七年级数学上册 第1章 有理数 1.5 有理数的乘除 1.5.1 有理数的乘法学案(新版)沪科版

合集下载

初中数学七年级上册《1.5.1有理数的乘方(第一课时)》教学课件

初中数学七年级上册《1.5.1有理数的乘方(第一课时)》教学课件

2.你能迅速判断下列各幂的正负吗?
165
254
(-8)5
(-3)6
(-1)101
(-2)50
新知小结一
根据有理数乘法法则可以得出: 负数的奇次幂是______,负数的偶次幂是______. 正数的任何次幂都是______, 0的任何正整数次幂都是______.
巩固练习二 1.(-10)8 中-10叫做____数,8叫做____数. 2. -(-2)3 是________(填正数或负数).
人教版七年级上册第一章《有理数》
1.5.1有理数的乘方
学习目标
1.知道乘方、底数、幂的意义,会读乘方算式,会进行 有理数乘方运算. 2.经历乘方符号法则的探究过程,知道乘方的符号法则. 3.能够进行有理数混合运算.
一 内容感知
知识探究一
1.边长为3cm的正方形的面积是多少?
2.棱长为3cm的正方体的体积是多少?
新知小结二
一个运算中,含有有理数的加、减、乘、除、乘方等多 种运算,称为有理数的混合运算.
做有理数的混合运算时,应注意以下运算顺序: 1.先乘方,再乘除,最后加减; 2.同级运算,从左到右进行; 3.如有括号,先做括号内的运算,按小括号、中括号、 大括号依次进行.
巩固练习三
巩固练习二
3.计算
(1)(-1)8Βιβλιοθήκη (2)(-1)7(4) 34
(5)(-2)3
(7)(-0.1)3 (8)(-10)4
(3)(-3)3 (6)(-2)4 (9)(-10)5
例1.计算
例题讲解
例题讲解
例2.观察下列三行数,回答下列问题. -2,4,-8,16,-32,64,…; ① 0,6,-6,18,-30,66,…; ② -1,2,-4,8,-16,32,….; ③ (1)第①行数按什么规律排列? (2)第②③行数与第①行数分别有什么关系?

七年级数学上册第1章有理数1.5有理数的乘除1有理数的乘法第2课时多个有理数的乘法课件新版沪科版

七年级数学上册第1章有理数1.5有理数的乘除1有理数的乘法第2课时多个有理数的乘法课件新版沪科版
沪科版 七年级上
第1章 有理数
1.5 有理数的乘除
1. 有理数的乘法
第2课时 多个有理数的乘法
CONTENTS


01
名师点金
02
基础题
03
综合应用题
几个因数相乘,首先观察算式中有无因数为0,若有一
个因数为0,则积为0;若全是非0因数,则先根据负因数的
个数确定积的符号,再把所有因数的绝对值相乘.


=-12.5× ×4

=-
.

返回
1
2
3
4
5
6
7
8
9
10
11
12
13
14
11. [2024·芜湖部分学校月考]现有以下四个结论:①若两个
数互为相反数,则它们相除的商等于-1;②任何一个有
理数都可以在数轴上表示;③两个数的和为正数,则这
两个数可能异号;④几个有理数相乘,负因数个数为奇
数则乘积为负数.其中正确的有(





×


B.

× 的结果为(



C.
D
)


D.


【点拨】
先判断符号,再将带分数化为假分数进行乘法计算.
返回
1
2
3
4
5
6
7
8
9
10
11
12
13
14
易错点
几个有理数相乘时忽视符号法则而致错
10. 计算:(-12.5)×



【解】(-12.5)× −

湘教版数学七年级上册1.5.1《有理数的乘法》教学设计1

湘教版数学七年级上册1.5.1《有理数的乘法》教学设计1

湘教版数学七年级上册1.5.1《有理数的乘法》教学设计1一. 教材分析湘教版数学七年级上册1.5.1《有理数的乘法》是学生在掌握了有理数的概念、加法、减法、除法的基础上,进一步学习有理数的乘法。

