通信原理实验三

合集下载

实验三2FSK调制与解调实验一、实验目的

实验三2FSK调制与解调实验一、实验目的

实验三2FSK调制与解调实验一、实验目的1、了解二进制移频键控2FSK 信号的产生过程及电路的实现方法。

2、了解非相干解调器过零检测的工作原理及电路的实现方法。

3、了解相干解调器锁相解调法的工作原理及电路的实现方法。

二、实验内容1、了解相位不连续2FSK 信号的频谱特性。

2、了解2FSK(相位不连续)调制,非相干、相干解调电路的组成及工作理。

3、观察2FSK 调制,非相干、相干解调各点波形。

4、改变f1、f2的频率大小,观察不同调制指数下的调制解调效果。

(选作)5、利用实验模块的电路,设计出其它解调方法,并自行验证。

(选作)三、预习要求1)画出实验电路中2FSK调制器采用的原理框图;2)根据实验指导书的相关资料,说明本实验2FSK调制的载波频率分别是多少?用什么方法产生的?3)本实验2FSK载波是方波还是正弦波?如何实现的?4)用什么方法可以将方波变成正弦波?5)FSK调制器可以用哪两种基本方法实现?本实验用的是哪一种?6)用什么方法实现的FSK信号的相位是连续的?7)实验中,信息的码速率是多少?可以用什么方法测量?8)可以用什么方法来测量2FSK的两个载波频率?9)当用“10101010………”不断重复的信息码进行FSK调制,用计数法测量FSK调制输出信号的频率,测量得到的频率可能是多少?为什么?10)本实验中,2FSK 信号带宽是多少?如何计算的?公式中的各个量代表什么?11)本实验中,2FSK 信号的频谱会是单峰还是双峰?为什么?12)用示波器同时观测FSK调制器的输入数据、FSK调制器输出的已调信号,要能稳定的观测应该用这两个信号中的哪一个作为示波器的触发信号?13)画出2FSK过零检测解调的原理框图;14)实验中,FSK过零检测解调方案采用数字电路如何实现;15)脉冲的宽度相同,有些时刻的脉冲密一些,有些时刻的脉冲少一些,可以用什么具体的方法区分出每一个单位时刻内脉冲是多还是少?16)测试接收端的各点波形,需要与什么波形对比,才能比较好的进行观测?示波器的触发源该选哪一种信号?为什么?17)采用过零检测解调的方法时,将f1和f2倍频的电路是如何设计的?18)采用过零检测解调的方法时,解调电路中哪一点的波形是f1和f2的倍频?19)2FSK 信号经过整形变成方波2FSK 信号,频谱有什么变化?为什么?20)解调时将f1和f2倍频有何好处?如何通过仪器测量来说明?21)2FSK 信号解调时将f1和f2倍频之后,频谱有什么变化?为什么?22)解调电路各点信号的时延是怎么产生的?23)解调出的信码和调制器的绝对码之间的时延是怎么产生的?24)解调的信号为什么要进行再生?25)理论上,能否实现出一个没有时延的解调器?为什么?26)解调的信号是如何实现再生的?27)再生过程中,是什么环节会对解调的输出造成延时?为什么?28)画出2FSK 锁相PLL 解调的原理框图;29)PLL 解调2FSK 信号的原理是什么?30)为什么2FSK 锁相解调可以实现相干解调?31)要实现2FSK 锁相解调,锁相环需要工作在什么跟踪方式?为什么?32)解调电路中T31(放大出)没有信号输出,可能的原因有哪些?33)T19(2FSK 过零检测出)信号异常,如何判断故障点在哪?34)解调输出信号与发送端的数据信号对比,为什么会有延时,是哪些原理造成的?四、实验原理二进制频率调制(2FSK )是数据通信中使用较早的一种通信方式。

通信原理实验指导书(8个实验)

通信原理实验指导书(8个实验)

