九年级数学上入学测试题及答案

合集下载

九年级上册数学测试题(含答案)

九年级上册数学测试题(含答案)

九年级上册数学测试题(含答案)九年级上册数学测试题考试时间:120分钟分数:120)一、选择题(本大题共10小题,共30分)1.某钢铁厂一月份生产钢铁560吨,从二月份起,由于改进操作技术,使得第一季度共生产钢铁1850吨。

问二、三月份平均每月的增长率是多少?若设二、三月份平均每月的增长率为x,则可得方程560(1+x)2=1850.选A。

2.若一元二次方程(2m+6)x2+m2−9=0的常数项是0,则m 等于-3或3.选A或B。

3.如图,AB是⊙O的一条弦,OD⊥AB于点C,交⊙O 于点D,连接OA。

若AB=4,CD=1,则⊙O的半径为√15.选C。

4.若抛物线y=x2−2x+m与x轴有交点,则m的取值范围是m≤1.选D。

5.如图,A、B、C是⊙O上三个点,∠AOB=2∠BOC,则下列说法中正确的是∠OBA=∠OCA。

选A。

6.⊙O中,OD⊥AB于C,AE过点O,连接EC,若AB=8,CD=2,则EC长度为2√5.选A。

7.下列判断中正确的是:弦的垂直平分线必平分弦所对的两条弧。

选C。

8.如图,已知⊙P与坐标轴交于点A、O、B,点C在⊙P 上,且∠ACB=60°,若点B的坐标为(0,3),则弧OA的长为2√3π。

选D。

9.将含有角的直角三角板OAB如图放置在平面直角坐标中,OB在x轴上,若OA=2,将三角板绕原点O顺时针旋转,则点A的对应点A′的坐标为(√3,1)。

选A。

10.如图,在直角三角形ABC中,AC=2√3,以点C为圆心,CB的长为半径后点B与点A恰好重合,则绕点D旋转画弧,与AB边交于点E,将图中阴影部分的面积为2π/3.选A。

一、选择题(本大题共10小题,共30分)1.B2.A3.A4.C5.B6.C7.A8.A9.B10.C二、填空题(本大题共8小题,共24分)11.$-m^2+6m+16$12.$y_3<y_1<y_2$13.$CD=2\sqrt{3}$14.$16m/3$15.$2\sqrt{3}$16.$5/2$17.$30^\circ$18.$4\sqrt{2}$三、解答题(本大题共7小题,共66分)19.1) $m\geq 3$2) $m=5$。

2025届上海市民办张江集团中学数学九年级第一学期开学综合测试试题【含答案】

2025届上海市民办张江集团中学数学九年级第一学期开学综合测试试题【含答案】

2025届上海市民办张江集团中学数学九年级第一学期开学综合测试试题题号一二三四五总分得分A 卷(100分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、(4分)如图,在10×6的网格中,每个小方格的边长都是1个单位,将△ABC 平移到△DEF 的位置,下面正确的平移步骤是()A .先把△ABC 向左平移5个单位,再向下平移2个单位B .先把△ABC 向右平移5个单位,再向下平移2个单位C .先把△ABC 向左平移5个单位,再向上平移2个单位D .先把△ABC 向右平移5个单位,再向上平移2个单位2、(4分)如图,在Rt ABC ∆中,90B ∠=︒,30A ∠=︒,DE 垂直平分斜边AC ,交AB 于D ,E 是垂足,连接CD ,若2BD =,则AB 的长是()A .B .4C .D .63、(4分)一个多边形的每个内角都等于108°,则这个多边形的边数为().A .5B .6C .7D .84、(4分)经过多边形一个角的两边剪掉这个角,则得到的新多边形的外角和()A .比原多边形多180︒B .比原多边形少180︒C .与原多边形外角和相等D .不确定5、(4分)如图,是由四个全等的直角三角形和中间的小正方形拼成的一个大正方形,如果大正方形的面积是13,小正方形的面积是2,直角三角形较长的直角边为m ,较短的直角边为n ,那么(m +n )2的值为()A .23B .24C .25D .无答案6、(4分)关于x 的一次函数21y kx k =++的图象可能正确的是()A .B .C .D .7、(4分)如图,在正方形ABCD 中,BD=2,∠DCE 是正方形ABCD 的外角,P 是∠DCE 的角平分线CF 上任意一点,则△PBD 的面积等于()A .1B .1.5C .2D .2.58、(4分)如图,在△ABC 中,D 、E 分别是AB 、AC 的中点,BC =16,F 是线段DE 上一点,连接AF 、CF ,DE =4DF ,若∠AFC =90°,则AC 的长度是()A .6B .8C .10D .12二、填空题(本大题共5个小题,每小题4分,共20分)9、(4分)小明做了一个平行四边形的纸板,但他不确定纸板形状是否标准,小聪用刻度尺量了这个四边形的四条边长,然后说这个纸板是标准的平行四边形,小聪的依据是_____.10、(4分)一只不透明的袋子中装有4个小球,分别标有数字2,3,4,x,这些球除数字外都相同.甲、乙两人每次同时从袋中各随机摸出1个球,并计算摸出的这2个小球上数字之和.记录后都将小球放回袋中搅匀,进行重复实验.实验数据如下表:摸球总次数1020306090120180240330450“和为7”出现的频数19142426375882109150“和为7”出现的频率0.10.450.470.400.290.310.320.340.330.33试估计出现“和为7”的概率为________.11、(4分)如图,过点N(0,-1)的直线y=kx+b与图中的四边形ABCD有不少于两个交点,其中A(2,3)、B(1,1)、C(4,1)、D(4,3),则k的取值范围____________12、(4分)计算11()a aa a-÷-的结果是_____。

