为1,则△ABC 边AC 上的高BD 的长为85.14.如图,在△ABC 中,AB∶BC∶CA=3∶4∶5,且周长为36 cm ,点P 从点A 开始沿AB 边向点B 以每秒1 cm 的速度移动;点Q 从点B 沿BC 边向点C 以每秒2 cm 的速度移动.若同时出发,则过3秒时,△BPQ 的面积为18cm 2.15.如图,在Rt△ABC中,∠ACB=90°,AC=3,BC=4.分别以AB,AC,BC为边在AB 的同侧作正方形ABEF,ACPQ,BCMN,四块阴影部分的面积分别为S1,S2,S3,S4,则S1+S2+S3+S4等于18.三、解答题(共50分)16.(8分)如图,在边长为1的小正方形组成的网格中,△ABC的三个顶点均在格点上.(1)求△ABC的面积;(2)求AB,AC的长.解:(1)S△ABC=12×7×5=17.5.(2)由勾股定理,得AB=32+52=34,AC=42+52=41.17.(10分)如图,在△ABC中,∠ACB=90°,CD⊥AB,垂足为D,BC=6,AC=8,求AB与CD的长.解:在△ABC中,∠ACB=90°,BC=6,AC=8,由勾股定理,得AB=BC2+AC2=10,∵S△ABC=12AB·CD=12AC·BC,∴CD=AC·BC AB =8×610=4.8.18.(10分)如图,∠AOB=90°,OA =45 cm ,OB =15 cm ,一机器人在点B 处看见一个小球从点A 出发沿着AO 方向匀速滚向点O ,机器人立即从点B 出发,沿直线匀速前进拦截小球,恰好在点C 处截住了小球.如果小球滚动的速度与机器人行走的速度相等,那么机器人行走的路程BC 是多少?解:因为小球滚动的速度与机器人行走的速度相等,运动时间相等,所以BC =CA. 设AC =BC =x ,则OC =45-x ,由勾股定理可知OB 2+OC 2=BC 2.又因为OB =15,所以152+(45-x)2=x 2.解得x =25.答:如果小球滚动的速度与机器人行走的速度相等,那么机器人行走的路程BC 是25 cm.19.(10分)清朝的康熙皇帝对勾股定理也很有研究,他著有《积求勾股法》:用现代的数学语言描述就是:若直角三角形的三边长分别为3,4,5的整数倍,设其面积为S ,则求其边长的方法为:第一步:S 6=n ;第二步:n =k ;第三步:分别用3,4,5乘k ,得三边长.当面积S 等于150时,请用“积求勾股法”求出这个直角三角形的三边长. 解:当S =150时,k =n =S 6=1506=25=5, ∴三边长分别为3×5=15,4×5=20,5×5=25.∴这个直角三角形的三边长为15,20,25.20.(12分)在正方形ABCD 中,过点A 引射线AH ,交边CD 于点H(点H 与点D 不重合),通过翻折,使点B 落在射线AH 上的点G 处,折痕AE 交BC 于点E ,延长EG 交CD 于点F.如图1,当点H 与点C 重合时,易证得FG =FD(不要求证明);如图2,当点H 为边CD 上任意一点时,求证:FG =FD.【应用】 在图2中,已知AB =5,BE =3,则FD =54,△EFC 的面积为154.(直接写结果)证明:连接AF ,由折叠的性质可得,AB =AG =AD.在Rt△AGF 和Rt△ADF 中,⎩⎪⎨⎪⎧AG =AD ,AF =AF ,∴Rt△AGF≌Rt△ADF(HL).∴FG=FD.。

(完整版)勾股定理经典例题(含答案)

(完整版)勾股定理经典例题(含答案)

经典例题透析类型一:勾股定理的直接用法1、在Rt△ABC中,∠C=90°(1)已知a=6,c=10,求b,(2)已知a=40,b=9,求c;(3)已知c=25,b=15,求a.思路点拨:写解的过程中,一定要先写上在哪个直角三角形中,注意勾股定理的变形使用。

