第二章 化学热力学初步

合集下载

无机及分析化学(南京大学)课件第2章

无机及分析化学(南京大学)课件第2章

12
2.3.6 键能和反应焓变的关系
H2(g) 键能 2H(g)
(298 K,100 kPa)
键焓
一般情况下,键能和键焓可以相互通用!
13
火箭推进剂
拓展知识
偏二甲肼 (CH3)2NNH和N2O4
(CH3)2NNH2(l)+2N2O4(g)
3N2(g)+4H2O(g)+2CO2(g)
特点:反应强烈放热、快速,且生成物是小分子
的右上标 指反应在标准状态下进行。
10
2.3.3 盖斯定律
1840年 俄 盖斯 (Hess G H)
不管化学反应是一步完成,还是分步完成,其热效应总是相同的。
求: 解:反应(1)= 反应(2)+ 反应(3) 所以:
11
2.3.4 生成焓
在标准状态和指定温度(通常为298 K)下,由元素的指定单 质生成1 mol某物质时的热效应称为该物质的标准生成焓。 一般化学反应
的。即 ΔS孤 > 0
孤立系统(isolated system)是指与环境不发生物
质和能量交换的系统。 ΔS系 +ΔS环 > 0 过程自发
ΔS系 +ΔS环 < 0
不可能发生的过程
17
2.4.4 标准摩尔熵 热力学第三定律:在热力学温度0 K时,任何纯物质的
完整晶体的熵值等于零。 在标准态下1 mol物质的熵值称为该物质的标准摩 尔熵(简称标准熵),用符号 表示。
无机及分析化学
(第五版) 南京大学化学化工学院
1
第二章 化学热力学初步
掌握化学反应的标准摩尔焓变的各种计算方法; 掌握化学反应的标准摩尔熵变和 标准摩尔吉布斯自由能变的各种计算方法; 学会用 判断化学反应的方向, 了解温度对 影响; 了解压力和浓度对 的影响;

第二章 化学热力学初步要点

第二章 化学热力学初步要点
如有一系统由状态(1)→(2),相应热力学能由U1 → U2 ,在此过程中系统吸收的热量为Q,环境对系统 所做的功为W。
根据能量守恒与转化定律有:U2 = U1 + Q +W 即: U = Q + W 当系统作体积功时,设系统压力为p,恒定外压下
膨胀做功,体积变化为 V 则 W = - p· V
解:反应 4H2(g) + 2O2(g) = 4H2O(l ) 在等压条件下进行, H= Qp= -1143 kJ
U = H- nRT
= -1143-[0 -(4+2)] ×8.315 × 10-3 × 298
= -1128kJ
说明:“R”应乘以10-3,则量纲为kJ·mol-1·K-1 。
敞开系统:系统和环境间既有能量的交换,又有物
质的交换。
封闭系统:系统和环境间有能量的交换,但无物质
的交换。
孤立系统:系统和环境间既无能量的交换,又无物
质的交换。
二、状态和状态函数
系统的状态由它的一系列物理量来确定,如气体
的状态由n、T、p、V等物理量决定,当这些物理量 确定时,系统的状态确定,所以状态是系统所有宏 观性质的综合。 系统的状态确定,确定系统状态的物理量就有定值, 确定系统状态的物理量称为状态函数。 状态函数最重要的特点,其变化值只与始态和终态 有关,而与变化的具体途径无关。
三、过程与途径
当系统的状态发生变化时,我们把这种变
化称为过程,完成这个过程的具体步骤称为 途径。
如果系统的状态是在恒压条件下发生变化, 就称等压过程。相应地有等容过程、等温过 程等。
2.2 热力学第一定律
2.2.1 热和功 2.2.2 热力学能 2.2.3 热力学第一定律