本节内容通过实例引入有理数的乘法,引导学生理解并掌握有理数乘法的法则,培养学生运用有理数乘法解决实际问题的能力。

教材内容主要包括有理数乘法法则、乘法的运算律及应用。

二. 学情分析七年级的学生已经具备了一定的数学基础,对有理数的概念、加法、减法、除法有一定的了解。

但学生在学习过程中,可能对有理数乘法法则的理解和运用还不够熟练,尤其是一些特殊情况需要注意。

因此,在教学过程中,要关注学生的学习需求,针对性地进行讲解和辅导。

三. 教学目标1.知识与技能目标:使学生掌握有理数的乘法法则,能够熟练地进行有理数的乘法运算。

2.过程与方法目标:通过实例分析,让学生经历有理数乘法法则的探究过程,培养学生的逻辑思维能力和数学素养。

3.情感态度与价值观目标:激发学生学习数学的兴趣,培养学生的团队合作意识,使学生感受到数学在生活中的应用。

四. 教学重难点1.重点:有理数的乘法法则。

2.难点:有理数乘法法则在实际问题中的应用。

五. 教学方法1.情境教学法:通过生活实例引入有理数乘法,让学生感受数学与生活的紧密联系。

2.引导发现法:教师引导学生发现问题,分析问题,从而得出有理数乘法法则。

3.实践操作法:让学生通过动手操作,加深对有理数乘法法则的理解。

4.小组合作学习:培养学生团队合作精神,提高学生解决问题的能力。

六. 教学准备1.教学课件:制作生动有趣的教学课件,帮助学生更好地理解有理数乘法。

2.教学素材:准备一些实际问题,用于引导学生运用有理数乘法法则解决问题。

3.练习题:设计一些有梯度的练习题,用于巩固所学知识。

七. 教学过程1.导入(5分钟)教师通过一个生活实例引入有理数乘法,如:“小明买了一本书,原价是15元,他给了老板20元,找回多少钱?”让学生思考并解答,从而引出有理数乘法。

七年级数学上册第1章有理数1.5有理数的乘除1有理数的乘法第1课时有理数的乘法法则课件新版沪科版

七年级数学上册第1章有理数1.5有理数的乘除1有理数的乘法第1课时有理数的乘法法则课件新版沪科版

13
14
15
16
11. 一个数的倒数等于这个数本身,这个数是(
A. 1
B. -1
C. 1或-1
D. 0
C
)
【点拨】
一个数的倒数等于这个数本身,这个数是±1.故
选C.
返回
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
易错点
因考虑问题不全面而出错
12. [新考法 分类讨论法]若| a |=3,| b |=4,且 a + b
有倒数(因为0与任何数相乘都不为1).(3)正数的倒数是正
数,负数的倒数是负数.(4)倒数等于它本身的数是±1.(5)
倒数是成对出现的.
返回
知识点1
有理数的乘法法则
1. [荣德原创题]填空.
(1)(-2)×(-3)



6
(
×
2
3
)

.


两数相乘,同号得
绝对值
,并把它们的
相乘.
1
2
3
4
5
6
7
8
9
认为结果可能是 ①② .(填序号)
(2)若 a + b =-5,且 a , b 为整数,则 ab 的最大值
为 6 .
(3)数轴上 A , B 两点分别表示有理数 a , b ,若 ab <0,
试比较 a + b 与0的大小.

1
2
3
4
5
6
7
8
9
10
11
12

人教版七年级数学上册第一章教学课件:1.5.1 第1课时 乘方(共15张PPT)

人教版七年级数学上册第一章教学课件:1.5.1 第1课时 乘方(共15张PPT)
13、He who seize the right moment, is the right man.谁把握机遇,谁就心想事成。2021/9/72021/9/72021/9/72021/9/79/7/2021 14、谁要是自己还没有发展培养和教育好,他就不能发展培养和教育别人。2021年9月7日星期二2021/9/72021/9/72021/9/7 15、一年之计,莫如树谷;十年之计,莫如树木;终身之计,莫如树人。2021年9月2021/9/72021/9/72021/9/79/7/2021 16、教学的目的是培养学生自己学习,自己研究,用自己的头脑来想,用自己的眼睛看,用自己的手来做这种精神。2021/9/72021/9/7September 7, 2021 17、儿童是中心,教育的措施便围绕他们而组织起来。2021/9/72021/9/72021/9/72021/9/7
.
解:(1) (-4)3=(-4)×(-4)×(-4)=-64;
(2) (-2)4=(-2)×(-2)×(-2)×(-2)=16;
(3) 2 3 3= 2 3 2 3 2 3 =2 8 7.
思考:你发现负数的幂的正负有什么规律?
归纳总结
根据有理数的乘法法则可以得出: 负数的奇次幂是负数,负数的偶次幂是正数. 正数的任何正整数次幂都是正数,0的任何正 整数次幂都是0.
- 1 (当n为奇数时)
(9)(-1)n=
1
(当.n为偶数时).
1.求几个相同因数的积的运算,叫做乘方.
a 幂
n 指数
2.乘方的符号法则: 底数 (1)正数的任何次幂都是正数 (2)负数的奇次幂是负数,负数的偶次幂是正数 (3)零的正整数次幂都是零
3.注意:
an与an 二者的区别及相互关系;