实验一 CPLD 可编程数字信号发生器实训一、实验目的1、熟悉各种时钟信号的特点及波形;2、熟悉各种数字信号的特点及波形。

二、实验设备与器件1、通信原理实验箱一台;2、模拟示波器一台。

三、实验原理1、CPLD 可编程模块电路的功能及电路组成CPLD可编程模块(芯片位号:U101)用来产生实验系统所需要的各种时钟信号和数字信号。

它由 CPLD可编程器件 ALTERA公司的 EPM7128(或者是Xilinx 公司的 XC95108)、编程下载接口电路(J104)和一块晶振(OSC1)组成。

晶振用来产生系统内的16.384MHz 主时钟。

本实验要求参加实验者了解这些信号的产生方法、工作原理以及测量方法,才可通过CPLD可编程器件的二次开发生成这些信号,理论联系实践,提高实际操作能力,实验原理图如图1-1 所示。

2、各种信号的功用及波形CPLD 型号为 EPM7128 由计算机编好程序从 J104 下载写入芯片,OSC1 为晶体,频率为 16.384MHz,经 8 分频得到 2.048MHz 主时钟,面板测量点与EPM7128 各引脚信号对应关系如下:SP101 2048KHz 主时钟方波对应 U101EPM7128 11 脚SP102 1024KHz 方波对应 U101EPM7128 10 脚SP103 512KHz 方波对应 U101EPM7128 9 脚SP104 256KHz 方波对应 U101EPM7128 8 脚SP105 128KHz 方波对应 U101EPM7128 6 脚SP106 64KHz 方波对应 U101EPM7128 5 脚SP107 32KHz 方波对应 U101EPM7128 4 脚SP108 16KHz 方波对应 U101EPM7128 81 脚SP109 8KHz 方波对应 U101EPM7128 80脚SP110 4KHz 方波对应 U101EPM7128 79脚SP111 2KHz 方波对应 U101EPM7128 77脚SP112 1KHz 方波对应 U101EPM7128 76脚SP113 PN32KHz 32KHz伪随机码对应U101EPM7128 75脚SP114 PN2KHz 2KHz伪随机码对应U101EPM7128 74脚SP115 自编码自编码波形,波形由对应 U101EPM7128 73 脚J106 开关位置决定SP116 长 0 长 1 码码形为1、0 连“1”对应 U101EPM7128 70脚、0 连“0”码SP117 X 绝对码输入对应 U101EPM7128 69 脚SP118 Y 相对码输出对应 U101EPM7128 68 脚SP119 F80 8KHz0 时隙取样脉冲对应 U101EPM7128 12 脚此外,取样时钟、编码时钟、同步时钟、时序信号还将被接到需要的单元电路中。