解析:(1) 在△ABC中,∠C=90°,a=6,c=10,b=(2) 在△ABC中,∠C=90°,a=40,b=9,c=(3) 在△ABC中,∠C=90°,c=25,b=15,a=举一反三【变式】:如图∠B=∠ACD=90°, AD=13,CD=12, BC=3,则AB的长是多少?【答案】∵∠ACD=90°AD=13, CD=12∴AC2 =AD2-CD2=132-122=25∴AC=5又∵∠ABC=90°且BC=3∴由勾股定理可得AB2=AC2-BC2=52-32=16∴AB= 4∴AB的长是4.类型二:勾股定理的构造应用2、如图,已知:在中,,,. 求:BC的长.思路点拨:由条件,想到构造含角的直角三角形,为此作于D,则有,,再由勾股定理计算出AD、DC的长,进而求出BC的长.解析:作于D,则因,∴(的两个锐角互余)∴(在中,如果一个锐角等于,那么它所对的直角边等于斜边的一半).根据勾股定理,在中,.根据勾股定理,在中,.∴.举一反三【变式1】如图,已知:,,于P. 求证:.解析:连结BM,根据勾股定理,在中,.而在中,则根据勾股定理有.∴又∵(已知),∴.在中,根据勾股定理有,∴.【变式2】已知:如图,∠B=∠D=90°,∠A=60°,AB=4,CD=2。

求:四边形ABCD的面积。

分析:如何构造直角三角形是解本题的关键,可以连结AC,或延长AB、DC交于F,或延长AD、BC交于点E,根据本题给定的角应选后两种,进一步根据本题给定的边选第三种较为简单。

勾股定理全章练习题

勾股定理全章练习题

勾股定理全章练习题一、选择题1. 在直角三角形ABC中,∠C为直角,若AC=3,BC=4,则AB的长度为()A. 5B. 6C. 7D. 82. 已知直角三角形的一条直角边长为5,斜边长为13,则另一直角边长为()A. 12B. 9C. 8D. 63. 若直角三角形的两直角边长分别为6和8,则其面积是()A. 24B. 28C. 32D. 36二、填空题1. 在直角三角形ABC中,∠C为直角,若AC=5,BC=12,则AB的长度为______。

2. 已知直角三角形的斜边长为10,一条直角边长为6,则另一直角边长为______。

3. 若直角三角形的面积为30,且一条直角边长为5,则斜边长为______。

三、解答题1. 在直角三角形ABC中,∠C为直角,AB=13,BC=5,求AC的长度。

2. 已知直角三角形的一条直角边长为8,斜边长为17,求另一直角边长。

3. 若直角三角形的两直角边长分别为9和12,求其面积。

4. 在直角三角形ABC中,∠C为直角,AB=25,AC=15,求BC的长度。

5. 已知直角三角形的面积为48,且斜边长为13,求一条直角边长。

四、应用题1. 一块直角三角形菜地,已知较短的直角边长为30米,斜边长为50米,求菜地的面积。

2. 有一座山,山顶到山脚的直线距离为300米,沿着山坡走到山顶的路径长为400米,求山的高度。

3. 在一个长方形花园里,对角线的长度为50米,已知一条边的长度为40米,求另一条边的长度。

五、判断题1. 若直角三角形的两条直角边长分别为7和24,则斜边长必定为25。

()2. 在直角三角形中,斜边是最长的边,因此斜边的长度一定大于任意一条直角边的长度。

()3. 如果一个三角形的两边长分别为8和15,那么这个三角形不可能是直角三角形。

()六、作图题1. 画出一个直角三角形,其中一条直角边长为4cm,斜边长为6cm,并标出直角。

2. 在同一平面直角坐标系中,画出两个直角三角形,使它们的斜边分别位于坐标轴上,且一个直角三角形的直角边长为3和4,另一个直角三角形的直角边长为5和12。

北师大版八年级上册数学第一章勾股定理全章知识点及习题(经典)

北师大版八年级上册数学第一章勾股定理全章知识点及习题(经典)

cbaD CAB第一章 勾股定理知识点一:勾股定理定义画一个直角边为3cm 和4cm 的直角△ABC ,量AB 的长;一个直角边为5和12的直角△ABC ,量AB 的长 发现32+42与52的关系,52+122和132的关系,对于任意的直角三角形也有这个性质吗? 直角三角形两直角边a 、b 的平方和等于斜边c 的平方。

(即:a 2+b 2=c 2) 1.如图,直角△ABC 的主要性质是:∠C=90°,(用几何语言表示)⑴两锐角之间的关系: ; ⑵若D 为斜边中点,则斜边中线 ;⑶若∠B=30°,则∠B 的对边和斜边: ;(给出证明) ⑷三边之间的关系: 。