第二章 化学热力学基础

第二章 化学热力学基础

强度性质:体系的性质在数值上与体 系中物质的量无关,不具加和性。如温度、 压力、浓度、密度等。
11
上一页 下一页 本章目录
2.1.4 过程与途径
过程:体系状态发生变化的经过称为过程。 途径:完成过程的具体步骤称为途径。 298K, H2O(g) 途径1 298K,H2O(l) 始态 373K,H2O(l) 途径2
8
上一页 下一页 本章目录
状态函数:确定体系状态的宏观物理量 称为体系的状态函数。如质量、温度、压 力、体积、密度、组成等是状态函数。 状态函数的特点: 1. 体系的状态一定,状态函数值确定。 2. 状态函数的改变值只由体系的始态和 终态决定,与体系经过的途径无关。 3. 循环过程的状态函数改变值为零。
17
上一页 下一页 本章目录
能量守恒定律:自然界的一切物质都具 有能量,能量有不同的形式,能量可从一个 物体传递给另一个物体,也可从一种形式转 化为另一种形式,在传递和转化过程中,能 量总值不变。适用于宏观体系和微观体系。 电能 → 光能 化学能 → 机械能 机械能 → 电能
18
(电灯) (内燃机) (发电机)
上一页 下一页 本章目录
反应进度ξ表示化学反应进行的程度。 aA t=0 t + dD = gG + hH nD(0) nD (t) nG(0) nG (t) nH(0) nH (t)
nA(0) nA(t)

22
n B (t ) nB (0)
B

nB
B
上一页
下一页
本章目录
例:
t=0 t
31
上一页 下一页 本章目录
(2)注明物质的物态(g、l、s)或浓度, 如果固态物质有几种晶型,应注明晶型(P 有白磷、红磷,C有金刚石、石墨等). (3)反应热的数值与反应方程式的写法 有关。如:

第二章化学热力学基础学习重点

第二章化学热力学基础学习重点

第二章化学热力学基础学习重点一.理解并熟悉热力学有关的概念:体系和环境状态和状态函数过程和途径常见的三个体系:敞开、封闭、孤立体系常见的三个过程:等压、等容、等温过程热和功热力学能(内能)和焓变化学反应热,等容反应热、等压反应热生成焓和标准生成焓;键能和离解能,键能和反应热的关系熵和熵变,标准摩尔熵Gibbs自由能和Gibbs自由能变,标准摩尔生成Gibbs自由能二.理解并熟练运用几个定律(包括两个判据)1.盖斯定律2.热力学第一定律:△U=Q-W3.热力学第二定律:△S(孤立)= △S(体系)+ △(环境)4.热力学第三定律:0K时,任何纯物质的完美晶体,S=05.两个判据:ⅰ.熵判据:△S(孤立)= △S(体系)+ △S(环境) ………………自发过程△S(孤立)= △S(体系)+ △S(环境) ………………不能进行ⅱ.G判据:等温等压吓,体系的G减小的方向是不能做非体积功的化学反应进行的方向.不及化学反应如此,任何等温等压虾,不做非体积功的自发过程的G都将减小.这正是热力学第二定律的另一种表述形式.△G<0 …………………自发进行△G>0 …………………不能自发进行△G=0 …………………可逆发应三.熟练掌握并运用几个热力学攻势(方程式)进行计算1.△U=Q-W2.Q v=△U3.Q p=△HH=U+PV △H=△U+△(PV)4.△r H mθ=∑υB△f H mθ(B)5.△S=Q r/T △r S mθ=∑υB△f S mθ(B)6.△G=△H-T△S 并分析自发进行的四种情况△r G mθ=∑υB△f G mθ(B)四.热力学的标准状态,尤其要注意所给定的热力学条件五.热力学化学方程式的书写六.问题:1.P△V和△(PV)2.H和Q。