通信原理实验报告

通信原理实验报告

实验一、PCM编译码实验实验步骤1. 准备工作:加电后,将交换模块中的跳线开关KQ01置于左端PCM编码位置,此时MC145540工作在PCM编码状态。

2. PCM串行接口时序观察(1)输出时钟和帧同步时隙信号观测:用示波器同时观测抽样时钟信号(TP504)和输出时钟信号(TP503),观测时以TP504做同步。

分析和掌握PCM编码抽样时钟信号与输出时钟的对应关系(同步沿、脉冲宽度等)。

(2)抽样时钟信号与PCM编码数据测量:用示波器同时观测抽样时钟信号(TP504)和编码输出数据信号端口(TP502),观测时以TP504做同步。

分析和掌握PCM编码输出数据与抽样时钟信号(同步沿、脉冲宽度)及输出时钟的对应关系。

3. PCM编码器(1)方法一:(A)准备:将跳线开关K501设置在测试位置,跳线开关K001置于右端选择外部信号,用函数信号发生器产生一个频率为1000Hz、电平为2Vp-p的正弦波测试信号送入信号测试端口J005和J006(地)。

(B)用示波器同时观测抽样时钟信号(TP504)和编码输出数据信号端口(TP502),观测时以TP504做同步。

分析和掌握PCM编码输出数据与抽样时钟信号(同步沿、脉冲宽度)及输出时钟的对应关系。

分析为什么采用一般的示波器不能进行有效的观察。

(2)方法二:(A)准备:将输入信号选择开关K501设置在测试位置,将交换模块内测试信号选择开关K001设置在内部测试信号(左端)。

此时由该模块产生一个1KHz的测试信号,送入PCM编码器。

(B)用示波器同时观测抽样时钟信号(TP504)和编码输出数据信号端口(TP502),观测时以内部测试信号(TP501)做同步(注意:需三通道观察)。

分析和掌握PCM编码输出数据与帧同步时隙信号、发送时钟的对应关系。

4. PCM译码器(1)准备:跳线开关K501设置在测试位置、K504设置在正常位置,K001置于右端选择外部信号。

此时将PCM输出编码数据直接送入本地译码器,构成自环。

无线通信原理与应用-实验三 Walsh序列相关特性及16阶Walsh序列

无线通信原理与应用-实验三 Walsh序列相关特性及16阶Walsh序列

实验四、Walsh序列相关特性及16阶Walsh序列一、实验目的了解常用正交序列--Walsh序列的自相关及互相关特性。

二、实验内容1. 用示波器测量常用正交序列--Walsh序列的波形及其相关运算后的自相关函数及互相关函数,了解其相关特性。

2. 用示波器测量实验系统信道地址码16阶Walsh序列的波形。

三、基本原理见实验一的”三、基本原理”。

下面是本实验待测量的Walsh序列。

1. Walsh序列的相关特性(1)8阶Walsh序列表3-4-1 8阶Walsh序列自相关特性测量(序列长8位)WPN i(t) 0110,1001. 87PN j(t) 同上同上表3-4-2 8阶Walsh序列互相关特性测量(序列长8位)WPN i(t) 0110,1001. 87WPN j(t) 0011,1100. 86(2)16阶Walsh序列表3-4-3 16阶Walsh序列自相关特性测量(序列长16位)WPN i(t) 0000,1111,0000,1111.164PN j(t) 同上同上表3-4-4 16阶Walsh序列互相关特性测量(序列长16位)WPN i(t) 0000,1111,0000,1111.164WPN j(t) 0011,1100,0011,1100.166592. 本CDMA实验系统作为信道地址码的16阶Walsh序列见表3-4-5 (又见表2-1)表3-4-5 16阶Walsh序列组W00000 0000 0000 0000 导频信道W10101 0101 0101 0101W20011 0011 0011 0011W30110 0110 0110 0110W40000 1111 0000 1111W50101 1010 0101 1010W60011 1100 0011 1100W70110 1001 0110 1001W8 0000 0000 1111 1111同步信道W90101 0101 1010 1010W100011 0011 1100 1100W11 0110 0110 1001 1001W12 0000 1111 1111 0000W130101 1010 1010 0101W140011 1100 1100 0011W15 0110 1001 1001 0110注: 其它未注明的为业务信道地址码。