知识点二:验证勾股定理知识点三:勾股定理证明(等面积法)例1。

已知:在△ABC 中,∠C=90°,∠A 、∠B 、∠C 的对边为a 、b 、c 。

求证:a 2+b 2=c 2。

证明:例2。

已知:在△ABC 中,∠C=90°,∠A 、∠B 、∠C 的对边为a 、b 、c 。

求证:a 2+b 2=c 2。

证明:知识点四:勾股定理简单应用 在Rt △ABC 中,∠C=90°(1) 已知:a=6, b=8,求c bbbbccccaaaabbb ba accaaACBDAB如果三角形的三边长为c b a ,,,满足222c b a =+,那么,这个三角形是直角三角形. 利用勾股定理的逆定理判别直角三角形的一般步骤: ①先找出最大边(如c )②计算2c 与22a b +,并验证是否相等。

若2c =22a b +,则△ABC 是直角三角形。

若2c ≠22a b +,则△ABC 不是直角三角形。

1.下列各组数中,以a ,b ,c 为边的三角形不是Rt △的是( ) A.a=7,b=24,c=25 B.a=7,b=24,c=24C.a=6,b=8,c=10D.a=3,b=4,c=52.三角形的三边长为ab c b a 2)(22+=+,则这个三角形是( )A. 等边三角形B. 钝角三角形C. 直角三角形D. 锐角三角形3.已知0)10(862=-+-+-z y x ,则由此z y x ,,为三边的三角形是 三角形. 知识点六:勾股数(1)满足222c b a =+的三个正整数,称为勾股数.(2)勾股数中各数的相同的整数倍,仍是勾股数,如3、4、5是勾股数,6、8、10也是勾股数. (3)常见的勾股数有:①3、4、5②5、12、13;③8、15、17;④7、24、25; ⑤11、60、61;⑥9、40、41.1.设a 、b 、c 是直角三角形的三边,则a 、b 、c 不可能的是( ).A.3,5,4B. 5,12,13C.2,3,4D.8,17,15 1. 若线段a ,b ,c 组成Rt △,则它们的比可以是( )A.2∶3∶4B.3∶4∶6C.5∶12∶13D.4∶6∶7知识点七:确定最短路线1.一只长方体木箱如图所示,长、宽、高分别为5cm 、4cm 、3cm, 有一只甲虫从A 出发,沿表面爬到C ',最近距离是多少?2.如图,一圆柱高8cm,底面半径2cm,一只蚂蚁从点A 爬到点B 处吃食,要爬行的最短路程(π 取3)是 .知识点八:逆定理判断垂直1.在△ABC 中,已知AB 2-BC 2=CA 2,则△ABC 的形状是( )A .锐角三角形;B .直角三角形;C .钝角三角形;D .无法确定. 2.如图,正方形网格中的△ABC ,若小方格边长为1,则△ABC 是( )ABCD A 'B 'C 'D 'BC5米3米1.在我国古代数学著作《九章算术》中记载了一道有趣的问题,这个问题的意思是:有一个水池,水面是一个边长为10尺的正方形,在水池正中央有一根新生的芦苇,它高出水面1尺,如果把这根芦苇垂直拉向岸边,它的顶端恰好到达岸边的水面,请问这个水池的深度和这根芦苇的长度各是多少?2.如图为某楼梯,测得楼梯的长为5米,高3米,计划在楼梯表面铺地毯,地毯的长度至少需要________米.3.一根直立的桅杆原长25m,折断后,桅杆的顶部落在离底部的5m处,则桅杆断后两部分各是多长?4.某中学八年级学生想知道学校操场上旗杆的高度,他们发现旗杆上的绳子垂到地面还多1米,当他们把绳子的下端拉开5米后,发现下端刚好触地面,你能帮他们把旗杆的高度和绳子的长度计算出来吗?综合练习一一、选择题1、下面几组数:①7,8,9;②12,9,15;③m 2+ n 2, m 2– n 2, 2mn(m,n 均为正整数,m >n);④2a ,12+a ,22+a .其中能组成直角三角形的三边长的是( )A.①②;B.①③;C.②③;D.③④2已知一个Rt △的两边长分别为3和4,则第三边长的平方是( )A.25B.14C.7D.7或253.三角形的三边长为ab c b a 2)(22+=+,则这个三角形是( )A. 等边三角形;B. 钝角三角形;C. 直角三角形;D. 锐角三角形. 4.△ABC 的三边为a 、b 、c 且(a+b)(a-b)=c 2,则( )A.a 边的对角是直角B.b 边的对角是直角C.c 边的对角是直角D.是斜三角形5.以下列各组中的三个数为边长的三角形是直角三角形的个数有( )①6、7、8,②8、15、17,③7、24、25,④12、35、37,⑤9、40、41 A 、1个 B 、2个 C 、3个 D 、4个6.将直角三角形的三边扩大相同的倍数后,得到的三角形是 ( ) A.直角三角形 B.锐角三角形 C.钝角三角形 D.不是直角三角形7.若△ABC 的三边a 、b 、c 满足(a-b)(a 2+b 2-c 2)=0,则△ABC 是 ( ) A.等腰三角形 B.直角三角形C.等腰直角三角形D.等腰三角形或直角三角形8.如图,∠C =∠B =90°,AB =5,BC =8,CD =11,则AD 的长为 ( )A 、10B 、11C 、12D 、139.如图、山坡AB 的高BC =5m ,水平距离AC =12m ,若在山坡上每隔0.65m 栽一棵茶树,则从上到下共 ( )A 、19棵B 、20棵C 、21棵D 、22棵10.Rt △ABC 中,∠C =90°,∠A 、∠B 、∠C 所对的边分别是a 、b 、c ,若c =2,则2a +2b +2c 的值是 ( )A 、6B 、8C 、10D 、4 11.下列各组数据中,不能构成直角三角形的一组数是( )A、9,12,15 B 、45,1,43C 、0.2,0.3,0.4D 、40,41,9 12.已知,一轮船以16海里/时的速度从港口A 出发向东北方向航行,另一轮船以12海里/时的速度同时从港口A 出发向东南方向航行,离开港口2小时后,则两船相距( )A.25海里B.30海里C.35海里D.40海里二、填空题1.在Rt △ABC 中,∠C=90°,①若a=5,b=12,则c=___________;②若a=15,c=25,则b=___________;③若c=61,b=60,则a=__________;④若a ∶b=3∶4,c=10则S Rt △ABC =________2.现有长度分别为2cm 、3cm 、4cm 、5cm 的木棒,从中任取三根,能组成直角三角形,则其周长为 cm .3.勾股定理的作用是在直角三角形中,已知两边求 ;勾股定理的逆定理的作用是用来证明 .4.如图中字母所代表的正方形的面积:A = B = . A815.在△ABC 中,∠C =90°,若 a =5,b =12,则 c = .6.△ABC 中,AB=AC=17cm ,BC=16cm ,则高AD= ,S △ABC = 。