化学热力学

化学热力学

第 二 章 化 学 热 力 学 初 步
3、掌握化学反应的标准摩尔焓变(standard molar enthalpy change)的各种 计算方法;(标准生成热( standard heat of formation )、燃烧热 (standard heat of combustion)。)
4、掌握化学反应的标准摩尔熵变(standard molar entropy change)和标 准摩尔吉布斯自由能变(standard molar Gibbs free energy change) 的计算方法; 5、会用ΔG来判断化学反应的方向,并了解温度对ΔG的影响。
不 可 逆 途 径 和 可 逆 途 径 的 功 和 热
第 二 章 化 学 热 力 学 初 步
2.1 热力学第一定律
*对于理想气体来说,热力学能U只是温度的函数,
第 二 章 化 学 热 力 学 初 步
根据热力学第一定律,比较不同途径时的功和热, 必然有如下结论: 理想气体恒温膨胀过程中,以可逆途径进行 时,体系对环境做的功最大,吸收的热量最多; 恒温压缩过程中,以可逆途径进行时,环境对体 系做的功最小,体系放出的热量最少。
2.1 热力学第一定律
3. 过程和途径(process and pathway)
方式 途径 过程 状态
第 二 章 化 学 热 力 学 初 步
基 本 概 念
过程 状态1 途径1 状态2
途径2
平衡状态
2.1 热力学第一定律
热力学中常见的过程 等温过程(isothermal process) :T1=T2=T环 等压过程(isobaric process):p1=p2=p环 等容过程(isochoric process):V1=V2 绝热过程(adiabatic process):Q=0 循环过程(cyclic process): 可逆过程*(reversible process):它是一种在无限接近于 平衡,并且没有摩擦力条件下进行的理想过程。 自发过程 (spontaneous process) : 一定条件下,自动进 行的过程。