重庆市第一一〇中学校2024-2025学年2024--2025学年九年级上学期入学测试数学试题

重庆市第一一〇中学校2024-2025学年2024--2025学年九年级上学期入学测试数学试题

重庆市第一一〇中学校2024-2025学年2024--2025学年九年级上学期入学测试数学试题一、单选题1.5-的倒数是【 】A .15 B .15- C .5 D .5-2.下列图形是中心对称图形的是( )A .B .C .D . 3.如图,直线m n ∥,Rt ABC △的顶点A 在直线n 上,90C ∠=︒,AB ,CB 分别交直线m 于点D 和点E ,且DB DE =,若25B ∠=︒,则1∠的度数为( )A .60︒B .65︒C .70︒D .75︒4的值应在( )A .2和3之间B .3和4之间C .4和5之间D .5和6之间 5.下列命题中,不正确的是( )A .顺次连接菱形各边中点所得的四边形是矩形.B .有一个角是直角的菱形是正方形.C .对角线相等且垂直的四边形是正方形.D .有一个角是60°的等腰三角形是等边三角形.6.如图,在平行四边形ABCD 中,∠ABC 的平分线交AD 于点E ,过点A 作AF ⊥BE ,垂足为点F ,若AF =5,BE =24,则CD 的长为( )A .8B .13C .16D .187.把三角形按如图所示的规律拼图案,其中第①个图案中有4个三角形,第②个图案中有6个三角形,第③个图案中有8个三角形,…,按此规律排列下去,则第⑧个图案中三角形的个数为( )A .14B .16C .18D .208.如图1,四边形ABCD 中,AB CD ∥,90D ??,CA CB =,动点E 从点D 出发,沿折线D C B A ---方向以1单位/秒的速度匀速运动,在整个运动过程中,ADE V 的面积S 与运动时间t (秒)的函数图象如图2所示,则四边形ABCD 的面积是( )A .15B .16C .17D .189.如图,四边形ABCD 为正方形,E 为CD 上一点,BF AE ⊥于点F ,连接DF ,设ABF α∠=,若2BF AF =,则ADF ∠可表示为( )A .2aB .152a +︒C .45α︒-D .60α︒-10.在多项式a b c d e ++++中添加1个绝对值符号,使得绝对值符号内含有(25)k k ≤≤项,并把绝对值符号内最右边项的“+”改为“-”,称此为“绝对操作”.最后将绝对值符号打开并化简,得到的结果记为M .例如:将原多项式添加绝对值符号后,可得a b c d e ++++,此时2k =.再将“+b ”改为“b -”,可得a b c d e -+++.于是同一种“绝对操作”得到的M 有2种可能的情况:M a b c d e =-+++或M a b c d e =-++++.下列说法正确的个数为①若5k =,0M =,则e a b c d =+++;②共有2种“绝对操作”,可能得到M a b c d e =+-++;③共有3种“绝对操作”,使得可能得到的M 中有且只有2个“-”( )A .0B .1C .2D .3二、填空题11.()()2022π--+-=.12.若一个多边形的内角和是900º,则这个多边形是边形.13.分解因式:()()2141a b b ---=.14.将点P (3,4)绕原点逆时针旋转90°,得到的点P 的对应点的坐标为.15.某药品原价每盒25元,经过连续两次降价,现在售价每盒16元,则该药品平均每次降价的百分率是多少?设该药品平均每次降价的百分率为x ,则可列方程为.16.若关于x 的方程2222x ax x x ++=---有正整数解,且关于y 的不等式组2423210y a y -⎧<⎪⎨⎪--≤⎩至少有两个整数解,则符合条件的所有整数a 的和为.17.如图,正方形ABCD 中,E 为DC 边上一点,连接AE BD 、,点M 为AE 中点,点O 为BD 中点,连接BM ,点K 为BM 中点,连接KO,若AB =DE OK =.18.一个两位正整数m ,若m 满足各数位上的数字均不为0,称m 为“相异数”,将m 的两个数位上的数字对调得到一个新数n ,把m 放在n 的左边组成第一个四位数A ,把m 放在n的右边组成第二个四位数B ,记()99A B F m -=,计算(36)F =;若s ,t 都是“相异数”,s 个位上的数字等于t 十位上的数字,且F (s )被11除余7,()()63F s F t +=,则满足条件的所有s 的平均数为.三、解答题19.计算:(1)()()242x x y x y --- (2)225441a a a a a a --⎛⎫-÷ ⎪++⎝⎭ 20.如图,在四边形ABCD 中,直线EF 分别与AD BC ,交于点E ,F ,与AC 交于点O ,AB CD ∥,B D ∠=∠,EM 平分DEF ∠.(1)尺规作图:作BFE ∠的角平分线FN 交AB 于点N ;(只保留作图痕迹)(2)在(1)所作的图形中,求证:EM FN ∥.证明:∵AB CD ∥,∴,在ABC V 和CDA V中, B D BAC DCA AC CA ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴()AAS ABC CDA V V≌, ∴,∴AD BC ∥,∴DEF BFE ∠=∠,∵EM 平分DEF ∠,FN 平分BFE ∠,∴12MEF DEF ∠=∠,12NFE BFE ∠=∠, ∴,∴EM FN ∥.小西进一步研究发现,两条平行线被第三条直线所截,所得的一组内错角的角平分线均有此特征,请依照题意完成下面命题:两条平行线被第三条直线所截,.21.某中学以“守法规知礼让,安全文明出行”为主题,组织全校交通安全知识竞赛.现从七、八年级中各随机抽取20名同学的竞赛成绩(百分制)进行整理和分析(成绩均为整数,成绩得分用x 表示),共分成五个等级:A 、060x ≤≤,B 、6070x <≤,C 、7080x <≤,D 、8090x <≤,E 、90100x <≤(其中成绩大于90为优秀),下面给出了部分信息、七年级抽取的20名学生的成绩在D 等级中的数据是:81,85,85,85,85,89. 八年级抽取的20名学生的成绩在D 等级中的数据是:82,84,85,85,87,89,89.根据以上信息,解答下列问题:(1)请补全条形统计图,并直接写出a 、b 的值;(2)根据以上数据分析,你认为哪个年级的竞赛成绩更好,并说明理由(写出一条理由即可);(3)已知该校七、八年级各有800名学生参与了知识竞赛,请估计两个年级竞赛成绩优秀的学生人数一共有多少?22.酸辣粉是重庆的特色美食,沙坪坝好吃街某店推出两款酸辣粉,一款是“杂酱酸辣粉”,另一款是“爆肚酸辣粉”.已知1份“杂酱酸辣粉”和2份“爆肚酸辣粉”需60元;3份“杂酱酸辣粉”和1份“爆肚酸辣粉”需70元.(1)求每份“杂酱酸辣粉”和“爆肚酸辣粉”的价格分别为多少元?(2)辣椒是酸辣粉的灵魂调料之一,受气候影响6月份辣椒的价格在5月份的基础上会上调25%,该小吃店每月均用2400元购买辣椒,这样6月份购买辣椒的数量比5月份购买辣椒的数量少3千克,求6月份每千克辣椒的价格为多少元?23.如图,在菱形ABCD 中,对角线AC BD ,交于点O ,64AC BD ==,,动点P 从点A 出发,沿着折线A →O →B 运动,速度为每秒1个单位长度,到达B 点停止运动,设点P 的运动时间为t 秒,PAD △的面积为y .(1)直接写出y 关于t 的函数表达式,并注明自变量t 的取值范围;(2)在直角坐标系中画出y 与t 的函数图象,并写出它的一条性质;(3)根据图象直接写出当4y ≤时t 的取值范围.24.旅游旺季,某沙漠景区吸引了大量游客,为了更好的参观,特绘制了沙漠线路的平面示意图.景点B 在入口A 的正西方向,景点C 在景点B 的正北方向,景点D 在入口A 的北偏西30︒方向1000米处,景点D 在景点C 的东南方向1800米处. 1.41≈,1.73)(1)求AB 的长度;(结果精确到个位)(2)小明和小华从入口A 处进入,约定一起到景点C 处看日落.小明选择步行①A D C --,步行速度为90米/分钟,在景点D 处停留5分钟观赏沙漠中的泉水景观,然后按原速继续向景点C 前进.小华选择骑骆驼②A B C --,在景点B 处不停留,骆驼队伍速度为110米/分钟,若两人同时从入口A 出发,请计算说明小明和小华谁先到达景点C ?(结果精确到0.1) 25.如图1,在平面直角坐标系中,直线1l ∶5y x =-+与y 轴交于点A ,直线2l ∶y kx b=+与x 轴、y 轴分别交于点()40B -,和点C ,直线l 1与直线l 2交于点()2D d ,.(1)求直线2l 的解析式;(2)若点E 为线段BC 上一个动点,过点E 作EF x ⊥轴于点F ,交1l 直线于点G ,当253EG BF +=时,求EGD V 的面积; (3)如图2,将2l 向下平移3个单位长度得到直线3l ,直线3l 与直线1l 交于点H ,点D 关于y 轴的对称点为点G ,点M 为直线1l 上一个动点,点N 为直线2l 上一个动点.若以点G ,H ,M ,N 为顶点的四边形是平行四边形,直接写出所有满足条件的点M 的坐标并写出求其中一个点M 坐标的过程.26.已知:如图,在矩形ABCD 中,点E 在边BC 上,以DE 为边作矩形DEGF ,其中GF 经过点A,连接AE、BG.∠的平分线;(1)若点A是GF的中点,求证:ED是AEC(2)若BG AG=,1AF=,求AD的长;CE=,2=,求出AG的长.(3)若四边形ABCD是边长为10的正方形,BG BE。

九年级上册数学测试题及答案

九年级上册数学测试题及答案

、选择题(在下列各题的四个备选答案中,只有一个是符合题意的,请将正确答案前的 字母写在答题纸上;本题共 32分,每小题4分)1.已知O O 的直径为3cm ,点P 到圆心0的距离0P = 2cm ,则点P7 .下列命题中,正确的是二、填空题(本题共 16分,每小题4分) 9.已知两个相似三角形面积的比是 2 : 1,则它们周长的比 —_ .k 十 110.在反比例函数y = 中,当x > 0时,y 随x 的增大而增大,则k的取值范围是x11. 水平相当的甲乙两人进行羽毛球比赛,规定三局两胜,则甲队战胜乙队的概率是A.在O O 外 2.已知△ ABC 中,/C=90° B.在O O 上,AC=6, C.在O O 内BC=8,贝U cosB 的值是D.不能确定A . 0.6B . 3 .如图,△ ABC 中, 的是占八 4 D.-3N 分别在两边 AB 、AC 上,MN // BC,则下列比例式中,不正确0.75C. 0.84. 5.6. A .AM_BMC.下列图形中,既是中心对称图形又是轴对称图形的是BC ACMN AMA .C.10 cm ,则O O 1和O 。

