非晶硅太阳能电池

合集下载

非晶硅太阳电池

非晶硅太阳电池

三、非晶硅太阳能电池尽管单晶硅和多晶硅太阳能电池经过多年的努力已取得很大进展,特别是转换效率已超过20%,这些高效率太阳能电池在空间技术中发挥了巨大的作用。

但在地面应用方面,由于价格问题的影响,长久以来一直受到限制。

太阳能电力如果要与传统电力进行竞争,其价格必须要不断地降低,而这对单晶硅太阳能电池而言是很难的,只有薄膜电池,特别是下面要介绍的非晶硅太阳能电池最有希望。

因而它在整个半导体太阳能电池领域中的地位正在不断上升。

从其诞生到现在,全世界以电力换算计太阳能电池的总生产量的约有1/3是非晶硅系太阳能电池,在民用方面其几乎占据了全部份额。

1、非晶态半导体与晶态半导体材料相比,非晶态半导体材料的原子在空间排列上失去了长程有序性,但其组成原子也不是完全杂乱无章地分布的。

由于受到化学键,特别是共价键的束缚,在几个原子的微小范围内,可以看到与晶体非常相似的结构特征。

所以,一般将非晶态材料的结构描述为:“长程无序,短程有序”。

晶硅的结构模型很多,左面给出了其中的一种,即连续无规网络模型的示意图。

可以看出,在任一原子周围,仍有四个原子与其键合,只是键角和键长发生了变化,因此在较大范围内,非晶硅就不存在原子的周期性排列。

在非晶硅材料中,还包含有大量的悬挂键、空位等缺陷,因而其有很高的缺陷态密度,它们提供了电子和空穴复合的场所,所以,一般说,非晶硅是不适于做电子器件的。

1975年,研究人员通过辉光放电技术分解硅烷,得到的非晶硅薄膜中含有一定量的氢,使得许多悬挂键被氢化,大大降低了材料的缺陷态密度,并且成功地实现了对非晶硅材料的p型和n 型掺杂。

电导激活能的变化说明了材料的费米能级随着掺杂浓度的变化而被调制,表明确实可以对非晶硅进行掺杂以控制它的导电类型和导电能力。

2、非晶硅太阳能电池的特点及发展历史It wasn't until 1974 that researchers began to realize that amorphous silicon could be used in PV devices by properly controlling the conditions under which it was deposited and by carefully modifying its composition. Today, amorphous silicon is commonly used for solar-powered consumer devices that have low power requirements (e.g., wrist watches and calculators).非晶硅太阳能电池的特点非晶硅太阳能电池之所以受到人们关注和重视,是因为它具有以下优点:1、非晶硅具有较高的光吸收系数。

非晶硅太阳电池

非晶硅太阳电池

非晶硅太阳电池非晶硅太阳电池是一种薄膜太阳能电池,也被称为非晶硅薄膜电池。

其特点是能够将光能转化为电能,具有较高的光电转换效率和较低的制造成本,因此在太阳能应用领域有着广泛的应用前景。

以下是与非晶硅太阳电池相关的参考内容。

1. "非晶硅太阳电池的制备与性能研究进展"(《光学学报》)这篇论文系统地介绍了非晶硅太阳电池的制备方法、性能研究以及光电转换效率的提高等方面的研究进展。

从材料选择到薄膜制备、器件结构设计和性能测试等方面进行了深入的探讨,对于非晶硅太阳电池的研究提供了很多有价值的信息。

2. "非晶硅薄膜太阳电池的工艺研究及性能提升"(《半导体学报》)这篇论文主要研究了非晶硅薄膜太阳电池的工艺方法,包括制备工艺和后处理工艺等方面。

通过对各种工艺参数的优化调整,实现了非晶硅太阳电池性能的显著提升。

研究结果表明,合理的工艺设计和优化对于改善非晶硅太阳电池性能具有重要意义。

3. "纳米结构在非晶硅太阳电池中的应用"(《材料导报》)这篇综述性文章讨论了纳米结构在非晶硅太阳电池中的应用。

通过引入纳米结构材料,如纳米线、纳米颗粒等,可以增强光吸收和光电转换效率,提高非晶硅太阳电池的性能,并且可以通过合理设计纳米结构的形状和尺寸来调控电子传输行为,进一步提高光电转换效率。

