2.4GHz无线数字音频芯片nRF24Z1及其应用
nRF24L01点对点跳频技术应用

nRF24L01点对点跳频技术应用(转载)分类:技术应用关键字:nRF24L01;射频;无线通信;跳频1 nRF24L01概述nRF24.L01是一款新型单片射频收发器件,工作于2.4 GHz~2.5 GHz ISM频段。
内置频率合成器、功率放大器、晶体振荡器、调制器等功能模块,并融合了增强型ShockBurst技术,其中输出功率和通信频道可通过程序进行配置。
nRF24L01功耗低,在以-6 dBm的功率发射时,工作电流也只有9 mA;接收时,工作电流只有12.3 mA,多种低功率工作模式(掉电模式和空闲模式)使节能设计更方便。
nRF24L01主要特性如下:GFSK调制:硬件集成OSI链路层;具有自动应答和自动再发射功能;片内自动生成报头和CRC校验码;数据传输率为l Mb/s或2Mb/s;SPI速率为0 Mb/s~10 Mb/s;125个频道:与其他nRF24系列射频器件相兼容;QFN20引脚4 mm×4 mm封装;供电电压为1.9 V~3.6 V。
2 引脚功能及描述nRF24L01的封装及引脚排列如图1所示。
各引脚功能如下:图(1)CE:使能发射或接收;CSN,SCK,MOSI,MISO:SPI引脚端,微处理器可通过此引脚配置nRF24L01:IRQ:中断标志位;VDD:电源输入端;VSS:电源地:XC2,XC1:晶体振荡器引脚;VDD_PA:为功率放大器供电,输出为1.8 V;ANT1,ANT2:天线接口;IREF:参考电流输入。
3 工作模式通过配置寄存器可将nRF241L01配置为发射、接收、空闲及掉电四种工作模式,如表1所示。
表(1)待机模式1主要用于降低电流损耗,在该模式下晶体振荡器仍然是工作的;待机模式2则是在当FIFO寄存器为空且CE=1时进入此没收;待机模式下,所有配置字仍然保留。
在掉电模式下电流损耗最小,同时nRF24L01也不工作,但其所有配置寄存器的值仍然保留。
系统级RF收发芯片nRF24E1及其在无线键盘中的应用

系统级RF收发芯片nRF24E1及其在无线键盘中的应用摘要:系统级RF收发芯片nRF24E1的各个功能模块及其特性,分析了无线键盘的工作原理,介绍了怎样用nRF24E1在无线键盘中实现键盘矩阵扫描和键盘信号的无线接收和发送,并给出了实际应用中的体会。
关键词: nRF24E1 射频无线通信无线键盘nRF24E1收发器是Nordic VLSI推出的系统级射频芯片。
采用先进的0.18μm CMOS工艺、6×6mm的36引脚 QFN封装,以nRF2401 RF芯片结构为基础,将射频、8051MCU、9输入10位ADC、125通道、UART、SPI、PWM、RTC、WDT全部集成到单芯片中,内部有电压调整器(工作电压1.9~3.6V,推荐工作电压为3.3V)和VDD电压监视,通道开关时间小于200μs,数据速率1Mbps,最大射频输出分贝数0dB,不需要外接SAW(声表)滤波器。
nRF24E1是全球最早推出且全球通用的收发频段为2.4GHz的、完整的低成本射频系统级芯片。
适用于无线键盘和鼠标、无线手持终端、无线频率识别、数字视频、遥控和汽车电子及其他短距离无线高速方面的应用。
1 nRF24E1简介1.1 微处理器nRF24E1微处理器的指令系统与工业标准8051的指令系统兼容,但二者的指令执行时间稍有不同。
通常,nRF24E1的每条指令执行时间为4~20个时钟周期,而工业标准8051的每条指令执行时间为12~48个时钟周期。
nRF24E1比工业标准8051增加了ADC、SPI、RF接收器1、RF接收器2和唤醒定时器5个中断源;3个与8052一样的定时器。
nRF24E1内含有1个与8051相同的UART,在传统的异步通信方式下,可用定时器1和定时器2作为UART(串口)的波特率发生器。
为了便于和外部RAM 区进行数据传递,nRF24E1的CPU还集成2个数据指针,其微控制器的时钟直接来源于晶振。
24L01的应用

