循证医学中常用的统计指标
循证医学

1.David Sackett提出循证医学(EBM)的定义:慎重、准确和明智地应用当前所能获得的最好研究依据制定出病人的治疗措施,其核心思想是遵循证据。
狭义EBM:循证临床实践Evidence based clinical practice (EBCP);广义EBM:包括一切医疗卫生服务的循证实践。
EBCP的三要素:临床经验,最佳证据,患者。
2.医学证据是医疗决策的依据,依据的优劣决定决策的成败。
可作为临床证据的是临床研究,包括关于病因、诊断或筛查、治疗或干预和预后的临床研究。
3.证据的分类:根据研究方法分为原始研究证据和二次研究证据分类,其中前者又分为观察性研究和试验性研究。
4.证据分级(Level of Evidence ,LOE):一级:所有随机对照试验的系统评价/Meta-分析;二级:单个的样本量足够的RCT(randomized controlled trial ,随机对照试验)结果;三级:设有对照组但未用随机方法分组;四级:无对照的病例观察;五级:专家意见。
5.当前最佳证据是在评价的基础上应用的,不同类型的临床研究所获得的最佳证据也不一致。
(1)治疗/预防性研究,最佳证据是基于多个RCT的系统评价/meta分析或设计良好的随机、双盲、同期对照试验(2)病因/不良反应性研究,最佳证据是基于多个RCT的系统评价/meta分析或RCT(3)诊断性研究,最佳证据是采用双盲法,与金标准比较的观察性研究和基于此类原始研究的系统评价/meta分析(4)预后性研究,最佳证据是大样本的前瞻性队列研究和基于此类原始研究的系统评价/meta分析。
总之,不同研究类型的证据,证据强度最大的是SR(系统评价,Systematic Review),SR也是最高级别的证据。
SR ≥病例分析。
6.常用统计学指标:(1)二分变量(dichotomous):比值比(Odds Ratio, OR);危险比(Risk Ratio, RR),或称相对危险度(Relative Risk, RR);危险差(Risk Reduction, RD),或称绝对危险减少(Absolute Risk Reduction, ARR);需要治疗的病人数(Number Needed to Treat, NNT);(2)连续变量(Continuous):均数差(Mean Difference, MD)7.Risk=发生某事件的人数÷观察的总人数-----实际上指某事件的发生率;odds=发生某事件的人数÷未发生某事件人数,只有当事件发生率很低情况下,risk和odds接近。
循证医学中常用统计指标1

RRR表示某试验因素使其结果的发生率增加或减 少的相对量,无法衡量增减的绝对量,如试验组 人群中某病的发生率为39%,而对照组人群的发 生率为50%,其:
RRR=(CER-EER)/CER=1-RR =(50%-39%)/50%=22%
但是,若在另一研究中,对照组人群中某病的发 生率为0.0005%,试验组人群中某病的发生率为 0.00039%,其RRR仍为22%,另RBI和RRI也是 同样问题。
两率差的可信区间由下式计算: 两率差的可信区间:(p1- p2) ±uaSE
两率差为0时,两组的某事件发生率没有差别,而 两个率差的可信区间不包含0(上下限均大于0或 上下限均小于0 ),则两个率有差别; 反之,两个率差的可信区间包含0,则无统计学意 义。
4. 相对危险度(RR)及可信区间
是指干预(暴露)组和对照组结局事件发生概率的绝对差值。 RD=0表示比较组间没有差异。 当研究结局为不利事件时,RD<0 表示干预可降低结局风险 通常只有队列研究和随机对照试验结果可以计算RD。
ai ci RDi n1i n2i
SE( RDi )
aibi ci di 3 3 n1i n2i
(一)计数(分类)资料的指标
(一)计数(分类)资料的指标
1. 试验组事件发生率(EER, experimental event rate)
即试验组中某事件的发生率,如对某病采用某 些防治措施后该疾病的发生率。
例如:某医师研究了阿司匹林治疗心肌梗死的效果
EER=a/n1 =15 /125=12%
该指标以试验原有的测量单位,真实地反映了试验效应,消除了绝对 值大小对结果的影响,在实际应用时,该指标容易被理解和解释。
循证医学中常用的统计指标

循证医学中常用的统计指标在循证医学中,统计指标是评估研究结果和证据强度的关键工具。