数学人教版七年级上册1.5.1有理数的乘方.5.1有理数的乘方教学设计与反思

数学人教版七年级上册1.5.1有理数的乘方.5.1有理数的乘方教学设计与反思
3、进行乘方运算应先定符号后计算。
目标检测
1、在46中,底数是,指数,
2、(-4)7读做;
3、(-4)12的结果是数(填“正”或“负”);
4、计算:=;
5、计算:(-1)2n+(-1)2n+1=;
课后作业
教材p47立完成,师生共同订正
通过练习使学生对这节课的知识得以巩固,加深理解
对折3次可裁成8张,即2×2×2张;
问题(1):
若对折10次可裁成几张?请用一个算式表示(不用算出结果)
2×2×2×2×2×2×2×2×2×2
有10个2相乘
若对折100次,算式中有几个2相乘?
在这个积中有100个2相乘。这么长的算式有简单的记法吗?
问题(2):
2个a相加可记为:a+a=a×2
边长为a的正方形的面积可记为:
七、教学评价设计
在探索法则的教学环节中,教师放手学生操作,把课堂还给学生,真正体现学生的主体地位,教师起到一个引导者、合作者、组织者的作用,学生在合作交流与自主探索的过程中归纳出有理数乘方的符号法则。在练习设计中,设置不同难度的计算题,让不同的学生都得到训练,得到提高。为了使学生真正掌握重难点,熟练的进行有理数的乘方运算,设计了一定的试题教学,难点得以突破,学生的能力得到提高,同时培养了学生集体合作的意识。
a×a=a2
3个a相加可记为:a+a+a=a×3
棱长为a的正方体的体积可记为:
a×a×a=a3
4个a相加可记为:a+a+a+a=a×4
那么4个a相乘可记为:
a×a×a×a=a4
n个a相加可记为:a+a+…+a=a×n
n个a相乘可记为:a×a×…×a=an

1.5.1 第1课时 有理数的乘法课件(共21张PPT) 沪科版(2024)数学七年级上册

1.5.1 第1课时 有理数的乘法课件(共21张PPT) 沪科版(2024)数学七年级上册
e7d195523061f1c0c2b73831c94a3edc981f60e396d3e182073EE1468018468A7F192AE5E5CD515B6C3125F8AF6E4EE646174E8CF0B46FD19828DCE8CDA3B3A044A74F0E769C5FA8CB87AB6FC303C8BA3785FAC64AF5424764E128FECAE4CC72932BB65C8C121A0F41C1707D94688ED66335DC6AE12288BF2055523C0C26863D2CD4AC454A29EEC183CEF0375334B579
(3) (-5)×0=0.
要点:有理数中,乘积是 1 的两个数互为倒数.
思考:数 a (a≠0) 的倒数是什么?
计算观察结果有何特点?
倒数
(1) 1 的倒数为_____;
(2) -1 的倒数为______;
(3) 的倒数为____;
(4) 的倒数为_____;
(5) 的倒数为_____;
3. 商店降价销售某种商品,每件降 5 元,售出 60 件后,与按原价销售同样数量的商品相比,销售额有什么变化?
解:(-5)×60 = -300.答:销售额减少 300 元.
有理数乘法法则
两数相乘,同号得___,异号得___,并把 相乘
回顾有理数乘法法则的相关内容,完成框图.
问题2 2 min前乙标本的温度比现在高还是低? 高(或低)多少 ?
由图可知,2 min 前乙标本的温度比现在低 6 ℃.