4. "非晶硅太阳电池的商业化应用前景"(《太阳能材料与太阳能电池》)这篇综述性文章讨论了非晶硅太阳电池的商业化应用前景。

随着清洁能源的需求增加,非晶硅太阳电池作为一种低成本、高效率的太阳能电池,具有广泛应用的潜力。

在文章中,介绍了非晶硅太阳电池在建筑领域、电动汽车领域和户外设备领域的应用案例,并讨论了相关市场发展和商业化应用的前景。

5. "非晶硅太阳电池的发展趋势及挑战"(《太阳能学报》)这篇综述性文章回顾了非晶硅太阳电池的发展历程,并展望了未来的发展趋势和面临的挑战。

非晶硅薄膜太阳能电池应用分析

非晶硅薄膜太阳能电池应用分析

非晶硅薄膜太阳能电池应用分析1. 简介非晶硅薄膜太阳能电池是一种主要由非晶硅薄膜材料制成的光伏电池。

本章将介绍非晶硅薄膜太阳能电池的基本原理和优点,以及其在太阳能行业中的前景和应用。

2. 非晶硅薄膜太阳能电池的技术原理本章将详细介绍非晶硅薄膜太阳能电池的技术原理,包括其制备、结构、物理特性等方面的内容。

同时,还将重点探讨非晶硅薄膜太阳能电池的能量转换效率、光电性能、光损失等方面的问题。

3. 非晶硅薄膜太阳能电池的应用现状本章将介绍非晶硅薄膜太阳能电池在各个领域的应用情况,包括建筑、汽车、移动电源、航空航天等方面。

同时,还将分析非晶硅薄膜太阳能电池在实际应用中面临的挑战和前景。

4. 非晶硅薄膜太阳能电池的未来发展方向本章将分析非晶硅薄膜太阳能电池的未来发展趋势和方向。

主要从材料、工艺、结构和技术方面探讨非晶硅薄膜太阳能电池的改进和提高能量转换效率等方面的发展。

5. 结论本文对非晶硅薄膜太阳能电池的技术原理、应用现状和未来展望进行了比较全面的介绍和分析。

结合当前的环境和产业背景,本文认为非晶硅薄膜太阳能电池具有广阔的市场前景,并有望在未来成为太阳能电池领域的主流产品之一。

第一章:简介随着全球能源需求的不断增长和对可再生能源的需求越来越强烈,太阳能电池作为最具代表性的新能源技术之一,正变得越来越受到人们的关注。

非晶硅薄膜太阳能电池(Amorphous Silicon Thin Film Solar Cell,简称a-Si电池)是目前人们对太阳能电池的一种有效研究和开发方向之一。