勾股定理知识总结及练习

勾股定理知识总结及练习

勾股定理知识总结一、知识要点回顾1、勾股定理勾股定理:直角三角形两直角边的平方和等于斜边的平方。

也就是说:如果直角三角形的两直角边为a 、b ,斜边为c ,那么 a 2 + b 2= c 2。

公式的变形: a 2 = c 2- b 2, b 2= c 2-a 2。

2、勾股定理的逆定理如果三角形ABC 的三边长分别是a ,b ,c ,且满足a 2 + b 2= c 2,那么三角形ABC 是直角三角形。

这个定理叫做勾股定理的逆定理.该定理在应用时,同学们要注意处理好如下几个要点:①、已知的条件:某三角形的三条边的长度.②、满足的条件:最大边的平方=最小边的平方+中间边的平方. ③、得到的结论:这个三角形是直角三角形,并且最大边的对角是直角.④、如果不满足条件(2),就说明这个三角形不是直角三角形。

3、勾股定理的应用利用勾股定理已知两边求第三边利用勾股定理的逆定理判断三角形是否为直角三角形 利用勾股定理列方程求线段长构造直角三角形利用勾股定理解决问题1、利用勾股定理已知两边求第三边(1)在△ABC 中,∠C=90°若7a ,c=4,则b= ;(2)在Rt △ABC ,∠B=90°,a=3,b=4,则c= 。