2.4G无线模块/无线通讯/无线收发/nRF24L01模块修改浏览权限| 删除nRF24L01微功率无线通讯模块,采用Nordic公司的NRF24L01芯片,2.4G全球开发ISM频段免许可证使用,最高工作速率达2Mbps,125频道满足多点通信和跳频通信需要,体积小巧约31mm*17mm,高效GFSK调制,抗干扰能力强,特别适合无线音视频传输、工业控制领域等需要较大传输速率的无线通讯需求。
nRF24L01 (外置天线)(尺寸:31mm*17mm)模块性能及特点:(1) 2.4GHz 全球开放ISM 频段免许可证使用(2) 最高工作速率2Mbps,高效GFSK调制,抗干扰能力强,特别适合工业控制场合(3) 125 频道,满足多点通信和跳频通信需要(4) 内置硬件CRC 检错和点对多点通信地址控制(5) 低功耗1.9 - 3.6V 工作,待机模式下状态为22uA;掉电模式下为900nA(6) 模块可软件设地址,只有收到本机地址时才会输出数据(提供中断指示),可直接接各种单片机使用,软件编程非常方便(7) 内置专门稳压电路,使用各种电源包括DC/DC 开关电源均有很好的通信效果(8) 标准5*2 DIP间距接口,便于嵌入式应用(9) 工作于Enhanced ShockBurst 具有Automatic packet handling, Auto packet transaction handling,具有可选的内置包应答机制,极大的降低丢包率。
(10) nRF24L01配外置天线,无阻挡传输距离50-100米,RF24L01B配PCB内置天线,无阻挡传输距离20-50米。
如需要传输更远距离,请选用本公司出品的带功放电路的RF24L01PA模块(11) 本公司提供目前几大主流单片机(AVR,MSP430,51,C8051F等)的开发代码,客户只需要将代码移植,就能轻松应用本模块;同时配套基于目前主流单片机(AVR,MSP430,51等)的无线开发系统,帮助更快实现无线应用,欢迎配套选购(12) 与51系列单片机P0口连接时候,需要加10K的上拉电阻,与其余口连接不需要(13) 其他系列的单片机,如果是5V的,请参考该系列单片机IO口输出电流大小,如果超过10mA,需要串联电阻分压,否则容易烧毁模块! 如果是3.3V的,可以直接和RF24L01模块的IO口线连接。
数字音频信号的无线发送和无线传输设计

数字音频信号的无线发送和无线传输设计
模拟音频受外界影响较大,稳定性差。
因此数字音频渐渐取代模拟音频成为现代音频的主要形式。
数字音频信号直接从机顶盒输出,不在内部进行
D/A转换,并将数字音频进行无线转发,在接收端进行D/A转换,可避免音频布线的影响以及音频线上音质的损耗。
这种方法可
有效地减少机顶盒内部的干扰,并保证较好的音质。
2.4 GHz数字高速射频技术是目前较为成熟的音频应用无线技术。
其抗干扰性强、传输距离远,并且采用完全开放式的网络协议。
nRF24 Z1无线射频芯片工作于2.4 GHz,通信速率高达4 Mbps,实际音频数据传输率为1.54 Mbps,且具有S/PDIF数字音频信号接口。
本方案从机顶盒直接提取数字音频S/PDIF信号,保证了较好的音质;通过nRF24Z1无线射频芯片进行发送和接收,保证了音频无损无线传输。
1 系统总体方案设计
机顶盒数字音频无线转发系统的总体结构框图如图1所示。
系统主要由数字音频信号的提取与传输、数字音频无线发送、数字音频无线接收三部分组成。
大部分的机顶盒都具有数字音频S/PDIF输出接口,且一般采用同轴线输出。
射频芯片nRF24Z1既可用在音源端发送音频数据,也可用在接收端。
24GHz无线数字音频芯片nRF24Z1