2的位置关系是离某二次函数y=ax 2+bx+c 的图象如图所示, D.相交则下列结论正确的是A. a>0, b>0, c>0B. a>0, b>0, c<0C. a>0, b<0, c>0D. a>0, b<0, c<0A .平面上三个点确定一个圆 B.等弧所对的圆周角相等C.平分弦的直径垂直于这条弦D.与某圆一条半径垂直的直线是该圆的切线 8.把抛物线y =— x 2 + 4x — 3先向左平移 线解析式是A. y =— (x + 3)2 — 2 3个单位,再向下平移 B . y =— (x + 1)2— 12个单位, 则变换后的抛物X4C. y =— x 2 + x — 5D .前三个答案都不正确D.N CC ._________ ;甲队以2 : 0战胜乙队的概率是____________ .12. 已知O O 的直径AB 为6cm ,弦CD 与AB 相交,夹角为 30 °交点 M 恰好为AB 的一个三等分点,贝U CD 的长为 _________ cm . 三、解答题(本题共 30分,每小题5分) 13. 计算:COS 245 °- 2tan45 ° tan30 ° . 3 sin60 .14. 已知正方形 MNPQ 内接于△ ABC (如图所示),若△ ABC 的面积为该正方形的边长. 15. 某商场准备改善原有自动楼梯的安全性能,把倾斜角由原来的30。

人教版初三数学上册第21章《一元二次方程》单元测试题含答案解析

人教版初三数学上册第21章《一元二次方程》单元测试题含答案解析

7.输入一组数据,按下列程序进行计算,输出结果如表:
6
人教版初三数学上册第 21 章《一元二次方程》单元测试题含答案解析
x 输出
20.5 -13.75
20.6 -8.04
20.7 -2.31
20.8 3.44
20.9 9.21
分析表格中的数据,估计方程(x+8)2-826=0 的一个正数解 x 的大致范围为(C) A.20.5<x<20.6 B.20.6<x<20.7 C.20.7<x<20.8 D.20.8<x<20.9
17.(本题 8 分)小明用下面的方法求出方程 2 x-3=0 的解,请你仿照他的方法求出下面另 外两个方程的解,并把你的解答过程写在下面的表格中. 方程 换元法得新方程 令 x=t 则 2t-3=0 解新方程 3 2 检验 3 t= >0 2 求原方程的解 3 x= , 2 9 所以 x= . 4
(2)如果该养殖户第 3 年的养殖成本为 7.146 万元,求可变成本平均每年增长的百分率 x.
21.(本题 8 分)一张长为 30 cm,宽 20 cm 的矩形纸片,如图 1 所示,将这张纸片的四个角 各剪去一个边长相同的正方形后,把剩余部分折成一个无盖的长方体纸盒,如图 2 所示,如 果折成的长方体纸盒的底面积为 264 cm2,求剪掉的正方形纸片的边长.
人教版初三数学上册第 21 章《一元二次方程》单元测试题含答案解析
初三数学上册第 21 章《一元二次方程》单元测试题
(满分:120 分 考试时间:120 分钟)
一、选择题(本大题共 10 个小题,每小题 3 分,共 30 分.) 1.下列方程是关于 x 的一元二次方程的是( A.ax2+bx+c=0 1 1 B. 2+ =2 x x ) C.x2+2x=y2-1 ) D.3(x+1)2=2(x+1)

湘教版九年级上册数学第1章 反比例函数 单元测试题(有答案)

湘教版九年级上册数学第1章 反比例函数  单元测试题(有答案)

第1章反比例函数一、选择题1.以下函数中,y与x成反比例的是〔〕A. y=B. y=C. y=3x2D. y=+12.关于反比例函数,以下说法不正确的选项是〔〕A. 点(-2,-1)在它的图象上B. 它的图象在第一、三象限C. 当x>0时,y随x的增大而减小D. 当x<0时,y随x的增大而增大3.假设点A(﹣2,3)在反比例函数的图像上,那么k的值是〔〕。

A.﹣6B.﹣2C.2D.64.假设反比例函数y= 的图象经过〔﹣2,5〕,那么该反比例函数的图象在〔〕A. 第一、二象限B. 第一、三象限C. 第二、三象限D. 第二、四象限5.函数图象如图,以下结论,其中正确有〔〕个:①m<0;②在每个分支上y随x的增大而增大;③假设A〔﹣1,a〕,点B〔2,b〕在图象上,那么a<b④假设P〔x,y〕在图象上,那么点P1〔﹣x,﹣y〕也在图象上.A. 4个B. 3个C. 2个D. 1个6.在同一直角坐标系中,函数与y=ax+1〔a≠0〕的图象可能是〔〕A. B. C. D.7. A〔x1,y1〕、B〔x2,y2〕、C〔x3,y3〕是反比例函数y= 上的三点,假设x1<x2<x3,y2<y1<y3,那么以下关系式不正确的选项是〔〕A. x1•x2<0B. x1•x3<0C. x2•x3<0D. x1+x2<08.如图,在直角坐标系中,点是轴正半轴上的一个定点,点是双曲线〔〕上的一个动点,当点的横坐标逐渐增大时,的面积将会〔〕A. 逐渐增大B. 不变C. 逐渐减小D. 先增大后减小9.,如上右图,动点P在函数y=〔x>0〕的图象上运动,PM⊥x轴于点M,PN⊥y轴于点N,线段PM、PN分别与直线AB:y=﹣x+1相交于点E,F,那么AF•BE的值是〔〕A. 4B. 2C. 1D.10.如图,在x轴正半轴上依次截取OA1=A1A2=A2A3=…=A n﹣1A n〔n为正整数〕,过点A1、A2、A3、…、A n分别作x轴的垂线,与反比例函数y=〔x>0〕交于点P1、P2、P3、…、P n,连接P1P2、P2P3、…、P n﹣1P n,过点P2、P3、…、P n分别向P1A1、P2A2、…、P n﹣1A n﹣1作垂线段,构成的一系列直角三角形〔见图中阴影局部〕的面积和是〔〕A. B. C. D.二、填空题11.某工厂有煤1500吨,那么这些煤能用的天数y与每天用煤的吨数x之间的函数关系式为________ .12.假如函数y=kx k﹣2是反比例函数,那么k=________ ,此函数的解析式是________ .13.在以下四个函数①y=2x;②y=﹣3x﹣1;③y= ;④y=x2+1〔x<0〕中,y随x的增大而减小的有________〔填序号〕.14.函数y=- 的图象的两个分支分布在________象限.15.假设函数y=4x与y=的图象有一个交点是〔,2〕,那么另一个交点坐标是________ .16.反比例函数的图象经过点〔m,6〕和〔﹣2,3〕,那么m的值为________.17.点A〔﹣2,y1〕,B〔﹣1,y2〕和C〔3,y3〕都在反比例函数y= 的图象上,那么y1,y2,y3的大小关系为________.〔用“<〞连接〕18.如图,双曲线(k<0〕经过直角三角形OAB斜边OA的中点D,且与直角边AB相交于点C.假设点A的坐标为〔﹣6,4〕,那么△AOC的面积为________.19.反比例反数y=〔x>0〕的图象如下图,点B在图象上,连接OB并延长到点A,使AB=OB,过点A作AC∥y轴交y=〔x>0〕的图象于点C,连接BC、OC,S△BOC=3,那么k=________ .三、解答题20.函数y=〔m2+2m〕〔1〕假如y是x的正比例函数,求m的值;〔2〕假如y是x的反比例函数,求出m的值,并写出此时y与x的函数关系式.21.近年来,我国煤矿平安事故频频发生,其中危害最大的是瓦斯,其主要成分是CO.在一次矿难事件的调查中现:从零时起,井内空气中CO的浓度到达4mg/L,此后浓度呈直线型增加,在第7小时到达最高值46mg/L,发生爆炸;爆炸后,空气中的CO浓度成反比例下降.如以下图,根据题中相关信息答复以下问题:〔1〕求爆炸前后空气中CO浓度y与时间x的函数关系式,并写出相应的自变量取值范围;〔2〕当空气中的CO浓度到达34mg/L时,井下3km的矿工接到自动报警信号,这时他们至少要以多少km/h 的速度撤离才能在爆炸前逃生?〔3〕矿工只有在空气中的CO浓度降到4mg/L及以下时,才能回到矿井开展消费自救,求矿工至少在爆炸后多少小时才能下井.22.,如图,反比例函数y= 的图象与一次函数y=x+b的图象交于点A〔1,4〕,点B〔m,-1〕,〔1〕求一次函数和反比例函数的解析式;〔2〕求△OAB的面积;〔3〕直接写出不等式x+b>的解.23.M为双曲线y= 上的一点,过点M作x轴、y轴的垂线,分别交直线y=﹣x+m于点D,C两点,假设直线y=﹣x+m与y轴交于点A,与x轴相交于点B.〔1〕求AD•BC的值.〔2〕假设直线y=﹣x+m平移后与双曲线y= 交于P、Q两点,且PQ=3 ,求平移后m的值.〔3〕假设点M在第一象限的双曲线上运动,试说明△MPQ的面积是否存在最大值?假如存在,求出最大面积和M的坐标;假如不存在,试说明理由.参考答案一、选择题B D A D B B AC C A二、填空题11.y=12.1;y=13.②④14.二、四15.〔﹣,﹣2〕16.﹣1 17.y2<y1<y318.9 19.4三、解答题20.解:〔1〕由y=〔m2+2m〕是正比例函数,得m2﹣m﹣1=1且m2+2m≠0,解得m=2或m=﹣1;〔2〕由y=〔m2+2m〕是反比例函数,得m2﹣m﹣1=﹣1且m2+2m≠0,解得m=1.故y与x的函数关系式y=3x﹣1.21.解:〔1〕因为爆炸前浓度呈直线型增加,所以可设y与x的函数关系式为y=k1x+b〔k1≠0〕,由图象知y=k1x+b过点〔0,4〕与〔7,46〕,那么,解得,那么y=6x+4,此时自变量x的取值范围是0≤x≤7.〔不取x=0不扣分,x=7可放在第二段函数中〕∵爆炸后浓度成反比例下降,∴可设y与x的函数关系式为y=〔k2≠0〕.由图象知y=过点〔7,46〕,∴=46,∴k2=322,∴y=,此时自变量x的取值范围是x>7.〔2〕当y=34时,由y=6x+4得,6x+4=34,x=5.∴撤离的最长时间为7﹣5=2〔小时〕.∴撤离的最小速度为3÷2=1.5〔km/h〕.〔3〕当y=4时,由y=得,x=80.5,80.5﹣7=73.5〔小时〕.∴矿工至少在爆炸后73.5小时才能下井.22.〔1〕解:把A点坐标〔1,4〕分别代入y= ,y=x+b,得:k=1×4,1+b=4,解得:k=4,b=3,∴反比例函数、一次函数的解析式分别为y= ,y=x+3〔2〕解:当y=﹣1时,x=﹣4,∴B〔﹣4,﹣1〕.又∵当y=0时,x+3=0,x=﹣3,∴C〔﹣3,0〕,∴S△AOB=S△AOC+S△BOC= ×4+ ×3×1=〔3〕解:不等式x+b>的解是x>1或﹣4<x<023.〔1〕解:过C作CE⊥x轴于E,过D作DF⊥y轴于F,如图1,当x=0时,y=m,∴A〔0,m〕;当y=0时,x=m,∴B〔m,0〕.∴△ABO为等腰直角三角形∴∠OAB=∠OBA=45°∴△ADF和△BCE也是等腰直角三角形设M〔a,b〕,那么ab= ,CE=b,DF=a∴AD= DF= a,BC= CE= b∴AD•BC= a• b=2ab=2〔2〕解:将y=﹣x+m代入双曲线y= 中,整理得:x2﹣mx+ =0,设x1、x2是方程x2﹣mx+ =0的两个根〔x1<x2〕,∴x1+x2=m,x1•x2= .∵PQ=3 ,直线的解析式为y=﹣x+m,∴x2﹣x1=3= = ,解得:m=±〔3〕解:由上述结论知x1=y2,x2=y1,且AO=BO=y1+y2=x1+x2=m ①,∵x1x2= ②,∴P,Q两点的坐标可表示为P〔x1,x2〕,Q〔x2,x1〕,∴PQ= 〔x2﹣x1〕,∵〔x2﹣x1〕2=〔x1+x2〕2﹣4x1x2=m2﹣4 ,∴PQ= ,∵S△MPQ= PQ•h,∵PQ为定值,∴PQ边上的高有最大值时,即存在面积的最大值,当m无限向x轴右侧运动时,〔或向y轴的上方运动时〕h的值无限增大,∴不存在最大的h,即△MPQ的面积不存在最大值.。