相较于传统的多晶硅太阳能电池和单晶硅太阳能电池,a-Si电池具有材料和制造成本低、可扩展性高、透明性好等特点。

本章将介绍非晶硅薄膜太阳能电池的基本原理和优点,以及其在太阳能行业中的前景和应用。

1.1 非晶硅薄膜太阳能电池的基本原理多晶硅太阳能电池和单晶硅太阳能电池的构造非常相似,主要由n型硅和p型硅两种材料组成。

在阳光的照射下,太阳能会被电池中的半导体材料吸收,产生电子与空穴。

单晶硅,多晶硅及非晶硅太阳能电池的区别

单晶硅,多晶硅及非晶硅太阳能电池的区别

单晶硅,多晶硅及非晶硅太阳能电池的区别太阳电池最早问世的是单晶硅太阳电池。

硅是地球上极丰富的一种元素,几乎遍地都有硅的存在,可说是取之不尽,用硅来制造太阳电池,原料可谓不缺。

但是提炼它却不容易,所以人们在生产单晶硅太阳电池的同时,又研究了多晶硅太阳电池和非晶硅太阳电池,至今商业规模生产的太阳电池,还没有跳出硅的系列。

其实可供制造太阳电池的半导体材料很多,随着材料工业的发展、太阳电池的品种将越来越多。

目前已进行研究和试制的太阳电池,除硅系列外,还有硫化镉、砷化镓、铜铟硒等许多类型的太阳电池,举不胜举,以下介绍几种较常见的太阳电池。

单晶硅太阳电池单晶硅太阳电池是当前开发得最快的一种太阳电池,它的构成和生产工艺已定型,产品已广泛用于宇宙空间和地面设施。

这种太阳电池以高纯的单晶硅棒为原料,纯度要求99.999%。

为了降低生产成本,现在地面应用的太阳电池等采用太阳能级的单晶硅棒,材料性能指标有所放宽。

有的也可使用半导体器件加工的头尾料和废次单晶硅材料,经过复拉制成太阳电池专用的单晶硅棒。

将单晶硅棒切成片,一般片厚约0.3毫米。

硅片经过成形、抛磨、清洗等工序,制成待加工的原料硅片。

加工太阳电池片,首先要在硅片上掺杂和扩散,一般掺杂物为微量的硼、磷、锑等。

扩散是在石英管制成的高温扩散炉中进行。

这样就在硅片上形成P/FONT>N结。

然后采用丝网印刷法,将配好的银浆印在硅片上做成栅线,经过烧结,同时制成背电极,并在有栅线的面涂覆减反射源,以防大量的光子被光滑的硅片表面反射掉,至此,单晶硅太阳电池的单体片就制成了。

单体片经过抽查检验,即可按所需要的规格组装成太阳电池组件(太阳电池板),用串联和并联的方法构成一定的输出电压和电流,最后用框架和封装材料进行封装。

用户根据系统设计,可将太阳电池组件组成各种大小不同的太阳电池方阵,亦称太阳电池阵列。

目前单晶硅太阳电池的光电转换效率为15%左右,实验室成果也有20%以上的。

非晶硅太阳电池的原理

非晶硅太阳电池的原理

非晶硅太阳电池的原理2010-11-1314:54目录一、非晶硅薄膜太阳电池基础知识简介二、非晶硅薄膜太阳电池生产线及制造流程简介三、国产提供的非晶硅薄膜太阳电池生产线介绍一、非晶硅薄膜太阳电池基础知识简介1976年美国RCA实验室的D.E.Conlson和C.R.Wronski在Spear形成和控制p-n结工作的基础上利用光生伏特(PV)效应制成世界上第一个a-Si太阳能电池,揭开了a-Si在光电子器件或PV组件中应用的幄幕。

目前a-Si多结太阳能电池的最高光电转换效率己达15%。

图1为一般单结的非晶硅太阳能电池结构图,图2为非晶硅太阳能电池图1非晶硅太阳能电池结构图图2非晶硅柔性太阳能电池第一层,为普通玻璃,是电池载体。

第二层为绒面的TCO。

所谓TCO就是透明导电膜,一方面光从它穿过被电池吸收,所以要求它的透过率高;另一方面作为电池的一个电极,所以要求它导电。

TCO制备成绒面起到减少反射光的作用。

太阳能电池就是以这两层为衬底生长的。

太阳能电池的第一层为P层,即窗口层。

下面是i层,即太阳能电池的本征层,光生载流子主要在这一层产生。

再下面为n 层,起到连接i和背电极的作用。

最后是背电极和Al/Ag电极。

目前制备背电极通常采用掺铝ZnO(A1),或简称AZO。

由于a-Si(非晶硅)多缺陷的特点,a-Si的p-n结是不稳定的,而且光照时光电导不明显,几乎没有有效的电荷收集。

所以,a-Si太阳能电池基本结构不是p-n 结而是p-i-n结。

掺硼形成P区,掺磷形成n区,i为非杂质或轻掺杂的本征层(因为非掺杂的a-Si是弱n型)。

重掺杂的p、n区在电池内部形成内建势,以收集电荷。

同时两者可与导电电极形成欧姆接触,为外部提供电功率。

i区是光敏区,光电导/暗电导比在105~106,此区中光生电子、空穴是光伏电力的源泉。

非晶体硅结构的长程无序破坏了晶体硅电子跃迁的动量守恒选择定则,相当于使之从间接带隙材料变成了直接带隙材料。

非晶硅及薄膜太阳能电池技术的发展与应用

非晶硅及薄膜太阳能电池技术的发展与应用

非晶硅及薄膜太阳能电池技术的发展与应用随着环保意识的不断提高和能源危机的日益加剧,太阳能电池作为一种清洁、可再生的能源,逐渐成为了世界各国节能减排和发展可再生能源的重要选择。

而在众多太阳能电池技术中,非晶硅和薄膜太阳能电池技术因其高效、轻薄、柔性等优点,受到了越来越多的关注。

本文将探讨非晶硅及薄膜太阳能电池技术的发展历程、特点以及应用前景。

一、非晶硅太阳能电池技术的起源和发展非晶硅太阳能电池是一种利用非结晶硅(a-Si)薄膜作为光电转化层制成的新型太阳能电池。

20世纪70年代初期,斯坦福大学的英国物理学家David Adler和John W. Coburn等人,在研究等离子体物理学时,偶尔发现了a-Si材料的非晶性质和光电特性,进而发展出了非晶硅太阳能电池。