2.4GHz无线数字音频芯片nRF24Z1及其应用1. 引言nRF24Z1是挪威Nordic半导体公司于2005年推出的单片式CD(Compact Disc,光盘)音质无线数字音频芯片,其能以24位48kHz的速度处理数字音频流。
芯片工作于2.4GHz自由频段,工作电压为2.0~3.6伏,片内集成了电压管理器,能够最大限度地抑制噪声。
nRF24Z1有I2S串行接口和S/PDIF接口(索尼/菲利浦数字接口)两种数字音频接口,I2S提供了与各种低成本的A/D(模/数转换)和D/A(数/模转换)的无缝连接,S/PDIF 接口提供了与PC和环绕设备的直接接口。
通过SPI或I2C接口来对芯片进行控制。
同时还提供了控制信息如音量,平衡,显示等双向传输的功能,是一个使用、性能、成本相结合的数字音频芯片。
可应用于CD无线耳机、无线音箱、MP3无线耳机、无线音频下载器等系统中。
2. 无线音频系统nRF24Z1能够以高达1.54Mbit/s的速率处理音频流,音频数据的输入/输出、射频协议和射频连等工作由片内的硬件完成。
图1所示为使用nRF24Z1的无线音频系统的结构框图,在该系统中,只需使用简单的或低速的微控制器或DSP(数字信号处理器)即可完成系统的控制,微控制器通常通过串行口或并行口控制一些简单的任务,如音量调节等。
图1 使用nRF24Z1的无线音频系统框图由图1可见,音频数据的传输是由一对nRF24Z1实现的,音频数据最终提供给接收端的立体声DAC(数模转换器)。
nRF24Z1的初始配置由微控制器通过SPI或I2S接口进行控制。
在接收端,外围电路如DAC的控制可以由发送端的nRF24Z1通过控制信道进行控制[1]。
如果设计中没有使用微控制器,则配置数据可以通过片外的EEPROM/FLASH存储器进行加载。
在无线音频流处理系统中,音频数据的流向总是从声源(如CD播放器)到声宿(如扬声器)。
本系统中,在声源端使用nRF24Z1进行音频数据的发送,在声宿端使用nRF24Z1进行音频数据的接收。
2.4GHz射频收发芯片nRF2401应用电路图 器件配置

2.4GHz射频收发芯片nRF2401应用电路图器件配置1. 引言nRF2401是单片射频收发芯片,工作于2.4~2.5GHz ISM频段,芯片内置频率合成器、功率放大器、晶体振荡器和调制器等功能模块,输出功率和通信频道可通过程序进行配置。
芯片能耗非常低,以-5dBm的功率发射时,工作电流只有10.5mA,接收时工作电流只有18mA,多种低功率工作模式,节能设计更方便。
其DuoCeiverTM技术使nRF2401可以使用同一天线,同时接收两个不同频道的数据。
nRF2401适用于多种无线通信的场合,如无线数据传输系统、无线鼠标、遥控开锁、遥控玩具等。
2. 芯片结构、引脚说明2.1 芯片结构nRF2401内置地址解码器、先入先出堆栈区、解调处理器、时钟处理器、GFSK滤波器、低噪声放大器、频率合成器,功率放大器等功能模块,需要很少的外围元件,因此使用起来非常方便。
QFN24引脚封装,外形尺寸只有5×5mm。
nRF2401的功能模块如图1所示。
图2nRF2401引脚图2.2 引脚说明表1:nRF2401引脚(附:此处引脚11和12有误。
2006.6.30)3. 工作模式nRF2401有工作模式有四种:收发模式、配置模式、空闲模式和关机模式。
nRF2401的工作模式由PWR_UP 、CE、TX_EN和CS三个引脚决定,详见表2。
表2:nRF2401工作模式3.1 收发模式nRF2401的收发模式有ShockBurstTM收发模式和直接收发模式两种,收发模式由器件配置字决定,具体配置将在器件配置部分详细介绍。
3.1.1 ShockBurstTM收发模式ShockBurstTM收发模式下,使用片内的先入先出堆栈区,数据低速从微控制器送入,但高速(1Mbps)发射,这样可以尽量节能,因此,使用低速的微控制器也能得到很高的射频数据发射速率。
与射频协议相关的所有高速信号处理都在片内进行,这种做法有三大好处:尽量节能;低的系统费用(低速微处理器也能进行高速射频发射);数据在空中停留时间短,抗干扰性高。
2.4GHz射频收发芯片nRF2401及其应用