九年级数学上全册练习题(有答案)

九年级数学上全册练习题(有答案)

第二十一章 二次根式测试1 二次根式学习要求掌握二次根式的概念和意义,会根据算术平方根的意义进行二次根式的运算.课堂学习检验一、填空题1.a +1表示二次根式的条件是______. 2.当x ______时,12--x 有意义,当x ______时,31+x 有意义. 3.若无意义2+x ,则x 的取值范围是______. 4.直接写出下列各式的结果: (1)49=_______;(2)2)7(_______; (3)2)7(-_______;(4)2)7(--_______; (5)2)7.0(_______;(6)22])7([- _______. 二、选择题5.下列计算正确的有( ).①2)2(2=- ②22=- ③2)2(2=- ④2)2(2-=-A .①、②B .③、④C .①、③D .②、④6.下列各式中一定是二次根式的是( ). A .23-B .2)3.0(-C .2-D .x7.当x =2时,下列各式中,没有意义的是( ). A .2-xB .x -2C .22-xD .22x -8.已知,21)12(2a a -=-那么a 的取值范围是( ).A .21>aB .21<a C .21≥a D .21≤a 三、解答题9.当x 为何值时,下列式子有意义? (1);1x -(2);2x -(3);12+x (4)⋅+-xx2110.计算下列各式:(1);)23(2 (2);)1(22+a(3);)43(22-⨯-(4).)323(2-综合、运用、诊断一、填空题11.x 2-表示二次根式的条件是______. 12.使12-x x有意义的x 的取值范围是______. 13.已知411+=-+-y x x ,则x y 的平方根为______. 14.当x =-2时,2244121x x x x ++-+-=________. 二、选择题15.下列各式中,x 的取值范围是x >2的是( ).A .2-xB .21-xC .x -21D .121-x16.若022|5|=++-y x ,则x -y 的值是( ). A .-7B .-5C .3D .7三、解答题17.计算下列各式:(1);)π14.3(2- (2);)3(22--(3);])32[(21-(4).)5.03(2218.当a =2,b =-1,c =-1时,求代数式aacb b 242-±-的值.拓广、探究、思考19.已知数a ,b ,c 在数轴上的位置如图所示:化简:||)(||22b b c c a a ---++-的结果是:______________________.20.已知△ABC 的三边长a ,b ,c 均为整数,且a 和b 满足.09622=+-+-b b a 试求△ABC 的c 边的长.测试2 二次根式的乘除(一)学习要求会进行二次根式的乘法运算,能对二次根式进行化简.课堂学习检测一、填空题1.如果y x xy ⋅=24成立,x ,y 必须满足条件______.2.计算:(1)=⨯12172_________;(2)=--)84)(213(__________; (3)=⨯-03.027.02___________.3.化简:(1)=⨯3649______;(2)=⨯25.081.0 ______;(3)=-45______. 二、选择题4.下列计算正确的是( ). A .532=⋅ B .632=⋅C .48=D .3)3(2-=-5.如果)3(3-=-⋅x x x x ,那么( ).A .x ≥0B .x ≥3C .0≤x ≤3D .x 为任意实数6.当x =-3时,2x 的值是( ). A .±3 B .3 C .-3 D .9三、解答题7.计算:(1);26⨯(2));33(35-⨯- (3);8223⨯(4);1252735⨯ (5);131aab ⋅(6);5252ac c b b a ⋅⋅(7);49)7(2⨯- (8);51322-(9).7272y x8.已知三角形一边长为cm 2,这条边上的高为cm 12,求该三角形的面积.综合、运用、诊断一、填空题9.定义运算“@”的运算法则为:,4@+=xy y x 则(2@6)@6=______.10.已知矩形的长为cm 52,宽为cm 10,则面积为______cm 2.11.比较大小:(1)23_____32;(2)25______34;(3)-22_______-6. 二、选择题12.若b a b a -=2成立,则a ,b 满足的条件是( ).A .a <0且b >0B .a ≤0且b ≥0C .a <0且b ≥0D .a ,b 异号13.把4324根号外的因式移进根号内,结果等于( ). A .11- B .11C .44-D .112三、解答题14.计算:(1)=⋅x xy 6335_______;(2)=+222927b a a _______;(3)=⋅⋅21132212_______; (4)=+⋅)123(3_______.15.若(x -y +2)2与2-+y x 互为相反数,求(x +y )x 的值.拓广、探究、思考16.化简:(1)=-+1110)12()12(________;(2)=-⋅+)13()13(_________.测试3 二次根式的乘除(二)学习要求会进行二次根式的除法运算,能把二次根式化成最简二次根式.课堂学习检测一、填空题1.把下列各式化成最简二次根式:(1)=12______;(2)=x 18______;(3)=3548y x ______;(4)=xy______;(5)=32______;(6)=214______;(7)=+243x x ______;(8)=+3121______. 2.在横线上填出一个最简单的因式,使得它与所给二次根式相乘的结果为有理式,如:23 与.2(1)32与______; (2)32与______;(3)a 3与______; (4)23a 与______; (5)33a 与______. 二、选择题 3.xxx x -=-11成立的条件是( ). A .x <1且x ≠0 B .x >0且x ≠1C .0<x ≤1D .0<x <14.下列计算不正确的是( ). A .471613= B .xy x x y 63132= C .201)51()41(22=-D .x x x3294= 5.把321化成最简二次根式为( ). A .3232 B .32321C .281 D .241 三、计算题 6.(1);2516 (2);972(3);324 (4);1252755÷-(5);1525 (6);3366÷(7);211311÷(8).125.02121÷综合、运用、诊断一、填空题7.化简二次根式:(1)=⨯62________(2)=81_________(3)=-314_________8.计算下列各式,使得结果的分母中不含有二次根式: (1)=51_______(2)=x 2_________(3)=322__________(4)=y x5__________ 9.已知,732.13≈则≈31______;≈27_________.(结果精确到0.001) 二、选择题 10.已知13+=a ,132-=b ,则a 与b 的关系为( ). A .a =b B .ab =1C .a =-bD .ab =-111.下列各式中,最简二次根式是( ).A .yx -1B .ba C .42+x D .b a 25三、解答题12.计算:(1);3b a ab ab ⨯÷ (2);3212y xy ÷(3)⋅++ba b a13.当24,24+=-=y x 时,求222y xy x +-和xy 2+x 2y 的值.拓广、探究、思考14.观察规律:,32321,23231,12121-=+-=+-=+……并求值.(1)=+2271_______;(2)=+10111_______;(3)=++11n n _______.15.试探究22)(a 、a 与a 之间的关系.测试4 二次根式的加减(一)学习要求掌握可以合并的二次根式的特征,会进行二次根式的加、减运算.课堂学习检测一、填空题1.下列二次根式15,12,18,82,454,125,27,32化简后,与2的被开方数相同的有______,与3的被开方数相同的有______,与5的被开方数相同的有______.2.计算:(1)=+31312________; (2)=-x x 43__________.二、选择题3.化简后,与2的被开方数相同的二次根式是( ). A .10B .12C .21 D .61 4.下列说法正确的是( ).A .被开方数相同的二次根式可以合并B .8与80可以合并C .只有根指数为2的根式才能合并D .2与50不能合并5.下列计算,正确的是( ). A .3232=+B .5225=-C .a a a 26225=+D .xy x y 32=+ 三、计算题6..48512739-+7..61224-+8.⋅++3218121 9.⋅---)5.04313()81412(10..1878523x x x +- 11.⋅-+xx x x 1246932综合、运用、诊断一、填空题12.已知二次根式b a b +4与b a +3是同类二次根式,(a +b )a 的值是______.13.3832ab 与b a b 26无法合并,这种说法是______的.(填“正确”或“错误”) 二、选择题14.在下列二次根式中,与a 是同类二次根式的是( ).A .a 2B .23aC .3aD .4a三、计算题 15..)15(2822180-+-- 16.).272(43)32(21--+17.⋅+-+bb a b a a124118..21233ab bb a aba bab a-+-四、解答题19.化简求值:y y xy xx 3241+-+,其中4=x ,91=y .20.当321-=x 时,求代数式x 2-4x +2的值.拓广、探究、思考21.探究下面的问题:(1)判断下列各式是否成立?你认为成立的,在括号内画“√”,否则画“×”.①322322=+( ) ②833833=+( ) ③15441544=+( ) ④24552455=+( )(2)你判断完以上各题后,发现了什么规律?请用含有n 的式子将规律表示出来,并写出n 的取值范围.(3)请你用所学的数学知识说明你在(2)题中所写式子的正确性.测试5 二次根式的加减(二)学习要求会进行二次根式的混合运算,能够运用乘法公式简化运算.