通信原理实验报告

通信原理实验报告

通信原理实验报告引言:通信原理是现代通信技术的基础,通过实验可以更深入地理解通信原理的各个方面。

本次实验主要涉及到调制解调和频谱分析。

调制解调是将原始信号转换成适合传输的信号形式,频谱分析则是对信号的频域特性进行研究。

通过这些实验,我们可以进一步了解调制解调原理、频谱分析技术以及其在通信领域中的应用。

实验一:调制解调实验调制解调是将信息信号转换为适合传输的信号形式的过程。

在实验中,我们使用了模拟调制技术。

首先,我们通过声卡输入一个带通信号,并将其调制成调幅信号。

接着,通过示波器观察和记录调制信号的波形,并利用解调器将其还原为原始信号。

实验二:频谱分析实验频谱分析是对信号在频域上的特性进行研究。

在实验中,我们使用了频谱分析仪来观察信号的频谱分布情况。

首先,我们输入一个具有特定频率和幅度的正弦信号,并使用频谱分析仪来观察其频谱。

然后,我们改变信号的频率和幅度,继续观察和记录频谱的变化情况。

实验三:应用实验在实际通信中,调制解调和频谱分析技术有着广泛的应用。

通过实验三,我们可以了解到这些技术在通信领域中的具体应用。

例如,我们可以模拟调制解调技术在调制解调器中的应用,观察和分析不同调制方式下的信号特性。

同样,我们可以使用频谱分析仪来研究和理解不同信号在传输过程中的频谱分布。

这些实验将帮助我们更好地理解通信系统中的调制解调和频谱分析技术,从而为实际应用提供支持。

结论:通过本次实验,我们对通信原理中的调制解调和频谱分析技术有了更深入的了解。

调制解调是将信息信号转换为适合传输的信号形式,而频谱分析则是对信号的频域特性进行研究。

这些技术在通信领域中有着广泛的应用,对于实际通信系统的设计和优化非常重要。

通过实验的学习和实践,我们能够更好地掌握调制解调和频谱分析的原理和应用,从而提高我们在通信领域中的能力和技术水平。

总结:通过本次实验,我们对通信原理中的调制解调和频谱分析技术进行了学习和实践。

通过实验的过程,我们深入了解了这些技术的原理和应用,并通过观察和记录不同信号的波形和频谱特征,加深了我们对通信原理的理解。

2023年通信原理实验报告

2023年通信原理实验报告

2023年通信原理实验报告2023年通信原理实验报告1一、实验目的1、掌握用数字环提取位同步信号的原理及对信息代码的要求。

2、掌握位同步器的同步建立时间、同步保持时间、位同步信号同步抖动等概念。

二、实验内容1、观察数字环的失锁状态和锁定状态。

2、观察数字环锁定状态下位同步信号的相位抖动现象及相位抖动大小与固有频差的'关系。

3、观察数字环位同步器的同步保持时间与固有频差之间的关系。

三、实验器材1、移动通信原理实验箱2、20M双踪示波器一台一台四、实验步骤1、安装好发射天线和接收天线。

2、插上电源线,打开主机箱右侧的交流开关,再按下开关POWER301、POWER302、POWER401和POWER402,对应的发光二极管LED301、LED302、LED401和LED402发光,CDMA系统的发射机和接收机均开始工作。

3、发射机拨位开关“信码速率”、“扩频码速率”、“扩频”均拨下,“编码”拨上,接收机拨位开关“信码速率”、“扩频码速率”、“跟踪”均拨下,“调制信号输入”和“解码”拨上。