(3) 在Rt △ABC ,∠C=90°,c=25,a :b=3:4,则a= ,b= 。

(4) 在△ABC 中,若∠A=30°,BC=2,则AB= ,AC= 。

(5)直角三角形直角三角形两直角边长分别为3和4,则它斜边上的高为__________ 2、利用勾股逆定理判断一个三角形是否为直角三角形(1)下列各组数中,以它们为边的三角形不是直角三角形的是( )A .1.5,2,3 B. 8,15,17 C .6,8,10 D. 3,4,5 (2).若△ABC 的三边满足2()()0b c b c a +--=则下列结论正确的是( ) A.△ABC 是直角三角形,且∠C 为直角 B. △ABC 是直角三角形,且∠A 为直角 C. △ABC 是直角三角形,且∠B 为直角 D. △ABC 不是直角三角形. (3)如图,AD ⊥BC ,垂足为D ,如果CD=1,AD=2,BD=4,试判断ΔABC 的形状,并说明理由。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

②记住常见的勾股数可以提高解题速度,如3,4,5;6,8,10; 5,12,13;8,15,17等贵阳梦想成真教育辅导中心内部资料北师大版八年级数学上 第1章《勾股定理》试卷(D )【全章知识点分析及典型例习题】一、基础知识点:1.. 勾股定理 直角三角形两直角边的平方和等于斜边的平方。

如果直角三角形的两直角边分别为。

,b,斜边为c,那么a 2+b 2=c 22..勾股定理的证明 勾股定理的证明方法很多,常见的是拼图的方法 %1 图形进过割补拼接后,只要没有重叠,没有空隙,面积不会改变 %1 根据同…种图形的面积不同的表示方法,列出等式,推导出勾股定理3. 勾股定理的适用范围 勾股定理揭示了直角三角形三条边之间所存在的数量关系,它只适用于直角三角形, 对于锐角三角形和饨角三角形的三边就不具有这一特征。

4. 勾股定理的应用 解决直角三角形中的边长的计算或直角三角形中线段之间的关系的证明问题①已知直 角三角形的任意两边长,求第三边。

②可运用勾股定理解决一些实际问题5 .勾股定理的逆定理勾股定理的逆定理是判定一•个三角形是否是直角三角形的一种重要方法 6.勾股数①能够构成直角三角形的三边长的三个正整数称为勾股数,即a 2+b 2=c 2中,。

,b, c •为正整数时,称a, b, c 为一组勾股数%1 用含字母的代数式表示〃组勾股数: 〃2—1,2〃,疽+1 (〃22, 〃为正整数);2n +1,2〃2 + 2〃,2〃2 + 2〃 +1 (■为正整数)m 2 —n 2,2mn,m 2 +n 2( m > n, m , n 为正整数)二、经典例题精讲 题型一:直接考查勾股定理 例题 1 在 A4BC 中,ZC = 90° . ⑴已知AC = 6, BC = 8.求他的长⑵已知AB = 17, AC = 15,求BC 的长分析:直接应用勾股定理a 2+b 2=c 2己知等腰三角形的周长是20cm,底边上的高是6cm,则底边长为. 题型二:利用勾股定理测量长度例题2如果梯子的底端离建筑物9米,那么15米长的梯子可以到达建筑物的高度是多少米? 例题3如图,水池中离岸边D 点1.5米的C 处,直立长着一根芦苇,出水部分BC 的长是0.5题型三:勾股定理和逆定理并用例题4如图3,正方形ABCD 中,E 是BC 边上的中点,F 是AB 上一点,旦FB = -AB 那么ADEF 是直角三角A图34形吗?为什么?变式1例题8、如图,AABC 是直角三角形,BC 是斜边,将AABP绕点A 逆时针旋转后,能与△ ACI”重合,若 AP=3,求PP'的长。

变式2例题5变式 题型四:利用勾股定理求线段长度例题5如图4,己知长方形ABCD 中AB 二8cn 】,BC 二10cm,在边CD 上取一点E,将AADE 折叠使点D 恰好落在BC 边上的点F,求CE 的长.(本题接下来还可以求折痕的长度和重叠部分的面积。