课堂学习检测一、填空题1.当a =______时,最简二次根式12-a 与73--a 可以合并. 2.若27+=a ,27-=b ,那么a +b =______,ab =______.3.合并二次根式:(1)=-+)18(50________;(2)=+-ax xax45________. 二、选择题4.下列各组二次根式化成最简二次根式后的被开方数完全相同的是( ). A .ab 与2abB mn 与nm 11+ C .22n m +与22n m - D .2398b a 与4329b a5.下列计算正确的是( ). A .b a b a b a -=-+2))(2( B .1239)33(2=+=+C .32)23(6+=+÷D .641426412)232(2-=+-=- 6.)32)(23(+-等于( ). A .7 B .223366-+- C .1D .22336-+三、计算题(能简算的要简算) 7.⋅-121).2218( 8.).4818)(122(+-9.).32841)(236215(-- 10.).3218)(8321(-+11..6)1242764810(÷+- 12..)18212(2-综合、运用、诊断一、填空题13.(1)规定运算:(a *b )=|a -b |,其中a ,b 为实数,则=+7)3*7(_______.(2)设5=a ,且b 是a 的小数部分,则=-ba a ________.二、选择题14.b a -与a b -的关系是( ). A .互为倒数 B .互为相反数 C .相等D .乘积是有理式15.下列计算正确的是( ).A .b a b a +=+2)(B .ab b a =+C .b a b a +=+22D .a aa =⋅1三、解答题 16.⋅+⋅-221221 17.⋅--+⨯2818)212(218..)21()21(20092008-+ 19..)()(22b a b a --+四、解答题20.已知,23,23-=+=y x 求(1)x 2-xy +y 2;(2)x 3y +xy 3的值.21.已知25-=x ,求4)25()549(2++-+x x 的值.拓广、探究、思考22.两个含有二次根式的代数式相乘,如果它们的积不含有二次根式,我们说这两个代数式互为有理化因式.如:a 与a ,63+与63-互为有理化因式. 试写下列各式的有理化因式: (1)25与______;(2)y x 2-与______;(3)mn 与______; (4)32+与______; (5)223+与______;(6)3223-与______.23.已知,732.13,414.12≈≈求)23(6-÷.(精确到0.01)第二十二章 一元二次方程测试1 一元二次方程的有关概念及直接开平方法学习要求1.掌握一元二次方程的有关概念,并应用概念解决相关问题. 2.掌握一元二次方程的基本解法——直接开平方法.课堂学习检测一、填空题1.一元二次方程中,只含有______个未知数,并且未知数的______次数是2.它的一般形式为__________________.2.把2x 2-1=6x 化成一般形式为__________,二次项系数为______,一次项系数为______,常数项为______.3.若(k +4)x 2-3x -2=0是关于x 的一元二次方程,则k 的取值范围是______.4.把(x +3)(2x +5)-x (3x -1)=15化成一般形式为______,a =______,b =______,c =______. 5.若x x m -m+-222)(-3=0是关于x 的一元二次方程,则m 的值是______.6.方程y 2-12=0的根是______. 二、选择题7.下列方程中,一元二次方程的个数为( ). (1)2x 2-3=0 (2)x 2+y 2=5 (3)542=-x (4)2122=+x x A .1个B .2个C .3个D .4个 8.在方程:3x 2-5x =0,,5312+=+x x 7x 2-6xy +y 2=0,322,052222--=+++xx x x ax =0,3x 2-3x =3x 2-1中必是一元二次方程的有( ). A .2个 B .3个 C .4个 D .5个 9.x 2-16=0的根是( ). A .只有4 B .只有-4 C .±4 D .±8 10.3x 2+27=0的根是( ).A .x 1=3,x 2=-3B .x =3C .无实数根D .以上均不正确 三、解答题(用直接开平方法解一元二次方程) 11.2y 2=8. 12.2(x +3)2-4=0.13..25)1(412=+x14.(2x +1)2=(x -1)2.综合、运用、诊断一、填空题15.把方程x x x +=-2232化为一元二次方程的一般形式(二次项系数为正)是__________,一次项系数是______.16.把关于x 的一元二次方程(2-n )x 2-n (3-x )+1=0化为一般形式为_______________,二次项系数为______,一次项系数为______,常数项为______. 17.若方程2kx 2+x -k =0有一个根是-1,则k 的值为______. 二、选择题18.下列方程:(x +1)(x -2)=3,x 2+y +4=0,(x -1)2-x (x +1)=x ,,01=+xx ,5)3(21,42122=+=-+x x x 其中是一元二次方程的有( ).A .2个B .3个C .4个D .5个19.形如ax 2+bx +c =0的方程是否是一元二次方程的一般形式,下列说法正确的是( ).A .a 是任意实数B .与b ,c 的值有关C .与a 的值有关D .与a 的符号有关 20.如果21=x 是关于x 的方程2x 2+3ax -2a =0的根,那么关于y 的方程y 2-3=a 的解是( ). A .5±B .±1C .±2D .2±21.关于x 的一元二次方程(x -k )2+k =0,当k >0时的解为( ).A .k k +B .k k -C .k k -±D .无实数解三、解答题(用直接开平方法解下列方程) 22.(3x -2)(3x +2)=8. 23.(5-2x )2=9(x +3)2.24..063)4(22=--x25.(x -m )2=n .(n 为正数)拓广、探究、思考26.若关于x 的方程(k +1)x 2-(k -2)x -5+k =0只有唯一的一个解,则k =______,此方程的解为______.27.如果(m -2)x |m |+mx -1=0是关于x 的一元二次方程,那么m 的值为( ).A .2或-2B .2C .-2D .以上都不正确 28.已知关于x 的一元二次方程(m -1)x 2+2x +m 2-1=0有一个根是0,求m 的值.29.三角形的三边长分别是整数值2cm ,5cm ,k cm ,且k 满足一元二次方程2k 2-9k -5=0,求此三角形的周长.测试2 配方法与公式法解一元二次方程学习要求掌握配方法的概念,并能熟练运用配方法与公式法解一元二次方程.课堂学习检测一、填空题1.+-x x 82_________=(x -__________)2. 2.x x 232-+_________=(x -_________)2. 3.+-px x 2_________=(x -_________)2.4.x ab x -2+_________=(x -_________)2. 5.关于x 的一元二次方程ax 2+bx +c =0(a ≠0)的根是______.6.一元二次方程(2x +1)2-(x -4)(2x -1)=3x 中的二次项系数是______,一次项系数是______,常数项是______. 二、选择题7.用配方法解方程01322=--x x 应该先变形为( ).A .98)31(2=-xB .98)31(2-=-x C .910)31(2=-xD .0)32(2=-x8.用配方法解方程x 2+2x =8的解为( ). A .x 1=4,x 2=-2 B .x 1=-10,x 2=8 C .x 1=10,x 2=-8 D .x 1=-4,x 2=29.用公式法解一元二次方程x x 2412=-,正确的应是( ). A .252±-=xB .252±=x C .251±=x D .231±=x 10.方程mx 2-4x +1=0(m <0)的根是( ).A .41 B .m m-±42 C .mm-±422D .mm m -±42 三、解答题(用配方法解一元二次方程)11.x 2-2x -1=0. 12.y 2-6y +6=0.四、解答题(用公式法解一元二次方程) 13.x 2+4x -3=0.14..03232=--x x五、解方程(自选方法解一元二次方程) 15.x 2+4x =-3.16.5x 2+4x =1.综合、运用、诊断一、填空题17.将方程x x x 32332-=++化为标准形式是______________________,其中a =____ __,b =______,c =______.18.关于x 的方程x 2+mx -8=0的一个根是2,则m =______,另一根是______. 二、选择题19.若关于x 的二次三项式x 2-ax +2a -3是一个完全平方式,则a 的值为( ).A .-2B .-4C .-6D .2或6 20.4x 2+49y 2配成完全平方式应加上( ).A .14xyB .-14xyC .±28xyD .0 21.关于x 的一元二次方程ax a x 32222=+的两根应为( ).A .22a±-B .a 2,a 22C .422a± D .a 2±三、解答题(用配方法解一元二次方程) 22.3x 2-4x =2. 23.x 2+2mx =n .(n +m 2≥0).四、解答题(用公式法解一元二次方程)24.2x -1=-2x 2.25.x x 32132=+26.2(x -1)2-(x +1)(1-x )=(x +2)2.拓广、探究、思考27.解关于x 的方程:x 2+mx +2=mx 2+3x .(其中m ≠1)28.用配方法说明:无论x 取何值,代数式x 2-4x +5的值总大于0,再求出当x 取何值时,代数式x 2-4x +5的值最小?最小值是多少?测试3 一元二次方程根的判别式学习要求掌握一元二次方程根的判别式的有关概念,并能灵活地应用有关概念解决实际问题.课堂学习检测一、填空题1.