通过统计指标,我们可以了解治疗效果、疾病发生率以及其他医学问题的具体情况。
本文将介绍循证医学中常用的统计指标,包括相对风险、绝对风险、数值需要治疗的人数等。
1. 相对风险(Relative Risk,RR)是循证医学中常见的统计指标之一。
它用于评估治疗干预对疾病风险的影响。
相对风险是治疗组发生某种结果的概率与对照组发生该结果的概率之比。
例如,一项研究发现,接受某种治疗的患者相对于未接受治疗的患者,患上某种疾病的风险降低了40%,那么相对风险就是0.6。
相对风险越接近于1,表示治疗组和对照组之间的差异越小。
2. 绝对风险(Absolute Risk,AR)是描述患病率或死亡率的统计指标。
绝对风险是特定群体中发生某种结果的概率,通常用百分比来表示。
例如,一项研究发现,未接受治疗的患者患上某种疾病的风险为10%,而接受治疗的患者患病的风险为5%,那么绝对风险就是5%。
通过比较绝对风险,可以评估治疗干预对疾病发生率的影响。
3. 数值需要治疗的人数(Number Needed to Treat,NNT)是评估治疗效果的重要指标之一。
它表示需要治疗的患者人数,才能预防一个不良事件或者获益一个良性结果。
例如,一项研究发现,某种治疗方法的NNT为10,意味着需要治疗10个患者,才能防止一个不良事件的发生或者获益一个良性结果。
NNT越小,表示治疗效果越显著。
除了上述常见的统计指标,循证医学中还有其他一些重要的统计指标,比如绝对风险减少(Absolute Risk Reduction,ARR)、相对风险减少(Relative Risk Reduction,RRR)和数值需要治疗的人数减少(Number Needed to Treat Reduction,NNTR)等。
- 绝对风险减少(ARR)是治疗组和对照组之间绝对风险的差异,反映了治疗对疾病风险的真实改变。
循证医学保过复习资料(供预防医学使用)

循证医学:是有意识地、明确地、审慎地利用现有最好的研究证据制定关于个体 病人的诊治方案。
Meta:将系统评价中多个不同结果的同类研究合并为一个量化指标的统计学方法 PICO 格式:将研究问题结构化,即对研究对象的特征、采取什么干预措施、与什 么进行比较、观察的结局指标明确定义进行结构化,从而精练研究目 的,并提出一个明确的检验假设。
系统评价:是一种严格的评价文献的方法,它针对某一个具体的临床问题,采用 临床流行病学减少偏倚和随机误差的原则和方法,系统、全面地收集 全世界所有已发表或未发表的临床研究结果,筛选出符合质量标准的 文献,进行定性分析或定量合成,获得较为可靠的结论。
循证诊断:指临床上选用何种诊断试验、采用何种诊断标准用于您所经治的患者, 都必须建立在当前最佳研究结果所获得的证据和最佳临床专业知识基 础之上,使您经治的患者获得最大的利益。
预后:指疾病发生后,对将来发展为各种不同后果(痊愈、复发、恶化、死亡、 伤残、并发症等)的预测或估计 。
疾病自然史:不给任何治疗或干预措施情况下,疾病从发生发展到结局的整个过程 病程: 指疾病的临床期.即首次出现症状和体征,一直到最后结局所经历的全过程传统医学和循证医学的差异循证医学三要素:狭义:1 当前可得的最佳临床研究依据 2 医生的临床经验 和技能 3 尊重病人的选择广义:1 以事实为依据----循证决策 2 不断补充新证据---与时 俱进 3 后效评价实践效果---至于尽善循证实践的原则(四原则):1基于问题的研究 2遵循最好的证据决策3关注实践的效果 4后效评价,止于至善EBM---医学实践的步骤(五步法):1确定临床实践中问题2检索有关医学文献 3严格评价文献4应用最佳证据,指导临床决策 5评估1-4项的效果和效率,不断改进循证医学中常用的统计指标一、可信区间:率的可信区间、均数的可信区间、两均数差值的可信区间、相对 危险度(RR )或比值比(OR )的可信区间二、分类资料的指标EER :即试验组中某事件的发生率,如对某病采用某防治措施后该疾病的发生率传统医学 循证医学 证据来源动物实验、实验室研究、零散临床研究、过时的教科书 临床研究 收集证据不系统全面 系统全面 评价证据不重视 重视 判效指标实验室指标的改变、仪器或影像学结果(中间指标) 病人最终结局(终点指标) 治疗依据基础研究、动物实验推论、个人临床经验 可得到的最佳研究证据 医疗模式 疾病、医生为中心 病人为中心CER:即对照组中某事件的发生率,如对某病不采取防治措施的发生率。