此时系统的信码速率为1Kbit/s,扩频码速率为100Kbit/s。

将“第一路”连接,“第二路”断开,这时发射机发射的是第一路信号。

将拨码开关“GOLD3置位”拨为与“GOLD1置位”一致。

4、根据实验四中步骤8~11的方法,调节“捕获”和“跟踪”旋钮,使接收机与发送机GOLD码完全一致。

5、根据实验五中步骤6~7的方法,调节“频率调节”旋钮,恢复出相干载波。

6、用示波器双踪同时观察“整形前”和“整形电平”,并将双通道置于直流耦合,零电平、电压设为一致。

调节“整形”旋钮,使整形电平置于“整形前”波形上部凸出部分。

用示波器观察“整形后”的波形,并与“整形前”比较,如完全相同,则整形电平调节正确。

7、用示波器观察接收机“BS”信号,该点即为接收机恢复出的位同步信号,将其与发射机的“S1-BS”进行比较。

8、改变系统的信码速率,按“发射机复位”和“接收机复位”键,通过与发射机的“S1-BS”对比观察“BS”信号的变化。

实验3 ASK调制与解调实验报告

实验3 ASK调制与解调实验报告
提取的位同步信号波形:
(采用双踪示波器比较信号源的位同步波形与提取的位同步信号波形,它们应当一致,表示发送端与接收端的码元宽度是一样的)
ASK解调输出波形:
(采用双踪示波器比较提取的位同步信号波形与ASK解调输出波形,从而可以得到数字信号,它与我们在SW01、SW02、SW03设置的数字信号应该一致)
OUT2测试点输出波形:(即ASK调幅波经半波整流器后的信号输出波形)
OUT3测试点输出波形:(即ASK调幅波经低通滤波器后的信号输出波形)
ASK—OUT测试点输出波形:(即ASK调幅波经电压比较器后的信号输出波形,未经同步判决。波形与ASK判决电压调节的调节幅度有关)
a、ASK判决电压调节过高,误判为0的概率增加:
(采用双踪示波器比较ASK基带输入波形与ASK—OUT测试点输出波形)
b、ASK判决电压调节过低,误判为1的概率增加:
(采用双踪示波器比较ASK基带输入波形与ASK—OUT测试点输出波形)
c、适当调节ASK判决电压,使ASK—OUT输出波形与ASK基带输入波形最接近:
(采用双踪示波器比较ASK基带输入波形与ASK—OUT测试点输出波形)
七、实验思考题解答
1、说明用键控法产生2ASK信号的方法。
2、调节判决电平,当它过大或过小时会出现误码,说明为什么会产生误码。
八、调试中遇到的问题及解决方法
现代通信原理
实验室名称:通信原理实验室实验日期: 年 月 日
学院班级、Biblioteka 号姓名实验项目名称
ASK调制与解调实验
指导
教师
一、实验目的
二、实验内容
三、实验仪器
四、实验原理
五、实验步骤
六、实验结果及分析
ASK基带输入: 信号源测试点NRZ输出的NRZ码

通信原理实验_实验报告

通信原理实验_实验报告

一、实验名称通信原理实验二、实验目的1. 理解通信原理的基本概念和原理;2. 掌握通信系统中的调制、解调、编码和解码等基本技术;3. 培养实际操作能力和分析问题能力。

三、实验内容1. 调制与解调实验(1)实验目的:验证调幅(AM)和调频(FM)调制与解调的基本原理;(2)实验步骤:1. 准备实验设备:调幅调制器、调频调制器、解调器、示波器、信号发生器等;2. 设置调制器参数,生成AM和FM信号;3. 将调制信号输入解调器,观察解调后的信号波形;4. 分析实验结果,比较AM和FM调制信号的特点;(3)实验结果与分析:通过实验,观察到AM和FM调制信号的特点,验证了调制与解调的基本原理。

2. 编码与解码实验(1)实验目的:验证数字通信系统中的编码与解码技术;(2)实验步骤:1. 准备实验设备:编码器、解码器、示波器、信号发生器等;2. 设置编码器参数,生成数字信号;3. 将数字信号输入解码器,观察解码后的信号波形;4. 分析实验结果,比较编码与解码前后的信号特点;(3)实验结果与分析:通过实验,观察到编码与解码前后信号的特点,验证了数字通信系统中的编码与解码技术。

3. 信道模型实验(1)实验目的:验证信道模型对通信系统性能的影响;(2)实验步骤:1. 准备实验设备:信道模型仿真软件、信号发生器、示波器等;2. 设置信道模型参数,生成模拟信号;3. 将模拟信号输入信道模型,观察信道模型对信号的影响;4. 分析实验结果,比较不同信道模型下的信号传输性能;(3)实验结果与分析:通过实验,观察到不同信道模型对信号传输性能的影响,验证了信道模型在通信系统中的重要性。

4. 通信系统性能分析实验(1)实验目的:分析通信系统的性能指标;(2)实验步骤:1. 准备实验设备:通信系统仿真软件、信号发生器、示波器等;2. 设置通信系统参数,生成模拟信号;3. 仿真通信系统,观察系统性能指标;4. 分析实验结果,比较不同参数设置下的系统性能;(3)实验结果与分析:通过实验,观察到不同参数设置对通信系统性能的影响,验证了通信系统性能分析的重要性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