无机化学(周祖新)习题解答第二章

无机化学(周祖新)习题解答第二章

无机化学(周祖新)习题解答第二章第二章化学热力学初步思考题1.状态函数得性质之一就是:状态函数得变化值与体系得始态与终态有关;与过程无关。

在U、H、S、G、T、p、V、Q、W中,属于状态函数得就是U、S、G、T、p、V。

在上述状态函数中,属于广度性质得就是U、H、S、G、V,属于强度性质得就是T、p。

2.下列说法就是否正确:⑴状态函数都具有加与性。

⑵系统得状态发生改变时,状态函数均发生了变化。

⑶用盖斯定律计算反应热效应时,其热效应与过程无关。

这表明任何情况下,化学反应得热效应只与反应得起止状态有关,而与反应途径无关。

⑷因为物质得绝对熵随温度得升高而增大,故温度升高可使各种化学反应得△S大大增加。

⑸△H,△S受温度影响很小,所以△G受温度得影响不大。

2.⑴错误。

强度状态函数如T、p就不具有加与性。

⑵错误。

系统得状态发生改变时,肯定有状态函数发生了变化,但并非所有状态函数均发生变化。

如等温过程中温度,热力学能未发生变化。

⑶错误。

盖斯定律中所说得热效应,就是等容热效应ΔU或等压热效应ΔH。

前者就就是热力学能变,后者就是焓变,这两个都就是热力学函数变,都就是在过程确定下得热效应。

⑷错误。

物质得绝对熵确实随温度得升高而增大,但反应物与产物得绝对熵均增加。

化学反应△S得变化要瞧两者增加得多少程度。

一般在无相变得情况,变化同样得温度,产物与反应物得熵变值相近。

故在同温下,可认为△S不受温度影响。

⑸错误。

从公式△G=△H-T△S可见,△G受温度影响很大。

3.标准状况与标准态有何不同?3.标准状态就是指0℃,1atm。

标准态就是指压力为100kPa,温度不规定,但建议温度为25℃。

4.热力学能、热量、温度三者概念就是否相同?试说明之。

4.这三者得概念不同。

热力学能就是体系内所有能量得总与,由于对物质内部得研究没有穷尽,其绝对值还不可知。

热量就是指不同体系由于温差而传递得能量,可以测量出确定值。

温度就是体系内分子平均动能得标志,可以用温度计测量。

第二章 化学热力学初步

第二章 化学热力学初步
一、化学反应的自发性 一定条件下,不要外界做功就 可自动进行的过程, 自发过程,则该过程具有自发性 自发性。 称自发过程 自发过程 自发性 能量传递 热量传递 气体扩散 水的流动 自发方向 高温物体 → 低温物体 (T1) → (T2) 高压(P1) → 低压 (P1) → (P2) 高势能 → 低势能 (E1) → (E2) 判据 平衡
§2-2 热力学第一定律
一、功与热 是体系与环境之间能量交换的两种方式,是过程 量,没有过程就没有能量的传递。 热Q(heat):热力学中,由于温差而引起传递的能量。 : 功W(work):热力学中,除热以外,各种被传递的能 : 量。如电功、机械功、表面功等. (功=体积功+非体积功) 功 功和热不是状态函数,与过程有关。 功和热不是状态函数
热力学上常见的几种过程: 等压过程(isobaric process): 等压过程 : 体系压力始终恒定不变。 (如敞开容器中进行的反应) 等容过程(isochoric process): 等容过程 : 体系体积始终恒定不变。 (如体积不变的密闭容器进行的反应) 等温过程(isotheemal process):只要求T始 = T终 等温过程 :
3.过程和途径 (process and rood) . 体系的状态发生变化,从始态到终态,我们说体系 经历了一个热力学过程,简称过程 过程;完成这个过程的 过程 具体步骤称途径 途径
298K, H2O(g) 途径1 298K,H 298K, 2O(l) 始态 373K,H 373K, 2O(l) 途径2 途径 373K,H 373K, 2O(g) 终态
已知 (1) C(石墨 + O2(g) → CO2(g) 石墨) 石墨 = △rHm(1) -393.5 kJ.mol-1 (2) CO(g) + 1/2 O2(g) → CO2(g) = △rHm(2) -282.9 kJ.mol-1 C(石墨) + O2(g) (石墨) 石墨 始态) (始态) △rHm =? ? △rHm(1) CO2(g) 终态) (终态) △rHm (2)

化学热力学初步示范课

化学热力学初步示范课
P21例题 可逆过程功: W = -nRT ln(V2/V1) 如果气体是按可逆过程,系统对环境做
最大致积功
14
2.2.2 热力学能( thermodynamic energy)
热力学能(U): 系统内全部微观粒子的全部 能量之和,也称内能。
U是状态函数。
热力学能变化只与始态、终态有关,与变化途径无关。
36
2. 热力学原则态
反映物与生成物都是气体时,各物质的分压 为1.013 105 Pa 反映物与生成物都是液体时,各物质的浓度 为1.0 mol kg-1 固体和液体纯物质的原则态指在原则压力下 的纯物质 原则态对温度没有规定,不同温度下有不同 原则态
37
3. 书写热化学方程式: ● 注明反映的温度和压强条件 ● 注明反映物与生成物的聚集状态,
rHm(298) = - 483.6 kJmol-1
●正逆反映的反映热效应数值相等,符号相反 2H2(g) + O2(g) === 2H2O(g) rHm (298) = - 483.6 kJ mol-1 2H2O(g) === 2H2(g)+ O2(g)
rHm(298) = + 483.6 kJmol-1
35
§ 2.5 热化学方程式
1. 热化学方程式: 2H2(g) + O2(g) === 2H2O(g) rHm (298) = - 483.6 kJ mol-1 r: reaction, m:表达 mol, :热力学原则态 rHm表达反映进度为1mol时所产生的焓变,称 为
摩尔焓变,单位为KJ.mol
阐明:在等容过程中,体系吸取的热量QV全部 用来增加体系的热力学能。
23
QV= ΔT(C1+C2)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2.3.2 焓和自发变化
许多放热反应能够自发进行。例如: 1 H2(g)+ O2(g) H2O(l) 2 mol-1 △ rHm (298K) = -285.83kJ· H+(aq) + OH-(aq) H2O(l) mol-1 △ rHm (298K) = -55.84kJ·
-1 (2) = -282.98kJ· mol △ rHm
1 计算 C(s) 2 O2 (g) CO(g) △ rHm (3)
解:利用Hess定律 (3) △ H r m C(s) O (g )
2
1 2
O2 (g) CO(g)
△ rHm (2)
△ rHm (1)
途径2
途径1
CO2 g
例:金属铝粉和三氧化二 铁的混合物点火时,反应放出 大量的热能使铁熔化,而应用于诸如钢轨的焊接等。试 利用标准摩尔生成焓的数据,计算铝粉和三氧化二 铁反 应的焓变。
解:
θ f Hm (kJ mol-1 )
2Al(s)+Fe2O3 (s) = Al 2O3 (s)+2Fe(s)
0
-824.2
-1675.7
2.1.2 状态和状态函数
状态:系统的宏观性质的综合表现。 状态函数:描述系统性质的物理量。(p,V,T) 特点:①状态一定,状态函数一定。 ② 状态变化,状态函数也随之而变,且 状态函数的变化值只与始态、终态 有关,而与变化途径无关。
(Ⅰ)
终态
始态
(Ⅱ)
状态函数可分为两类: 1. 容量性质 与物质的量有关,具有加和性。 如 V .n. U. H. S. G
U H pexV
对于无气体参加的反应,W = –pex V=0 △ rHm = △ rUm 有气体参加的反应:
△ rUm =△ rHm –pex V =△ rHm – n(g)RT
=△ rHm –RT∑νB(g)
(1 0) 8.314 298 2.48kJ
2.强度性质:
与物质的量无关,不具有加性。 如 p T M .c ρ
2.1.3 过程
体系状态发生的每一个变化,都叫过程。
完成过程的步骤或方式叫途径。
定温过程:始态、终态温度相等,始终保 持这个温度。T1=T2 定压过程:始态、终态压力相等,并且过 程中始终保持这个压力。p1=p2 定容过程:始态、终态容积相等,并且 过程中始终保持这个容积。V1=V2
焓: 焓变:
吸热反应H 0, 放热反应H 0
△ rHm 称为反应的标准摩尔焓变。
标准状态: 气体:T,p = p =100kPa 液、固体:T,p 下,纯物质 溶液:溶质B,bB=b =1mol· kg-1 cB=c =1mol· L-1
3. rUm与rHm 的关系
U Q W