循证医学:第五章 循证医学实践中常用的统计学方法

第一节 证据的资料的质量判断
五、精确度分析(2)
二、样本含量
1.如果设计科学合理,样本含量越大结论越真实可靠,但是,临床研究 中样本量有限(也是统计学存在的意义)。因此,要判断被引证的研究设 计中,样本含量是否合适,要重点考察最小效应量及Ⅰ、Ⅱ类错误的水平。
2.样本含量可以用公式估算。
第二节 描述指标及可信区间
二、分类资料的统计指标:率的95%CI
一.总体率的区间估计
1.查表法:n较小,率接近0或者1 2.正态近视法:n较大,p、1-p,均不太小,如n*p,n*(1-p)均大 于5。
率的95%CI:p±1.96sp,sp=
s ,s 二、率差的95%CI:(p1-p2)±1.96 p1-p2 p1-p2=
➢ 一个冷笑话: 莎士比亚的故事
误用实例:
误用实例:
循证医学实践中 常用的统计学方法
➢ 第一节 证据资料的质量判断 ➢ 第二节 描述指标及可信区间 ➢ 第三节 统计学方法的正确抉择 ➢ 第四节 证据的临床意义及统计学意义
第一节 证据的资料的质量判断
第一节 证据的资料的质量判断
当在循证医学实践中拟采用某一证据时, 无论采用何种最佳设计方案,甚至被誉为 “最佳证据”,亦不能盲从。重要的是分析 证据的基础数据资料是否可靠,以及质量的 高低。
描述离 散程度 的指标
方差与标准差 四分位数间距 变异系数 极差
正态分布或近似正态分布 偏态分布、分布未知、两端无界 几组资料间的变异大小比较 观察例数相近的计量资料
总体均数95%可信区间:
第二节 描述指标及可信区间
二、分类资料的统计指标:率和比
(一)率:是一个具有时期概念的指标,说明在某一时间段内 某现象或事件发生的频率或强度。
循证医学中常用的统计指标

ARR的可信区间计算与RD相同
ARR应用条件
满足以下条件,可以使用ARR: (1)试验组-某治疗措施,对照组-安慰剂 (2)主要疗效指标:使用如病死率、复发
率等负性指标 (3)目的:试验组使用某治疗措施后,这
NNT的计算及意义
NNT的其计算公式为:
NNT=1/|EER-CER| =1/ARR 该公式中的EER和CER定义为采用某干预措
施之后,某疗效事件的发生率,如阿斯匹林 预防心肌梗死的病死率。因此,NNT的值越 小,表示该防治效果就越好,其临床意义也 就越大。
NNT的可信区间
NNT的95%的可信区间,由于无法计算 NNT的标准误,但NNT= 1/ARR,故NNT 的95%的可信区间的计算可利用ARR的 95%的可信区间来计算。
NNT95%CI的下限: 1/ARR的上限值 NNT95%CI的上限: 1/ARR的下限值
注意:
NNT中的对照组通常是安慰剂对照,如 果对照组是阳性对照,则不同阳性对照 组的多个NNT间不能比较,如:
CER EER ARR NNT
0.7
0.4
0.3 3.3
0.6
0.4
0.2 5.0
0.5
NNH的计算式为: NNH =1/|EER-CER|=1/ARI
该公式中的EER和CER定义为采用某干 预措施之后,某不利结果的发生率。因 此,NNH的值越小,表示该某治疗措施 引起的不利结果(不良事件或副反应)就越 大。
注意:
NNH中的对照组通常是安慰剂对照,如果 对照组是阳性对照,则不同阳性对照组的 多个NNH间不能比较,如:
1.循证临床实践概论

三.证据的分类
证据包括一次研究证据(primary research evidence)和二次研究证据 (secondary research evidence)。
(一) 一次研究证据 指在受试者中进行有 关病因、诊断、预防、治疗和预后等单个研 究所获得的第一手数据而总结的结果和结论。 一次研究证据是生产和提供证据的基本单位。 PubMed和Embase是收集一次研究证据权威 的文献库。
1.可信区间(Confidence interval, CI)是循证医学中常用的统计指标 之一。其作用:
(1) 可信区间主要用于估计总 体参数,从获取的样本数据资料估 计某个指标的总体值(参数)。
(2)可信区间还可用于假设检验。 通常,试验组与对照组某指标差值或 比值的95%可信区间与为0.05的假设检 验等价,99%的CI与为0.01的假设检验 等价。