相较于传统的晶硅太阳能电池,非晶硅太阳能电池具有以下几个突出优点:1.高效:非晶硅太阳能电池的光电转换效率高,可以达到10%以上。

2.轻薄:由于非晶硅材料具有较小的晶粒大小和结构不规则,因此可以制备出非常薄的电池层,使得整个太阳能电池组件变得轻薄、灵活,便于安装和使用。

3.低成本:非晶硅太阳能电池具有制备工艺简单、原材料价格低廉的特点,因此制造成本相对于晶硅太阳能电池较低。

4.半透明:非晶硅太阳能电池可制成半透明的电池层,可以用于建筑物的幕墙、采光、遮阳等场合。

二、薄膜太阳能电池技术的发展历程和优势薄膜太阳能电池技术是指将各种材料的薄膜制成太阳能电池的光电转化层,其中包括非晶硅、铜铟镓硫(CIGS)、铜铟镓铝硫(CIGAS)等多种材料。

相比非晶硅太阳能电池,薄膜太阳能电池材料的选择更加广泛,也因此有更大的发展前景。

早在20世纪50年代,人们就开始了对于薄膜太阳能电池的研究。

当时使用的材料主要是半导体材料,但是效率较低,仅能达到不到1%。

1983年,美国联邦航空局研制出了铜铟镓硫(CIGS)薄膜太阳能电池,并在1991年实现了15.9%的能量转化效率,创造出了当时太阳能电池记录,这一技术因其高效、柔性等特点,受到了世界各国的瞩目。

非晶硅薄膜太阳能电池概要课件

非晶硅薄膜太阳能电池概要课件
非晶硅薄膜太阳能 电池简介
定义与特性
定义
非晶硅薄膜太阳能电池是一种利 用非晶硅材料制成的太阳能电池 。
特性
具有轻便、柔韧、可折叠等优点 ,同时制造成本较低,适合大规 模生产。
工作原理
01பைடு நூலகம்
02
03
光吸收
非晶硅薄膜能够吸收太阳 光并将其转换为电能。
电极
通过电极将产生的电流导 出,实现电能的有效利用 。
染料敏化太阳能电池
非晶硅薄膜太阳能电池与染料敏化太 阳能电池相比,具有更高的光电转换 效率和更长的使用寿命,但制造成本 较高。
03
非晶硅薄膜太阳能 电池的制造工艺
硅烷气体选择
硅烷气体是制造非晶硅薄膜太阳能电池的关键原料之一,其纯度对电池的性能和稳 定性有着至关重要的影响。
选择高纯度的硅烷气体可以减少杂质和缺陷,提高非晶硅薄膜的质量和光电性能。
非晶硅薄膜太阳能电 池概要课件
目录
CONTENTS
• 非晶硅薄膜太阳能电池简介 • 非晶硅薄膜太阳能电池的优势与
局限 • 非晶硅薄膜太阳能电池的制造工
艺 • 非晶硅薄膜太阳能电池的应用与
前景
目录
CONTENTS
• 非晶硅薄膜太阳能电池的挑战与 解决方案
• 非晶硅薄膜太阳能电池的实际案 例分析
01
反应温度与压强控制
制造非晶硅薄膜太阳能电池需要在一定 的温度和压强条件下进行。
温度和压强对非晶硅薄膜的结构、性能 和光电性能有着直接的影响。通过精确 控制温度和压强,可以优化非晶硅薄膜 的结构,提高其光电转换效率和稳定性

通常需要在较低的温度和压强条件下进 行非晶硅薄膜的合成,以减少缺陷和杂
质,提高其质量。

非晶硅太阳能电池

非晶硅太阳能电池

1、电池结构
下图是两种非晶硅内部结构示意图:

2、制作步骤
清洗 裁块 PECVD 刻铝 镀铝 刻a-Si膜 测试

⑴ 清洗 将标准透明导电玻璃板和玻璃背板放入 专用清洗机进行清洗,清洗液用电阻率 10MΩ以上的去离子纯水

⑵ 裁块
根据实际需要,用专用激光刻线机对透 明导电玻璃板进行激光刻线(用1064nm的 红外激光)