一元二次方程ax 2+bx +c =0(a ≠0)根的判别式为∆=b 2-4ac , (1)当b 2-4ac ______0时,方程有两个不相等的实数根; (2)当b 2-4ac ______0时,方程有两个相等的实数根; (3)当b 2-4ac ______0时,方程没有实数根.2.若关于x 的方程x 2-2x -m =0有两个相等的实数根,则m =______. 3.若关于x 的方程x 2-2x -k +1=0有两个实数根,则k ______. 4.若方程(x -m )2=m +m 2的根的判别式的值为0,则m =______. 二、选择题5.方程x 2-3x =4根的判别式的值是( ). A .-7 B .25 C .±5 D .56.一元二次方程ax 2+bx +c =0有两个实数根,则根的判别式的值应是( ). A .正数 B .负数 C .非负数 D .零 7.下列方程中有两个相等实数根的是( ). A .7x 2-x -1=0 B .9x 2=4(3x -1) C .x 2+7x +15=0D .02322=--x x8.方程03322=++x x 有( ).A .有两个不等实根B .有两个相等的有理根C .无实根D .有两个相等的无理根 三、解答题9.k 为何值时,方程kx 2-6x +9=0有:(1)不等的两实根;(2)相等的两实根;(3)没有实根.10.若方程(a -1)x 2+2(a +1)x +a +5=0有两个实根,求正整数a 的值.11.求证:不论m 取任何实数,方程02)1(2=++-mx m x 都有两个不相等的实根.综合、运用、诊断一、选择题12.方程ax 2+bx +c =0(a ≠0)根的判别式是( ).A .242ac b b -±-B .ac b 42-C .b 2-4ac D .abc13.若关于x 的方程(x +1)2=1-k 没有实根,则k 的取值范围是( ).A .k <1B .k <-1C .k ≥1D .k >1 14.若关于x 的方程3kx 2+12x +k +1=0有两个相等的实根,则k 的值为( ).A .-4B .3C .-4或3D .21或32- 15.若关于x 的一元二次方程(m -1)x 2+2mx +m +3=0有两个不等的实根,则m 的取值范围是( ).A .23<m B .23<m 且m ≠1 C .23≤m 且m ≠1 D .23>m16.如果关于x 的二次方程a (1+x 2)+2bx =c (1-x 2)有两个相等的实根,那么以正数a ,b ,c为边长的三角形是( ). A .锐角三角形 B .钝角三角形 C .直角三角形 D .任意三角形 二、解答题17.已知方程mx 2+mx +5=m 有相等的两实根,求方程的解.18.求证:不论k 取任何值,方程(k 2+1)x 2-2kx +(k 2+4)=0都没有实根.19.如果关于x 的一元二次方程2x (ax -4)-x 2+6=0没有实数根,求a 的最小整数值.20.已知方程x 2+2x -m +1=0没有实根,求证:方程x 2+mx =1-2m 一定有两个不相等的实根.拓广、探究、思考21.若a ,b ,c ,d 都是实数,且ab =2(c +d ),求证:关于x 的方程x 2+ax +c =0,x 2+bx +d =0中至少有一个方程有实数根.测试4 因式分解法解一元二次方程学习要求掌握一元二次方程的重要解法——因式分解法.课堂学习检测一、填空题(填出下列一元二次方程的根) 1.x (x -3)=0.______ 2.(2x -7)(x +2)=0.______ 3.3x 2=2x .______ 4.x 2+6x +9=0.______ 5..03222=-x x ______ 6..)21()21(2x x -=+______7.(x -1)2-2(x -1)=0.______. 8.(x -1)2-2(x -1)=-1.______ 二、选择题9.方程(x -a )(x +b )=0的两根是( ). A .x 1=a ,x 2=b B .x 1=a ,x 2=-b C .x 1=-a ,x 2=b D .x 1=-a ,x 2=-b 10.下列解方程的过程,正确的是( ).A .x 2=x .两边同除以x ,得x =1.B .x 2+4=0.直接开平方法,可得x =±2.C .(x -2)(x +1)=3×2.∵x -2=3,x +1=2, ∴x 1=5, x 2=1.D .(2-3x )+(3x -2)2=0.整理得3(3x -2)(x -1)=0,.1,3221==∴x x 三、解答题(用因式分解法解下列方程,*题用十字相乘法因式分解解方程) 11.3x (x -2)=2(x -2).12..32x x =*13.x 2-3x -28=0. 14.x 2-bx -2b 2=0.*15.(2x -1)2-2(2x -1)=3. *16.2x 2-x -15=0.四、解答题17.x 取什么值时,代数式x 2+8x -12的值等于2x 2+x 的值.综合、运用、诊断一、写出下列一元二次方程的根18.0222=-x x .______________________. 19.(x -2)2=(2x +5)2.______________________. 二、选择题20.方程x (x -2)=2(2-x )的根为( ).A .-2B .2C .±2D .2,2 21.方程(x -1)2=1-x 的根为( ).A .0B .-1和0C .1D .1和022.方程0)43)(21()43(2=--+-x x x 的较小的根为( ).A .43-B .21C .85D .43 三、用因式分解法解下列关于x 的方程 23..2152x x =-24.4(x +3)2-(x -2)2=0.25..04222=-+-b a ax x26.abx 2-(a 2+b 2)x +ab =0.(ab ≠0)四、解答题27.已知关于x 的一元二次方程mx 2-(m 2+2)x +2m =0.(1)求证:当m 取非零实数时,此方程有两个实数根; (2)若此方程有两个整数根,求m 的值.测试5 一元二次方程解法综合训练学习要求会用适当的方法解一元二次方程,培养分析问题和解决问题的能力.课堂学习检测一、填空题(写出下列一元二次方程的根) 1.3(x -1)2-1=0.__________________2.(2x +1)2-2(2x +1)=3.__________________ 3.3x 2-5x +2=0.__________________ 4.x 2-4x -6=0.__________________ 二、选择题5.方程x 2-4x +4=0的根是( ). A .x =2 B .x 1=x 2=2 C .x =4 D .x 1=x 2=46.5.27.0512=+x 的根是( ).A .x =3B .x =±3C .x =±9D .3±=x7.072=-x x 的根是( ). A .77=x B .77,021==x x C .x 1=0,72=xD .7=x8.(x -1)2=x -1的根是( ). A .x =2 B .x =0或x =1 C .x =1 D .x =1或x =2 三、用适当方法解下列方程 9.6x 2-x -2=0. 10.(x +3)(x -3)=3.11.x 2-2mx +m 2-n 2=0. 12.2a 2x 2-5ax +2=0.(a ≠0)四、解下列方程(先将你选择的最佳解法写在括号中) 13.5x 2=x .(最佳方法:______)14.x 2-2x =224.(最佳方法:______)15.6x 2-2x -3=0.(最佳方法:______)16.6-2x 2=0.(最佳方法:______)17.x 2-15x -16=0.(最佳方法:______)18.4x 2+1=4x .(最佳方法:______)19.(x -1)(x +1)-5x +2=0.(最佳方法:______)综合、运用、诊断一、填空题20.若分式1872+--x x x 的值是0,则x =______. 21.关于x 的方程x 2+2ax +a 2-b 2=0的根是____________.二、选择题22.方程3x 2=0和方程5x 2=6x 的根( ).A .都是x =0B .有一个相同,x =0C .都不相同D .以上都不正确23.关于x 的方程abx 2-(a 2+b 2)x +ab =0(ab ≠0)的根是( ).A .b a x a b x 2,221==B .ba x ab x ==21, C .0,2221=+=x abb a x D .以上都不正确 三、解下列方程24.(x +1)2+(x +2)2=(x +3)2.25.(y -5)(y +3)+(y -2)(y +4)=26.26..02322=+-x x27.kx 2-(k +1)x +1=0.四、解答题28.已知:x 2+3xy -4y 2=0(y ≠0),求yx y x +-的值.29.已知:关于x 的方程2x 2+2(a -c )x +(a -b )2+(b -c )2=0有两相等实数根.求证:a +c =2b .(a ,b ,c 是实数)拓广、探究、思考30.若方程3x 2+bx +c =0的解为x 1=1,x 2=-3,则整式3x 2+bx +c 可分解因式为______________________.31.在实数范围内把x 2-2x -1分解因式为____________________.32.已知一元二次方程ax 2+bx +c =0(a ≠0)中的两根为,24,221aac b b x x -±-=请你计算x 1+x 2=____________,x 1·x 2=____________.并由此结论解决下面的问题:(1)方程2x 2+3x -5=0的两根之和为______,两根之积为______.(2)方程2x 2+mx +n =0的两根之和为4,两根之积为-3,则m =______,n =______.(3)若方程x 2-4x +3k =0的一个根为2,则另一根为______,k 为______.(4)已知x 1,x 2是方程3x 2-2x -2=0的两根,不解方程,用根与系数的关系求下列各式的值: ①;1121x x + ②;2221x x + ③|x 1-x 2|; ④;221221x x x x + ⑤(x 1-2)(x 2-2).测试6 实际问题与一元二次方程学习要求会灵活地应用一元二次方程处理各类实际问题.课堂学习检测一、填空题1.实际问题中常见的基本等量关系。