通信原理实验报告脉冲编码调制与解调班级:电信0803姓名:韩淑娟学号:2008001247脉冲编码调制与解调实验一、实验目的1、掌握脉冲编码调制与解调的原理。

2、掌握脉冲编码调制与解调系统的动态范围和频率特性的定义及测量方法。

3、了解脉冲编码调制信号的频谱特性。

4、了解大规模集成电路TP3067的使用方法。

二、实验内容1、观察脉冲编码调制与解调的结果,分析调制信号与基带信号之间的关系。

2、改变基带信号的幅度,观察脉冲编码调制与解调信号的信噪比的变化情况。

3、改变基带信号的频率,观察脉冲编码调制与解调信号幅度的变化情况。

4、观察脉冲编码调制信号的频谱。

三、实验仪器1、信号源模块2、模拟信号数字化模块3、频谱分析模块(可选)4、终端模块(可选)5、20M双踪示波器一台6、音频信号发生器(可选)一台7、立体声单放机(可选)一台8、立体声耳机(可选)一副9、连接线若干四、实验原理先规定模拟信号进行抽样后,其抽样值还是随信号幅度连续变化的,当这些连续变化的抽样值通过有噪声的信道传输时,接收端就不能对所发送的抽样准确地估值。

如果发送端用预的有限个电平来表示抽样值,且电平间隔比干扰噪声大,则接收端将有可能对所发送的抽样准确地估值,从而有可能消除随机噪声的影响。

脉冲编码调制(PCM)简称为脉码调制,它是一种将模拟语音信号变换成数字信号的编码方式。

脉码系统原理框图如图3-1所示。

PCM主要包括抽样、量化与编码三个过程。

抽样是把时间连续的模拟信号转换成时间离散、幅度连续的抽样信号;量化是把时间离散、幅度连续的抽样信号转换成时间离散、幅度离散的数字信号;编码是将量化后的信号编码形成一个二进制码组输出。

国际标准化的PCM码组(电话语音)是用八位码组代表一个抽样值。

编码后的PCM码组,经数字信道传输,在接收端,用二进制码组重建模拟信号,在解调过程中,一般采用抽样保持电路。

预滤波是为了把原始语音信号的频带限制在300-3400Hz左右,所以预滤波会引入一定的频带失真。

图3-1 PCM 系统原理框图在整个PCM系统中,重建信号的失真主要来源于量化以及信道传输误码。

通常,用信号与量化噪声的功率比,即信噪比S/N来表示。

国际电报电话咨询委员会(ITU-T)详细规定了它的指标,还规定比特率为64kb/s,使用A律或律编码律。

下面将详细介绍PCM编码的整个过程,由于抽样原理已在前面实验中详细讨论过,故在此只讲述量化及编码的原理。

1、量化从数学上来看,量化就是把一个连续幅度值的无限数集合映射成一个离散幅度值的有限数集合。

如图3-2所示,量化器Q输出L个量化值,k=1,2,3,…,L。

常称为重建电平或量化电平。

当量化器输入信号幅度落在与之间时,量化器输出电平为。

这个量化过程可以表达为:这里称为分层电平或判决阈值。

通常称为量化间隔。

图3-2 模拟信号的量化模拟信号的量化分为均匀量化和非均匀量化,我们先讨论均匀量化。

把输入模拟信号的取值域按等距离分割的量化称为均匀量化。

在均匀量化中,每个量化区间的量化电平均取在各区间的中点,如图3-3所示。

其量化间隔(量化台阶)取决于输入信号的变化范围和量化电平数。

当输入信号的变化范围和量化电平数确定后,量化间隔也被确定。

例如,输入信号的最小值和最大值分用a和b表示,量化电平数为M,那么,均匀量化的量化间隔为:图3-3 均匀量化过程示意图量化器输出为:当式中为第个量化区间的终点,可写成:为第个量化区间的量化电平,可表示为上述均匀量化的主要缺点是,无论抽样值大小如何,量化噪声的均方根值都固定不变。