⑸ 镀铝 做电池的背电极,以增大太阳能电池对 光的吸收
制作方法:掩膜蒸发镀铝

⑹ 刻铝 根据预定的线宽以及与SnO2切割线的线 间距,用波长为532nm绿激光将a-Si刻穿, 目的是让背电极通过,并与前电极相连接, 从而使最初切割而成的若干电池串联

⑺ 测试 在经过上面六道主要工序过后,非晶硅 电池板已形成,需要进行测试,以获得电 池板各性能参数,通过对参数的分析,来 判定工序的质量,以便提高电池质量
主要用于光伏发电站;

3、封装
由于不同的太阳能电池对于封装要求不 同,根据适用范围,大致可以分为以下4个 方面: ⅰ:电池/PVC膜(封装结构) 适用于一般太阳能应用产品,如应 急灯、要求不高的小型用电户电源;
ⅱ:电池/EVA/PET(TPT) 适用于一般户用发电; ⅲ:电池/EVA/普通玻璃 可用于发电系统; ⅳ:钢化玻璃/EVA/电池/EVA/普通玻 璃二、非晶硅太阳能电池

基本原理
一、太阳能电池的基本原理

什么叫太阳能电池?
太阳能电池是光能转换为电能的器件。 太阳光照在半导体p-n结上,产生新的 电子-空穴对,在p-n结电场的作用下,空 穴由p区流向n区,电子由n区流向p区的过 程
基本原理

为了将整板分为若干块,作为若干个单 体电池的电极
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

三、非晶硅太阳能电池尽管单晶硅和多晶硅太阳能电池经过多年的努力已取得很大进展,特别是转换效率已超过20%,这些高效率太阳能电池在空间技术中发挥了巨大的作用。

但在地面应用方面,由于价格问题的影响,长久以来一直受到限制。

太阳能电力如果要与传统电力进行竞争,其价格必须要不断地降低,而这对单晶硅太阳能电池而言是很难的,只有薄膜电池,特别是下面要介绍的非晶硅太阳能电池最有希望。

因而它在整个半导体太阳能电池领域中的地位正在不断上升。

从其诞生到现在,全世界以电力换算计太阳能电池的总生产量的约有1/3是非晶硅系太阳能电池,在民用方面其几乎占据了全部份额。

1、非晶态半导体与晶态半导体材料相比,非晶态半导体材料的原子在空间排列上失去了长程有序性,但其组成原子也不是完全杂乱无章地分布的。

由于受到化学键,特别是共价键的束缚,在几个原子的微小范围内,可以看到与晶体非常相似的结构特征。

所以,一般将非晶态材料的结构描述为:“长程无序,短程有序”。

晶硅的结构模型很多,左面给出了其中的一种,即连续无规网络模型的示意图。

可以看出,在任一原子周围,仍有四个原子与其键合,只是键角和键长发生了变化,因此在较大范围内,非晶硅就不存在原子的周期性排列。

在非晶硅材料中,还包含有大量的悬挂键、空位等缺陷,因而其有很高的缺陷态密度,它们提供了电子和空穴复合的场所,所以,一般说,非晶硅是不适于做电子器件的。

1975年,研究人员通过辉光放电技术分解硅烷,得到的非晶硅薄膜中含有一定量的氢,使得许多悬挂键被氢化,大大降低了材料的缺陷态密度,并且成功地实现了对非晶硅材料的p型和n 型掺杂。

电导激活能的变化说明了材料的费米能级随着掺杂浓度的变化而被调制,表明确实可以对非晶硅进行掺杂以控制它的导电类型和导电能力。

2、非晶硅太阳能电池的特点及发展历史It wasn't until 1974 that researchers began to realize that amorphous silicon could be used in PV devices by properly controlling the conditions under which it was deposited and by carefully modifying its composition. Today, amorphous silicon is commonly used for solar-powered consumer devices that have low power requirements (e.g., wrist watches and calculators).非晶硅太阳能电池的特点非晶硅太阳能电池之所以受到人们关注和重视,是因为它具有以下优点:1、非晶硅具有较高的光吸收系数。