人教版数学九年级上册第一单元测试卷(附答案)

人教版数学九年级上册第一单元测试卷(附答案)

一元二次方程单元测试题(满分120分)一、选择题(每题3分,共30分) 1、下列方程中,是一元二次方程的是( )A. 0y x 3x 22=-+B.06x 5x 23=--C.4x 4x 2++D.03x2x 2=++2、如果01x 3)x 2(m 2=+++是一元二次方程,则m 的取值范围是 ( ) A. 0m = B.2m -=C.2m -≠D.0m ≠ 3、1x =是下列哪个方程的一个解?( )A.01x 3x 22=-+B.03x 5x 22=--C.05x 4x 2=-+D.03x 2x 2=-- 4、方程x x 2=的解是( )A.0x =B.1x =C.1x ±=D.0x =或者1x =5、用配方法解一元二次方程13x 12x 2=-时,等号左右两边应同时加上( )A.212B.12C.26D.6 6、一元二次方程05x 4x 2=+-的根的情况是( )A.有两个不相等的根B.有一个根C.有两个相等的根D.无实根7、一元二次方程02m x 22=+-x 有两个不相等的实根,则m 的取值范围是 ( )A.4m >B.4m -<C.44<<-mD.4m 4m >-<或者8、已知一个三角形的底比高多2,如果这个三角形的面积是24,则它的底是( )A.8B.6C.4D.29、已知方程08x 6x 2=+-的两个根分别是等腰三角形的底和腰,则它的周长是 ( ) A.8 B.10 C.8或10 D.610、一次排球比赛中每两队之间都要进行一次比赛,一共比赛了45场,则参赛的队伍一共有多少个? ( ) A.8 B.9 C.10 D.11二、填空题(每小题4分,共28分)11、一元二次方程9x 5x 42=-的二次项系数是_____________,常数项是____________。

12、如果2x =是方程08x 2mx 2=+-的一个解,那么=m ______________。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

九年级数学上入学测试题及答案TTA standardization office【TTA 5AB- TTAK 08- TTA 2C】九年级上入学数学试卷本试卷满分为120分,考试时间为120分钟.一、选择题(本大题共12个小题,每小题2分,共24分.在每小题给出的四个选项中,只有一项是符合题目要求) 1.化简2)2(-的结果正确的是( ) A .-2 B .2 C .±2D .42.在实属范围内x 有意义,则x 的取值范围是( ) A .x≥0B .x≤0C .x >0D .x <03.下列运算中,正确的是( )A .562432=+B .248=C .3327=÷D .3)3(2-=-4.若关于x 的一元二次方程0235)1(22=+-++-m m x x m 的常数项是0,则m 的值是( )A .1B .2C .1或2D . 0 5.方程x x 42=的解是( ) A .x=4B .x=2C .x=4或x=0D .x=06、某农场今年1月某种作物的产量为5000吨,3月上升到7200吨,这两个月平均每月增长的百分率是( )A 、10%B 、22%C 、20%D 、20%- 7.如图,四个边长为2的小正方形拼成一个大正方形,A 、 B 、O 是小正方形顶点,⊙O 的半径为2,P 是⊙O 上的点,且位于右上方的小正方形内,则∠APB 等于( )A .30°B .45°C .60°D .90°得 分 评卷人PO第8题O MP C BA8、如图,AB 、AC 是⊙O 的切线,B 、C 为切点,50A ︒∠=,点P 是圆上异于B 、C ,且在BMC 上的动点,则BPC ∠的度数是( ) A 、65︒ B 、115︒ C 、11565︒︒或 D 、13065︒︒或9.某车的刹车距离y (m )与开始刹车时的速度x (m/s )之间满足二次函数2120y x =(x >0),若该车某次的刹车距离为5 m ,则开始刹车时的速度为( ) A .40 m/s B .20 m/s C .10 m/sD .5 m/s10.如图,A 、B 、C 、D 为⊙O 的四等分点,动点P 从圆心O 出发,沿O — C — D — O 路线作匀速运动.设运动时间为t (s ),∠APB=y (°),则下列图象中表示y 与t 之间函数关系最恰当的是( )11.在Rt △ABC 中,∠C=90°,AC=12,BC=5,将△ABC 绕边AC 所在直线旋转一周得到圆锥,则该圆锥的侧面积是( ) A .25π B .65π C .90πD .130π12.如图,ABC △是等腰直角三角形,BC 是斜边,将ABP △绕点A 逆时针旋转后,能与ACP '△重合,如果3AP =,那么PP '的长等于( ) A .33 B .23C .42D .32二、填空题(本大题共6个小题,每小题3分,共18分.把答案写在题中横线上) 13.=⋅-312 。