) 如图正方形网格中的△ABC,若小方格边长为1,请你根据所学的知识⑴求AABC 的面积 (2)判断AABC 是什么形状?并说明理由. 题型五:利用勾股定理逆定理判断垂直例题6如图5,王师傅想要检测桌了的表面AD 边是否垂直与AB 边和CD 边,他测得AD=80cm, AB=60cm, BD= 100cm, AD 边与AB 边垂直吗?怎样去验证AD 边与CD 边是否垂直?例题7有一个传感器控制的灯,安装在门上方,离地高4. 5米的墙上,任何东西只要移至5米以内,灯就白动打开,一个身高1.5米的学生,要走到离门多远的地方灯刚好打开?变式1:如图,P 是等边三角形ABC 内一点,PA=2, PB=2V3,PC=4,求Z\ABC 的边长.分析:利用旋转变换,将ABPA 绕点B 逆时针选择60° ,将三条线段集中到同一个三角形中, 根据它们的数圾关系,由勾股定理可知这是一个直角三角形.变式2、如图,Z\ABC 为等腰直角三角形,/BAC =90° , E 、F 是BC 上的点,且ZEAF=45° , 试探究CF\ EE?间的关系,并说明理由.题型七:关于翻折问题例题9、如图,知形纸片ABCD 的边AB=10cm, BC=6cm, E 为BC 上一点,将矩形纸片沿AE 折叠,点B 恰 好落在CD 边上的点G 处,求BE 的长.变式:如图,AD 是ZXABC 的中线,ZADC=45° ,把ZiADC 沿直线AD 翻折,点C 落在点C ,的位凯BC=4,求图4圈5A图6题型六:旋转问题: 例8图例题9图 例题10例题11、如图1 — 19,壁虎在一座底面半径为2米, 罐上边缘的B 处有一只害虫,便决定捕捉这只害虫,为了不引起害虫的注意,它故意不走直线,而是绕着油罐, 例题11变式题型八:关于勾股定理在实际中的应用:例题10、如图,公路MN 和公路PQ 在P 点处交汇,点A 处有一所中学,AP=160米,点A 到公路MN 的距离 为80米,假使拖拉机行驶时,周围100米以内会受到噪音影响,那么拖拉机在公路MN 上沿PN 方向行驶时, 学校是否会受到影响,请说明理由;如果受到影响,已知拖拉机的速度是18千米/小时,那么学校受到影响的 时间为多少?题型九:关于最短性问题高为4米的油罐的下底边沿A 处,它发现在自己的正上方油沿一条螺旋路线,从背后对害虫进行突然袭击.结果,壁虎的偷袭得到成功,获得了一顿美餐.请问壁虎至少要 爬行多少路程才能捕到害虫?(只取3.14,结果保留1位小数,可以用计算器计算)变式:如图为一棱长为3cm 的正方体,把所和Hi 都分为9个小正方形,其边长都是1cm,假 设一只蚂蚁每秒爬行2cm,则它从下地面A 点沿表面爬行至右侧面的B 点,最少要花几秒钟?三、课后训练: (一)、填空题1. 如图(1),在高2米,坡角为30°的楼梯表面铺地毯,地毯的长至少需 米.2. 种盛饮料的圆柱形杯(如图),测得内部底面半径为2.5 cm,高为12 cm,吸管放进杯里,杯口外面至少要露出4.6 cm,问吸管要做 cm 。

3. 已知:如图,AABC 中,ZC = 90°,点O 为Z\ABC 的三条角平分线的交点,OD_LBC, OE±AC, OF_LAB, 点D 、E 、F 分别是垂足,且BC = 8cm, CA = 6cm,则点O 到三边AB ,AC 和BC 的距离分别等于 cm4. 在一棵树的10米高处有两只猴子,一只猴子爬下树走到离树20米处的池塘的A 处。