特别是在0.3-0.75µm的可见光波段,它的吸收系数比单晶硅要高出一个数量级。

因而它比单晶硅对太阳辐射的吸收效率要高40倍左右,用很薄的非晶硅膜(约1 µm厚)就能吸收90%有用的太阳能。

这是非晶硅材料最重要的特点,也是它能够成为低价格太阳能电池的最主要因素。

2、非晶硅的禁带宽度比单晶硅大,随制备条件的不同约在1.5-2.0eV的范围内变化,这样制成的非晶硅太阳能电池的开路电压高。

3、制备非晶硅的工艺和设备简单,淀积温度低,时间短,适于大批生产。

4、由于非晶硅没有晶体所要求的周期性原子排列,可以不考虑制备晶体所必须考虑的材料与衬底间的晶格失配问题。

因而它几乎可以淀积在任何衬底上,包括廉价的玻璃衬底,并且易于实现大面积化。

5、制备非晶硅太阳能电池能耗少,约100千瓦小时,能耗的回收年数比单晶硅电池短得多。

非晶硅太阳能电池的发展历史自1974年人们得到可掺杂的非晶硅薄膜后,就意识到它在太阳能电池上的应用前景,开始了对非晶硅太阳能电池的研究工作。

1976年:RCA公司的Carlson报道了他所制备的非晶硅太阳能电池,采用了金属-半导体和p-i-n两种器件结构,当时的转换效率不到1%。

1977年:Carlson将非晶硅太阳能电池的转换效率提高到5.5%。

1978年:集成型非晶硅太阳能电池在日本问世。

1980年:ECD公司作成了转换效率达6.3%的非晶硅太阳能电池,采用的是金属-绝缘体-半导体(MIS)结构;同年,日本三洋公司向市场推出了装有面积为5平方厘米非晶硅太阳能电池的袖珍计算器。

1981年:开始了非晶硅及其合金组成的叠层太阳能电池的研究。

1982年:市场上开始出现装有非晶硅太阳能电池的手表,充电器、收音机等商品。

1984年:开始有作为独立电源用的非晶硅太阳能电池组合板。

3、非晶硅薄膜的制备非晶硅薄膜的制备技术有很多,包括电子束蒸发、反应溅射、低压化学气相淀积(LPCVD)、辉光放电等离子体化学气相淀积以及光化学气相淀积和电子回旋共振等离子体化学气相淀积技术等。

其中最常用的是辉光放电等离子体化学气相淀积方法。

下面我们将作一简单介绍。

典型的辉光放电淀积非晶硅的装置包含反应腔系统,真空抽气系统和反应气体流量控制系统。

反应腔内抽上真空,充入氢气或氩气稀释的硅烷气体,直流或高频电源用电容或电感耦合的方式加在反应腔内的电极上,腔内气体在电源作用下电离分解,形成辉光的等离子体。

非晶硅薄膜就淀积在加热的衬底上,一般衬底温度在250-500度之间。

若在反应气体中加入适当比例的PH3或B2H6气体,便可以得到n型或p型的掺杂非晶硅薄膜。

非晶硅薄膜的光电性质强烈依赖于制备的工艺参数,如气压、衬底温度、气体流量,电源功率等条件,只有严格控制好工艺条件,才能得到质量良好的非晶硅膜。

利用单反应腔来制备非晶硅太阳能电池时,由于要连续淀积不同掺杂原子的p层和n层,这样,反应腔内壁和电极上残存的杂质很难避免不掺入所制造的太阳能电池中,造成交叉沾污,得到的太阳能电池的重复性和性能都不好。

为了避免这种情况,研究者发展了一种多反应腔装置,非晶硅太阳能电池的p、I、n各层分别在专用的反应腔内沉积,因此没有残存杂质的污染,能很好地重复制造出高效率非晶硅太阳能电池。

并且,这种装置适宜批量生产,因而目前生产的非晶硅电池基本上采用这种装置。

Hot-wire deposition promises to improve the efficiency and stability of amorphous silicon devices.4、非晶硅太阳能电池的结构非晶硅太阳能电池的结构最常采用的是p-i-n结构,而不是单晶硅太阳能电池的p-n结构。

这是因为:轻掺杂的非晶硅的费米能级移动较小,如果用两边都是轻掺杂的或一边是轻掺杂的另一边用重掺杂的材料,则能带弯曲较小,电池的开路电压受到限制;如果直接用重掺杂的p+和n+材料形成p+-n+结,那么,由于重掺杂非晶硅材料中缺陷态密度较高,少子寿命低,电池的性能会很差。