得 分 评卷人第10题图OP DCB Ayt9045yt9045yt 0904545900t yA B C D (第12题14.比较大小:(填“<”、“=”或“>” )15.同时掷二枚普通的骰子,数字和为l 的概率为 ,数字和为7的概率为 ,数字和为2的概率为 .16.如图,AB 与⊙O 相切于点B ,AO 延长线交⊙O 点C ,连接BC ,若∠A=38°,则∠C= 。

17.在16×6的网格图中(每个小正方形的边长均为1个单位长),⊙A 的半径为1,⊙B 的半径为2,要使⊙A 与静止的⊙B 相切,那么⊙A 由图示位置需向右平移 个单位长. 18.如图,梯形ABCD 中,AD ∥BC ,∠C =900 ,AB =AD =4,BC =6,以A 为圆心在梯形内画出一个最大的扇形(图中阴影部分)的面积是三、解答题(本大题共8个小题,共78分.解答应写出文字说明、证明过程或演算步骤) 19.(本小题满分8分)已知实数m,n(m >n)是方程02322=+-x x 的两个根,求nmm n +的值.20.(本小题满分8分) 如图是一个半圆形桥洞截面示意图,圆心为O ,直径AB 是河底线,弦CD 是水位线,CD∥AB ,且AB = 26m ,OE⊥CD 于点E .水位正常时测得OE ∶CD=5∶24(1)求CD 的长;16题图O20题图(2)现汛期来临,水面要以每小时4 m 的速度上升,则经过多长时间桥洞会刚刚被灌满21.(本小题满分9分) 如图,已知等边ABC △,以边BC 为直径的半圆与边AB,AC 分别交于点D 、E,过点D 作DF ⊥AC 于点F , (1)判断DF 与⊙O 的位置关系,并证明你的结论;(2)过点F 作FH ⊥BC 于点H ,若等边ABC △的边长为8,求AF ,FH 的长。

22.(本小题满分9分) 有一个面积为15018米),墙的对面有一个2场的长和宽各位多少米?24.(本小题满分10分)队与旅行社导游就收费标准的一段对话:领导:组团去辽河源森林公园旅游每人收费是所少? 导游:如果人数不超过25人,人均旅游费用为100元。

领导:超过25人怎样优惠呢?导游:如果超过25人,每增加1人,人均旅游费用降低2元,但人均旅游费用不得低于70元。

该单位按旅行社的收费标准组团游览辽河源森林公园结束后,共支付给旅行社2700元。

请你根据上述信息,求该单位这次到辽河源森林公园观光旅游的共有多少人?25.(本小题满分12分)如图25(a ),两个不全等的等腰直角三角形OAB 和OCD 叠放在一起,并且有公共的直角顶点O .(1)将图25(a )中的OAB △绕点O 顺时针旋转90角,在图14(b )中作出旋转后的OAB △(保留作图痕迹,不写作法,不证明).(2)在图25(a )中,你发现线段AC ,BD 的数量关系是,直线AC ,BD 相交成度角.(3)将图25(a )中的OAB △绕点O 顺时针旋转一个锐角,得到图25(c ),这时(2)中的两个结论是否成立?作出判断并说明理由.若OAB △绕点O 继续旋转13. -6 14. > 15. 0 61 361 16. 26° 17. 1或3或5或7 18. 4π 三、解答题19.解:对于方程02322=+-x x a=1,b=-23,c=2 20.解:(1)∵直径AB = 26mCO图25CAO C O图25图25∴OD=m AB 13262121=⨯= ……………………………………1分 ∵OE ⊥CD ∴CD DE 21=…………………………………………………………..2分 ∵OE ∶CD=5∶24 ∴OE ∶ED=5∶12 ∴设OE=5x,ED=12x ∴在Rt △ODE 中22213)12()5(=+x x …………………………………………………………4分解得x=1∴CD=2DE=2×12×1=24m ………………………………………….………..5分 (2)由(1)的OE=1×5=5m 延长OE 交圆O 于点F ∴EF=OF-OE=13-5=8m ∴)(248小时= 所以经过2小时桥洞会刚刚被灌满………………..…..8分 21.(1)DF 与⊙O 相切 …………………………1分 证明:连接OD∵ABC △是等边三角形∴∠A=∠B=∠C=600 ∵OD=OB∴△ODB 是等边三角形 ……………………………2分 ∴∠DOB=600 ∴∠DOB =∠C=600 ∴OD ∥AC∵DF ⊥AC∴ DO ⊥DF …………………………………………4分 ∴DF 与⊙O 相切………………………………………5分 (2)解:连接CD∵CB 是⊙O 直径 ∴DC ⊥AB 又∵AC=CB=AB ∴D 是AB 中点 ∴AD=482121=⨯=AB 在直角三角形ADF 中 ∠A=600 ∠ADF=300 ∠AFD= 900 ∴242121=⨯==AD AF ………….7分 ∴FC=AC-AF=8-2=6 ∵ FH ⊥BC ∴∠FHC= 900 ∵∠C=600 ∴ ∠FHC=300 ∴362121=⨯==FC HC ∴3322=-=FH FC FH …..9分22.解:设鸡场的宽为x 米,则长为(33-2x+2)米根据题意列方程得:x(33-2x+2)=150………………………5分 整理得:01503522=+-x x 解方程得:5.7,1021==x x则33-2x+2=15或20因为墙长18米,所以20不符合题意舍去………………….8分 答:鸡场的长和宽分别为15米和10米。

………………….9分 23.解:(1)将x =1,y =-1;x =-3,y =-9分别代入c x ax y ++=42得⎪⎩⎪⎨⎧+-⨯+-⨯=-+⨯+⨯=-.)3(4)3(9,141122c a c a 解得 ⎩⎨⎧-==.6,1c a …………………………(3分) ∴二次函数的表达式为642-+=x x y .………………………………(4分)(2)对称轴为2-=x ;顶点坐标为(-2,-10).………………………………(6分) (3)将(m ,-m )代入642-+=x x y ,得 642-+=-m m m , 解得1,621=-=m m .∵m >0,∴61-=m 不合题意,舍去. ∴m =1.…………………………………………………………………(7分)∵点P 与点Q 关于对称轴2=x 对称, ∴点Q 到x 轴的距离为1.………………………………………………(8分)24.解:设该单位这次到辽河源森林公园旅游共有x 人。

因为100×25=2500<2700,所以员工人数一定超过25人。

可得方程【100-2(x-25)】x=2700 整理得01350752=+-x x 解得30,4521==x x当451=x 时,100-2(x-25)=60<70,故舍去1x 当302=x 时,100-2(x-25)=90>70,符合题意。

答:该单位这次到辽河源森林公园旅游共有30人.25. 解:(1)如图3(a )(AB ,字母位置互换扣1分,无弧扣1分,不连结AB 扣1分,扣完为止) ······················· 3分(2)AC BD =;90(90)(每空1分) ············· 5分(3)成立.如图即:COA ∠=∠) CO OD =∵ AC BD =∴ 延长CA 交OD 于E ,交BD 于F (下面的证法较多)COA DOB ∵△≌△,ACO ODB ∠=∠∴ ············ 10分CEO DEF ∠=∠∵ 90COE EFD ∠=∠=∴ AC BD ∴⊥ ·· 11分 旋转更大角时,结论仍然成立. ··············· 12分图3C O图3。

相关文档
最新文档