-1
(3)C3H8(g)+5O2(g)=3CO2(g)+4H2O(l)
r H3 2220.07kJ mol
-1
试计算下列反应的焓变:
(4)3C(s)+4H2(g)=C3H8(g)
r H 4 ?

解:将反应式
(1) 3 (2) 4 (3) (4)
r H 4 3 r H1 4 r H 2 r H3
第二章
化学热力学初步
§2.1 热力学术语和基本概念
§2.2 热化学 §2.3 化学反应的自发性
§2.4 Gibbs(吉布斯)函数
§2.1 热力学术语和基本概念
2.1.1 系统和环境 2.1.2 状态和状态函数 2.1.3 过程
2.1.4 相
2.1.2 状态和状态函数 2.1.1 系统(体系)和环境 系统:被研究对象。 环境:系统外与其密切相关的部分。 敞开系统:与环境有物质交换也有能量交换。 封闭系统:与环境无物质交换有能量交换。 隔离系统:与环境无物质、能量交换。
pex V
非体积功
l
功不是状态函数
2.2.2 热力学能
热力学能(U): 系统内所有微观粒子的全部
能量之和,也称内能。
U是状态函数。
U 2 U1 U
热力学能变化只与始态、终态有关, 与变化途径无关。
2.2.3 热力学第一定律
热力学定律的实质是能量守恒与转化定律。 U1 Q U 2 W
2.2.4反应热和焓变
反应热(热效应):反应时,若体系不做非体积功,当反应 终态的温度恢复到始态温度时,体系吸收或放出的能量,称 为该化学反应的反应热。
1.定容反应热 对于封闭系统,在定容过程中, V = 0,W = 0
QV U
QV为定容反应热。
2.焓变 在定压过程中, U Q W
0
θ θ θ θ r Hm ( yf HY zf HZ ) (af HA bf HB )
= (-1675.7) + 0- 0 -(-824.2) = -851.5 kJ mol-1
§2.3 化学反应自发性
2.3.1 自发变化
2.3.2 焓和自发变化
2.3.3 混乱度和熵
化学反应不管是一步完成还是分几步完 成,其反应热总是相同的。
应用:1.利用方程式组合计算 △ rHm
例:已知298.15K下,反应:
(1) C(s) O 2 (g)
CO 2 (g)
mol-1 △ rHm (1) = -393.5kJ·
(2) CO(g) 1 O 2 (g) 2
CO 2 (g)
1 C(s) 2 O2 (g) CO(g) △ rHm (3)
例:已知298K,下列变化的焓变值 (1 ) C(s)+ O2(g) = CO2(g)
r H1 393.5kJ mol-1
(2) H2(g) +1/2O2(g) = H2O(l)
r H2 285.38kJ mol
yY zZ
r H m (1)