Meta分析(meta analysis)是一类统计 方 法,它对多个同类独立研究结果合并, 得出一个量化的平均效果,从而达到增加样 本含量,提高检验功效的目的; 而广义的 Meta分析可理解为一个定量的系统评价。
The definitions used by the Cochrane Collaboration
4. 证据系统 证据系统能同时提供临床决 策所需的当前最好的所有研究证据和其它有 关信息,并能通过电子病历记录,从患者的 情况自动连接到相关的信息。在医生诊治患 者时,可随时连接证据系统,在极短时间内 读取相关信息,作出相应的临床决策。
目前证据系统还有待进一步完善。
实施循证医学重点学会应用二次研 究证据。如果作循证决策,应依次先查 临床实践指南、系统评价等二次研究证 据,然后到一次研究证据;如果做系统 综述和Meta分析, 则应重点检索一次文 献数据库,即:生产证据和使用证据对 数据库的需求是不同的。
循证医学历年名解汇总

循证医学历年名解汇总L循证医学(EVidenCe-BaSedMediCille, EBM):是最好的临床研究证据与临床实践(临床经验、临床决策)以及患者价值观(关注,期望,需求) 的结合。
2.动物实验(animal experiment):指在实验室内,为了获得有关生物学、医学等方面的新知识或解决具体问题而使用动物进行的科学研究。
动物实验必须由经过培训的、具备研究学位或专业技术能力的人员进行或在其指导下进行。
3.临床研究(CliniCaleXPeriment):是以疾病的诊断、治疗、预后、病因和预防为主要研究内容,以患者为主要研究对象,以医疗服务机构为主要研究基地,由多学科人员共同参与组织实施的科学研究活动。
4.证据(evidence):是最接近事实本身的一种信息,其形式取决于具体情况,高质量、方法恰当的研究结果是最佳证据。
由于研究常常不充分、自相矛盾或不可用,其他种类的信息就成为研究的必要补充或替代。
5.严格评价(CritiCal appraisal):指的是对一个研究证据的质量作科学的鉴别,分析它的真实性的程度,即看是否真实可靠。
如果是真实可靠的话,要进一步评价临床医疗是否有重要价值;如果既真实又有重要的临床价值,最后要看这种(些)证据是否能适用于具体的临床实践,即是否能应用于自己的病人的诊治实践以解决疾病实际问题。
6. ( 1)系统评价(SyStenIatiC review):针对某一具体的临床问题系统全面地收集全世界所有已发表或末发表的相关的临床研究文章;统一的科学评价标准,筛选出符合标准、质量好的文献,定性或定量的方法进行综合,去粗取精,去伪存真,得出可靠的结论;随着新的临床研究结果的出现及时更新。
7. ( 1) Meta分析(Meta-analysis):广义:针对某个主题,全面收集所有相关研究并逐个严格评价和分析后,再用定量合成的方法对资料进行统计学处理得出综合结论的全过程。
狭义:指一种单纯定量合成的统计学方法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
阿斯匹林治疗组的病死率p1=15/125,对照组的病死 率p0=30/120,其RR和可信区间为: RR p1 15 /125 0.48 p0 30 /120
Ln(RR)=ln0.48=-0.734
=0.289
故RR的95%的可信区间为: Exp[ln(RR)±1.96SE(lnRR)]= exp[-0.734±1.96×0.289]=[0.272,0.846] 该例RR的95%的可信区间为 0.272~0.846, 使用阿斯匹林治疗的病人,其病死率小于对 照组,可认为阿斯匹林可降低心肌梗死有效
4、OR及其可信区间
优势比OR又称比值比,指病例组中暴露人数与非暴 露人数的比值除以对照组中暴露人数与非暴露人数 的比值。 OR计算的四格表
组别
暴露 非暴露 合 计
病例组
a
对照组
c
b
a+b
d
c+d
合计
a+c
统计指标因而也分为数值资料指标与分类 资料指标两类。
可信区间(confidence interval,CI)
是循证医学中常用的统计指标之一。
可信区间主要用于估计总体参数,从获取的 样本数据资料估计某个指标的总体值(参 数)。如,率的可信区间估计总体率,均数 的可信区间估计总体均数。
可信区间在一定情况下可以代替假设检验, 尤其是试验组与对照组某指标差值或比值的 可信区间,在循证医学中更为常用。
阿斯匹林治疗心肌梗死的效果EER=15/125=12%, CER=30/120=25%,两者率的标准误:
SE( p1 p2 )
p1(1 p1) p2 (1 p2 )
n1
n2
0.12(1 0.12) 0.25(1 0.25)
125
120
0.049
该试验两率差(RD)的95%可信区间为:
一、概述
临床研究的数据资料必须经过恰当的统计分 析才能得出正确结论。
在循证医学实践中,无论是证据提供者或使 用者,熟悉统计分析方法和指标都是十分必 要的。
统计分析的目的
统计描述——反映某事物之数量特征或规律 统计推断——由样本信息推断总体特征
数据资料分类
数值资料(计量) 分类资料(计数和等级)
如试验组与对照组某指标差值或比值的95% 可信区间与α= 0.05的假设检验等价, 99%可 信区间与α= 0.01的假设检验等价。
循证医学中常用的可信区间: ➢ 率的可信区间 ➢ 两率差的可信区间 ➢ RR或OR的可信区间 ➢ 均数的可信区间 ➢ 两均数差值的可信区间
二、分类资料的指标
在循证医学的研究与实践中,除了有效率、 死亡率、患病率、发病率等常用率的指标外, 相对危险度(RR)、比值比(OR)及由此 导出的其他指标也是循证医学中富有特色的 指标。
CER——对照组中某事件的发生率(control event rate, CER)如对某种暴露不采取防治 措施该疾病的发生率。
2、RD(率差)及可信区间
两个发生率的差即为率差,也称危险差(rate difference, risk difference, RD), 如试验组的发 生率(EER)与对照组发生率(CER)的差,其大 小可反映试验效应的大小。
目前,在循证医学中分类资料常用的描述指
标主要有EER、CER、OR、RR、RRR、 ARR、NNT、NNH等。
1、EER与CER
循证医学中预防和治疗性试验中,率可细分 为EER和CER两类。
EER——试验组中某事件的发生率 (experimental event rate, EER)如对某种暴 露采用某些防治措施后该疾病的发生率。
RD±uαSE(p1-p2)=
(0.12-0.25)±1.96×0.049=-0.23~-0.03
该例两率差的可信区间为-0.23~-0.03,上下 限均小于0(不包含0),两率有差别。可认 为阿斯匹林可降低心肌梗死的病死率。
3、RR及可信区间
相对危险度RR(relative risk, RR)是前瞻性 研究中较常用的指标,它是试验组某事件发 生率P1与对照组某事件发生率P0之比,用于 说明前者是后者的多少倍,常用来表示试验 因素与疾病联系的强度及其在病因学上的意 义大小。
例:某医师研究了阿司匹林治疗心肌梗死的效果, 资料见下表
组别 阿司匹林组
对照组 合计
死亡 15 (a) 30 (c) 45
未死亡 110 (b) 90 (d) 200
例数
125 (n1) 120 (n2 ) 225 (n )
该试验结果的EER和CER计算结果为:
EER=a/n1=15/125=12%, CER=c/n2=30/120=25%
RR的可信区间,应采用自然对数进行计算,即应求RR 的自然对数值ln(RR)和ln(RR)的标准误SE(lnRR ),其 计算公式如下:
SE(ln RR) 1 1 1 1 a c ab cd
ln(RR)的1-α可信区间为:
lห้องสมุดไป่ตู้(RR)±uαSE(lnRR) RR的可信区间为:
Exp[ln(RR)±uαSE(lnRR)] 由于RR=1时为试验因素与疾病无关,故其可
两率差的可信区间由下式计算: |p1-p2|±uαSE(p1-p2)=RD±uαSE(p1-p2)
两率差的标准误:
SE( p1 p2 )
p1(1 p1) p2 (1 p2 )
n1
n2
两率差为0时,两组的某事件的发生率没有差别。
两率差的可信区间不包含0(上下限均大于0或上下 限均小于0 ),则两个率有差别;反之,两率差的 可信区间包含0,则无统计学意义。
RR计算的四格表:
组别
试验组 对照组
发病
a(r1) c(r2)
未发病
b d
例数
n1 n2
试验组的发生率为:p1=a/(a+b)=r1 /n1 对照组的发生率为: p0=c/(c+d)=r2 /n2 相对危险度按下式计算:RR=p1/p0=EER/CER
当RR=1时,可认为试验因素与疾病无关; 当RR≠1时,可认为试验因素与疾病有关; 当RR>1时,可认为试验组发生率大于对照组; 当RR<1时,可认为试验组发生率小于对照组;