因此,通常在两个重掺杂层当中淀积一层未掺杂的非晶硅层作为有源集电区。

非晶硅太阳能电池内光生载流子主要产生于未掺杂的i层,与晶态硅太阳能电池中载流子主要由于扩散而移动不同,在非晶硅太阳能电池中,光生载流子主要依靠太阳能电池内电场作用做漂移运动。

在非晶硅太阳能电池中,顶层的重掺杂层的厚度很薄几乎是半透明的,可以使入射光最大限度地进入未掺杂层并产生自由的光生电子和空穴。

而较高的内建电场也基本上从这里展开,使光生载流子产生后立即被扫向n+侧和p+侧。

由于未掺杂的非晶硅实际上是弱n型材料,因此,在淀积有源集电区时适当加入痕量硼,使其成为费米能级居中的i型,有助于提高太阳能电池的性能。

因而在实际制备过程中,常常将淀积次序安排为p-i-n,以利用淀积p层时的硼对有源集电区进行自然掺杂。

这一淀积顺序决定了透明导电衬底电池总是p+层迎光,而不透明衬底电池总是n+层迎光。

在单结非晶硅太阳能电池中,利用微晶硅来做掺杂层的电池结构也是较为常用的一种。

微晶硅有较高的掺杂效率,在同样的掺杂水平下,其费米能级远离带隙中央的程度比非晶硅高。

另一方面,微晶硅的带隙不会因为掺杂而有明显的降低,因此用微晶硅做太阳能电池的接触层,既可减小串联电阻,也可增加开路电压,是理想的n+或p+材料。

单结非晶硅异质结电池非晶硅太阳能电池内光生载流子的生成主要在i层,入射光在到达i层之前,一部分被掺杂层所吸收。

因为对于非晶硅材料,掺杂将会使材料带隙降低,造成对太阳光谱中的短波部分的吸收系数变大,研究表明,即使掺杂层厚度仅有10nm,仍会将入射光的20%左右吸收掉。

从而削弱了电池对短波长光的响应,限制了短路电流的大小。

为了减少入射方向掺杂层对光的吸收以使到达i层的光增加的目的,人们提出了单结非晶硅异质结太阳能电池结构。

所谓单结非晶硅异质结太阳能电池,是指在迎光面采用宽带隙的非晶碳化硅膜来代替带隙较窄的非晶硅做窗口的结构。

利用宽带隙的非晶碳化硅膜可以明显改善太阳能电池在短波区域的收集效率。

(如图所示)利用宽带隙材料做成异质结结构,不仅是通过窗口作用提高短路电流,还可以通过内建电势的升高提高开路电压。

因为在p层中加碳,能隙变宽,p、i两层中的费米能级的相对位置被相应拉开,因而对升高内建电势也有好处。

在非晶硅太阳能电池的发展过程中,转换效率的一次幅度较大的提高就是用p型的非晶碳化硅膜代替p型的非晶硅的结果。

对于带隙为1.7eV左右的i层,要求p层材料的带隙最好在2.0eV左右。

当非晶碳化硅膜中碳的成分比在20-30%时,就能满足这一要求,而且并没有给电池的制造工艺增加多少麻烦,而电池的性能却得到很大改善。

非晶硅叠层电池对于单结太阳能电池,即便是用晶体材料制备的,其转换效率的理论极限一般在AM1.5的光照条件下也只有25%左右。

这是因为,太阳光谱的能量分布较宽,而任何一种半导体只能吸收其中能量比自己带隙值高的光子。

其余的光子不是穿过电池被背面金属吸收转变为热能,就是将能量传递给电池材料本身的原子,使材料发热。

这些能量都不能通过产生光生载流子变成电能。

不仅如此,这些光子产生的热效应还会升高电池工作温度而使电池性能下降。

为了最大程度的有效利用更宽广波长范围内的太阳光能量。

人们把太阳光谱分成几个区域,用能隙分别与这些区域有最好匹配的材料做成电池,使整个电池的光谱响应接近与太阳光光谱,如图所示,具有这样结构的太阳能电池称为叠层电池。

左面是叠层太阳能电池的结构和原理示意图。

从迎光面开始,材料的带隙依次下降,即最外面的材料带隙宽,有利与吸收短波长的光,而透过的长波长的光则被里层带隙较窄的材料吸收,这样可以最大限度的吸收太阳光能量,同时。

由于各个子电池是串联在一起的,总的开路电压比单个电池高很多,因而有可能大幅度提高转换效率。

相关文档
最新文档