始态,稳定单质
r H m (1) r Hm r H m (2)
r Hm r Hm (1) r Hm (2)



4NH3 (g) 5O2 (g)
4△ fHm (NH3,g) 5△fHm (O2,g)
△ rHm =?
(定压反应热) U Qp pexV Qp U 2 U1 Qp pex V2 V1
U 2 U1 Qp p2V2 p1V1
H U pV
H H 2 H1
Qp (U 2 p2V2 ) U1 p1V1
状态函数 Qp = H
规定:系统吸热:Q >0; 系统放热: Q <0。
2.功( W ) 系统与环境之间除热之外以其它形式 传递的能量 。 规定:系统对环境做功,W<0(失功) 环境对系统做功,W>0(得功) 体积功: W Fex l pex pex A l V1
pex V2 V1
△ fHm (参考态单质,T)=0
稳定单质(参考元素):Cl 2(g) H2(g) N2(g) O2(g) C(石墨) Br2(l) I2(s)
二. 由标准摩尔生成焓求反应的标准摩尔焓变
aA + bB → yY + zZ
aA bB
r H m (2)
H r m 终态
△ rHm (1) =△ rHm (2) + △ rHm (3)
mol-1 △ rHm (3) =△ rHm (1) -△ rHm (2) = -110.53kJ·
解法二: C(s) O 2 (g) )CO(g) 1 O 2 (g)
2
CO 2 (g) △ rHm (1) CO 2 (g) △ rHm (2)
2.2.6 Hess定律
物体之间能量的三种交换形式:
热、功、辐射。 热力学中,只研究系统在过程中与环境以 热和功两种形式交换的能量。
2.2.1 热和功
1.热( Q ) 系统与环境之间由于存在温差而传递 的能量。
没有过程就没有热,热不是体系的性质,热不 是状态函数
热的种类:过程热、相变热、反应热 热的方向:自动的从高温物体传递到低温物体
绝热过程 :体系与环境间没有热的传递。 正常相变过程:正常沸点和正常凝固点时 的相变。 特点:恒温、恒压的平衡过程 ΔT=0
100 ℃
Δp=0
ΔG=0
H2O(l) = H2O(g)
§2.2 热化学
2.2.1 热和功
2.2.2 热力学能 2.2.3 热力学第一定律 2.2.4 反应热与焓变
2.2.5 热化学方程式
△ rHm 称为反应的标准摩尔焓变。
2H2(g)+O2(g) 2H2O(g)
mol-1 △ rHm (298.15K) = -483.64kJ·
△ rHm不同。 • 聚集状态不同时, 2H2(g)+O2(g) 2H2O(l)
mol-1 △ rHm (298.15K) = -571.66kJ·
稳定单质(参考元素):Cl 2(g) I2(s) N2(g) O2(g) C(石墨)
H2(g)
Br2(l)
定义: 在温度T下,由参考状态单质生成物质 B(νB=+1)的标准摩尔焓变,称为物质B的 标准摩尔生成焓。 mol-1 △ fHm (B,相态,T) ,单位是kJ· 1 H2(g)+ O2(g) H2O(g) 2 mol-1 △ fHm (H2O ,g,298.15K) = -241.82kJ·
4NO(g) 6H 2Og
4△ fHm (NO,g) 6△ fHm (H2O,g)
2N2 (g) 5O2 (g) 6H2 (g)
相关文档
最新文档