用算式表达,即 3×(-2) = -6.
根据乘法交换律由 (-2)×3 = -6.也可以得到 3×(-2) = -6.
方法一
方法二

2024年秋新湘教版七年级上册数学教学课件 第1章 有理数 1.5.3 有理数的乘除

2024年秋新湘教版七年级上册数学教学课件 第1章 有理数 1.5.3 有理数的乘除

2 7
×(-4)
=
8 7

(4)18 ÷6×(-2) = 3×(-2)= -6 .
2.计算:
(1)
1 2
13
3 4

(3)
24
1 6
13

(2)
(3.5)
1 8
1 7

(4)
4 9
2
113
(0.25)
.
解:(1)
1 2
1 3
3 4
1 2
例题讲解
例6
计算: (1)(-5)×6÷(-3);
(2)(-56)÷(-2)÷(-8).
解:(1)(-5)×6÷(-3)
=(-30)÷(-3)
依次计算,先算前两个数
=10.
例 6 计算: (1)(-5)×6÷(-3); (2)(-56)÷(-2)÷(-8).
依次计算,先算前两个数
异号相除,结果为负
例 7 计算:
解:(1)(-10)÷[(-5)×(-2)] = (-10)÷ 10 = -1.
先计算括号里面的
例 7 计算:
例 7 计算:
例 7 计算:
补充练习
计算:
(1)( 5)( 5)( 2); 2
(2)
6
4
6 5
.
(1)原式 =(- 5)(- 1)( 2) 25
= -1.
(2)原式 = 6 ( 1)(- 5)
= 6÷0.8×100=750(米). 答: 这个山峰的高度为 750 米.
有理数的乘除 混合运算
运算顺序 简便运算
1.从课后习题中选取; 2.完成练习册本课时的习题。
同学们,通过这节课的学习, 你有什么收获呢?
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.5有理数的乘除
学习目标:1.熟悉探索有理数乘法法则的过程;
2.会进行有理数的乘法运算;
3.并能灵活运用乘法运算律进行有理数的乘法运算,使计算简便;
4.培养自己观察、归纳、猜测、概括等能力.
学习重点:有理数的乘法运算.
学习难点:有理数乘法法则的理解.
☆预习导航☆
一、链接:
1.请你计算:(+2)×(+3)=____ ,(+2)×0=_____ .
2.想一想如果我们的乘法运算中遇到负数相乘该怎么运算?
二、导读:
阅读课本,并完成以下问题:
1.通过阅读问题1,你对两个数中有一个数是负数的乘法有什么发现?
2.通过阅读问题2,你对两个负数相乘又有什么发现?
3.小学所学的倒数概念对有理数同样适用吗?
4.通过阅读问题3,你对多个有理数相乘又有什么发现?
三、盘点:
1.有理数的乘法法则:两数相乘,同号得,异号得,并把相乘;
任何数与相乘得零.
2.在有理数范围内,如果两个数的乘积为,我们称这两个数互为倒数.
3.几个数相乘,有一个因数为0,•则积为.
4.几个不为0的数相乘时,积的符号是由决定;当负因数有奇数
个时,积为;当负因数有偶数个时,积为.
☆合作探究☆
1.下列说法中,正确的是教学思路学生纠错
A .同号两数相乘,取原来的符号
B .两数相乘,积大于任何一个因数
C .一个数与0相乘得原数
D .一个数与-1相乘,得原数的相反数
2.在-2,3,4,-5这四个数中,任取两个数相乘,所得的积最大是_______,最小是_______.
3.计算 ① (-34)×(-4
3
) ②(-5)×(-6)×(-2)
③()()()31
0.5181163
-⨯-⨯⨯-⨯ ④
(-8)×(-12)×(-0.125)×(-13)×(-0.001)
☆ 达标检测 ☆
1.













( )
A .这三个数均为0
B .这三个数中有两个为0
C .这三个数中至少有一个为0
D .这三个数中至多有一个为0.
2.如果两个有理数在数轴上所对应的点在原点的同侧,那么这两个有理数的积 ( )
A .为正数
B .为负数
C .可能为正数,也可能为负数
D .为零
教学思路 学生纠错
3.计算:
(1)(-6)×(-4) (2)(()()54310.2565⎛
⎫-⨯⨯-⨯- ⎪⎝⎭
(3)-1×302×(-xx )×0 (4)(-6)×(-2.5)×(+2)×(-2
1)
欢迎您的下载,资料仅供参考!。

相关文档
最新文档