因此,当信号较小时,则信号量化噪声功率比也就很小,这样,对于弱信号时的量化信噪比就难以达到给定的要求。

通常,把满足信噪比要求的输入信号取值范围定义为动态范围,可见,均匀量化时的信号动态范围将受到较大的限制。

为了克服这个缺点,实际中,往往采用非均匀量化。

非均匀量化是根据信号的不同区间来确定量化间隔的。

对于信号取值小的区间,其化间隔也小;反之,量化间隔就大。

它与均匀量化相比,有两个突出的优点。

首先,当输入量化器的信号具有非均匀分布的概率密度(实际中常常是这样)时,非均匀量化器的输出端可以得到较高的平均信号量化噪声功率比;其次,非均匀量化时,量化噪声功率的均方根值基本上与信号抽样值成比例。

因此量化噪声对大、小信号的影响大致相同,即改善了小信号时的量化信噪比。

实际中,非均匀量化的实际方法通常是将抽样值通过压缩再进行均匀量化。

通常使用的压缩器中,大多采用对数式压缩。

广泛采用的两种对数压缩律是压缩律和A压缩律。

美国采用压缩律,我国和欧洲各国均采用A压缩律,因此,本实验模块采用的PCM编码方式也是A压缩律。

所谓A压缩律也就是压缩器具有如下特性的压缩律:,A律压扩特性是连续曲线,A值不同压扩特性亦不同,在电路上实现这样的函数规律是相当复杂的。

实际中,往往都采用近似于A律函数规律的13折线(A=87.6)的压扩特性。

这样,它基本上保持了连续压扩特性曲线的优点,又便于用数字电路实现,本实验模块中所用到的PCM编码芯片TP3067正是采用这种压扩特性来进行编码的。

图3-4示出了这种压扩特性。

图3-4 13折线表3-1列出了13折线时的值与计算值的比较。

分段时的表中第二行的值是根据时计算得到的,第三行的值是13折线分段时的值。

可见,13折线各段落的分界点与曲线十分逼近,同时按2的幂次分割有利于数字化。

2、编码所谓编码就是把量化后的信号变换成代码,其相反的过程称为译码。

当然,这里的编码和译码与差错控制编码和译码是完全不同的,前者是属于信源编码的范畴。

在现有的编码方法中,若按编码的速度来分,大致可分为两大类:低速编码和高速编码。

通信中一般都采用第二类。

编码器的种类大体上可以归结为三类:逐次比较型、折叠级联型、混合型。

本实验模块中的编码芯片TP3067采用的是逐次比较型。

在逐次比较型编码方式中,无论采用几位码,一般均按极性码、段落码、段内码的顺序排列。

下面结合13折线的量化来加以说明。

表3-2 段落码表3-3 段内码在13折线法中,无论输入信号是正是负,均按8段折线(8个段落)进行编码。

若用8位折叠二进制码来表示输入信号的抽样量化值,其中用第一位表示量化值的极性,其余七位(第二位至第八位)则表示抽样量化值的绝对大小。

具体的做法是:用第二至第四位表示段落码,它的8种可能状态来分别代表8个段落的起点电平。

其它四位表示段内码,它的16种可能状态来分别代表每一段落的16个均匀划分的量化级。

这样处理的结果,8个段落被划分成27=128个量化级。

段落码和8个段落之间的关系如表3-2所示;段内码与16个量化级之间的关系见表3-3。

可见,上述编码方法是把压缩、量化和编码合为一体的方法。

本实验采用大规模集成电路TP3067对语音信号进行PCM编、解码。

TP3067在一个芯片内部集成了编码电路和译码电路,是一个单路编译码器。

其编码速率为2.048MHz,每一帧数据为8位,帧同步信号为8KHz。

模拟信号在编码电路中,经过抽样、量化、编码,最后得到PCM编码信号。

在单路编译码器中,经变换后的PCM码是在一个时隙中被发送出去的,在其他的时隙中编译码器是没有输出的,即对一个单路编译码器来说,它在一个PCM帧(32个时隙)里,只在一个特定的时隙中发送编码信号。