另一只爬到树顶D 后直 接跃到A 处,距离以直线计算,如果两只猴子所经过的距离相等,则这棵树高 ___________________ 米。

5. 如图是一个三级台阶,它的每一级的长宽和高分别为20dm 、3dm 、 二 2。

2dm, A 和B 是这个台阶两个相对的端点,A 点有一只蚂蚁,想到BF点去吃可口的食物,则蚂蚁沿着台阶而爬到B 点最短路程是 __________ . / (二)、选择题「1. 已知一个Rt △的两边长分别为3和4,则第三边长的平方是()A 、25B 、14C 、7D 、7 或 252. Rt △一直角边的长为11,另两边为自然数,则Rt △的周长为( ) A 、121B 、120C 、132D 、不能确定3. 如果Rt △两直角边的比为5: 12,则斜边上的高与斜边的比为()第3题图A 、56B 、48C 、40 D^ 326.某市在山城改造中,计划在市内一块如图所示的三角形空地上种植草皮以美化环境,己知这种草皮每平方米佶价 E a 元,则购买这种草皮至少需要( A 、 450a 元 B 、 225a 元 ) A C^ 150a 元 D 、 300a 元第6题图7.第7题图已知,如图长方形ABCD中,AB=3cm, AD=9cm,将此长方形折叠,使点B 与点D 重合,折痕为EF,则AABE 的面积为()8.9.A^ 6cm 2 B 、8cm 2在ZVIBC 中,AB=15, AC=13f A. 42 B. 32 如图,正方形网格中的△ABC, C 、1 ()cm J D 、12cm 高AD=12f 则的周长为 C. 42 或 32 若小方格边长为 (C )钝角三角形D. 37 或 33 1,则△ ABC 是((D )以上答案都不对-— —— —■一 —— 矿/ 夕N(A )直角三角形(B )锐角三角形 (三)、计算1、如图,A 、B 是笔直公路1同侧的两个村庄,且两个村庄到直路的距离分别是300m 和500m,两村庄之间的距离为 d (已知dMOOOOOm 2),现要在公路上建一汽车停靠站,使两村到停靠站的距离之和最小。

问最小是多少?A 、60 : 13B 、5 : 12C 、12 : 13D 、60 : 1694. 已知 RtAABC 中,ZC=90° ,若 a+b= 14cm, c=10cm,则 RtAABC 的面积是( )A 、24cm JB 、36cm JC 、48cm~D 、60cm"5. 等腰三角形底边上的高为8,周长为32,则三角形的面积为( )2、如图1-3-11,有一块塑料矩形模板ABCD,长为10cm,宽为4cm,将你手中足够大的直角三角板PHF 的直 角顶点P 落在AD 边上(不与A 、D 重合),在AD 上适当移动三角板顶点P :%1 能否使你的三角板两直角边分别通过点B 与点C?若能,请你求出这时AP 的长;若不能,请说明理由.%1 再次移动三角板位置,使三角板顶点P 在AD 上移动,直角边PH 始终通过点B,另一直角边PF 与DC 的延长线交 尸点Q,与BC 交于点E,能否使CE=2cm?若能,请你求出这时AP 的长;若不能,请你说明理由.勾股定理习题1.如图RtAABC , ZC = 9()。

AC = 3,8C = 4,分别以各边为直径作半圆,求阴影部分面积BFc A2 .如图有两棵树,一棵高8 cm,另一棵高2 c 〃?,两树相距8 cm, —只小鸟从一棵树的树梢飞到另一棵数的 树梢,至少飞了 m3, 如图,一只蚂蚁从点A 沿I 员I 柱表面爬到点B,如果圆柱的高为蜘,圆柱的底面半径为电顷,那么最短 7T 的路线长是( )A. 6cmB. 8 cmC. 10 cmD. iO/rcm 4、 如图,把矩形ABCD纸片折叠,使点B落在点D处,与BD交于点O,已知AB=16, AD=12,求折痕EF的长。

5. 某楼梯的侧面视图如图4所示,其中AB = 4米,ZBAC = 30°, ZC = 90°,因某种活动要求 铺设红色地毯,则在刃方段楼梯所铺地毯的长度应为・有一次,小明坐着轮船由A点出发沿正东方向AN航行,在A 点望湖中小岛M,测得匕MAN = 3()° ,当 他到B点时,测得ZMBN=45° , AB=100米,你能算出AM的长吗?如图,一架2. 5米长的梯了AB,斜靠在一竖直的墙AC ±,这时梯足B到墙底端C的距离为0.7米,如果梯子的顶端沿墙下滑0. 4米,那么梯足将向外移多少米?8. 如图,某沿海开放城市A 接到台风警报,在该市正南方向100km 的B 处有一台风中心,沿BC 方向以20km/hAA第7题图E 、F分别是的速度向D 移动,已知城市A 到BC 的距离AD=60km,那么台风中心经过多长时间从B 点移到D 点?如果在 距台风中心30km 的圆形区域内都将有受到台风的破坏的危险,正在D 点休闲的游人在接到台风警报后的儿小时内撤离才nJ •脱离危险?9、如图所示,AABC 是等腰直角三角形,AB=AC, D 是斜边BC 的中点, AB 、AC 边上的点,且DE_LDF,若BE=12, CF=5.求线段EF 的长。

相关文档
最新文档