同样,译码电路也只是在一个特定的时隙(此时隙应与发送时隙相同,否则接收不到PCM编码信号)里才从外部接收PCM编码信号,然后进行译码,经过带通滤波器、放大器后输出。

具体电路图如图3-5所示。

图3-5 PCM编译码电路原理图五、实验步骤1、将信号源模块、模拟信号数字化模块、频谱分析模块小心地固定在主机箱中,确保电源接触良好。

2、插上电源线,打开主机箱右侧的交流开关,再分别按下三个模块中的相应开关POWER1、POWER2,对应的发光二极管LED01、LED02发光,按一下信号源模块的复位键,三个模块均开始工作。

(注意,此处只是验证通电是否成功,在实验中均是先连线,后打开电源做实验,不要带电连线)3、将信号源模块的拨码开关SW04、SW05设置为0000000 0000001。

4、将信号源模块产生的正弦波信号(频率为2.5KHz,峰-峰值为3V)从点“S-IN”输入模拟信号数字化模块,将信号源模块的信号输出点“64K”、“8K”“BS”分别与模拟信号数字化模块的信号输入点“CLKB-IN”、“FRAMB-IN”、“2048K-IN”连接,观察信号输出点“PCMB-OUT”的波形。

5、连接“CLKB-IN”和“CLK2-IN”,“FRAMB-IN”和“FRAM2-IN”,连接信号输出点“PCMB-OUT”和信号输入点“PCM2-IN”,观察信号输出点“JPCM”输出的波形。

6、将信号输出点“PCMB-OUT”和“JPCM”输出的波形分别引入频谱分析模块,观察输出信号的频谱,记录下来。

(可选)7、改变输入正弦信号的幅度,分别使其峰-峰值等于和大于5V,将示波器探头分别接在信号输出点“JPCM”和“PCMB-OUT”上,观察满载和过载时的脉冲幅度调制和解调的波形,并记录下来。

8、改变输入正弦信号的频率,使其频率分别大于3400Hz或小于300Hz,观察点“JPCM”、“PCMB-OUT”的输出波形,记录下来。

六、输入、输出点参考说明1、输入点参考说明2048K-IN: PCM所需时钟信号输入点。

S-IN:模拟信号输入点(基带信号)。

CLKB-IN: PCM编码所需时钟信号输入点。

FRAMB-IN: PCM编码帧同步信号输入点。

PCM2-IN: PCM解调信号输入点。

(用数字示波器观察)CLK2-IN: PCM解码所需时钟信号输入点。

FRAM2-IN: PCM解码帧同步信号输入点。

2、输出点参考说明PCMB-OUT:脉冲编码调制信号输出点。

(用数字示波器观察)JPCM: PCM解调信号输出点。

七、实验思考题1.TP3067PCM编码器输出的PCM数据的速率是多少?在本次实验系统中,为什么要给TP3067提供2.048MHz的时钟?答:码速率为2.045MHZ,PCM编码器在同步工作中,对于发送和接收两个方向应当用相同的主时钟和位时钟,在这一模式中,MCLKx上必须有时钟信号在起作用,而MCLKR/PDN 引脚则起了掉电控制作用。

在异步工作状态中,发送和接收时钟必须独立设置,MCLK和MCLR必须为2.048MHz。

2.为什么实验时观察到的PCM编码信号总是随时变化的?答:不光是PCM编码信号是在不断地变化,任何控制信号只要发出控制指令都发发出信号变化的。

只不过变化方式不同罢了。

普通的脉冲编码,往往是一个脉冲代表一个通道的指令。

遥控操作时也往往是这个脉冲的宽度或者是脉冲的位置有所变化。

相关文档
最新文档