2.4GHz射频收发芯片nRF2401及其应用2.4GHz射频收发芯片nRF2401及其应用2.4GHz射频收发芯片nRF2401及其应用2007-01-20电子通信论文2.4GHz射频收发芯片nRF2401及其应用摘要:本文介绍了工作于2.4GHzISM频段的射频收发芯片nRF2401的芯片结构、引脚功能、工作模式、接收与发送的工作流程,详细描述了nRF2401的器件配置,给出了应用电路图,分析了PCB设计时应该注意的问题,最后对全文进行了总结。
关键词:nRF2401;射频;无线通信;收发芯片 1.引言 nRF2401是单片射频收发芯片,工作于2.4~2.5GHzISM频段,芯片内置频率合成器、功率放大器、晶体振荡器和调制器等功能模块,输出功率和通信频道可通过程序进行配置。
芯片能耗非常低,以-5dBm的功率发射时,工作电流只有10.5mA,接收时工作电流只有18mA,多种低功率工作模式,节能设计更方便。
其DuoCeiverTM技术使nRF2401可以使用同一天线,同时接收两个不同频道的数据。
nRF2401适用于多种无线通信的场合,如无线数据传输系统、无线鼠标、遥控开锁、遥控玩具等。
2.芯片结构、引脚说明 2.1芯片结构 nRF2401内置地址解码器、先入先出堆栈区、解调处理器、时钟处理器、GFSK滤波器、低噪声放大器、频率合成器,功率放大器等功能模块,需要很少的外围元件,因此使用起来非常方便。
QFN24引脚封装,外形尺寸只有5×5mm。
nRF2401的功能模块如图1所示。
2.2引脚说明表1:nRF2401引脚3.工作模式 nRF2401有工作模式有四种:收发模式、配置模式、空闲模式和关机模式。
nRF2401的工作模式由PWR_UP、CE、TX_EN 和CS三个引脚决定,详见表2。
表2:nRF2401工作模式 3.1收发模式nRF2401的收发模式有ShockBurstTM收发模式和直接收发模式两种,收发模式由器件配置字决定,具体配置将在器件配置部分详细介绍。
基于NRF24Z1的数字无线话筒设计

摘要无线数字音频传输技术是指利用无线电波作为数据传输的媒介,一切以数字化音频为处理对象的操作技术。
它是利用将语音信息调制到载波频率上发射,实现发送端与接收端的通信。
其涉及到模拟电子技术、信息技术、以及网络技术等多个学科领域。
也通过无线音频传输系统,简单控制远端设备的运行情况以及实现两端之间的语音传输。
随着无线音频技术越来越成熟,越来越多的公共场合如大型会议室、教室等程系统采用了此技术。
与有线音频传输相比,无线音频传输具有成本低、安装简便、便于移动等优点。
本次所设计的数字无线话筒以低成本、设计结构简单为目标,对目前的射频芯片、音频芯片和微控制器进行筛选比较,以低功耗为首选,给出基于nRF24Z1数字无线话筒的硬件结构及软件实现方法。
关键词:nRF24Z1 ,短距离通信,无线传输,数字音频design of the digital wireless microphones Based on nRF24Z1Author:Wu Zong LingTutor:Wang Zhao PingAbstractWireless digital audio transmission technology is the use of radio as a medium for data transmission, all in digital audio technology to deal with object manipulation. It is the use of the voice message to the carrier frequency modulated transmitter, the transmitter and receiver to achieve communication. It relates to the analog electronics, information technology, and network technology and other disciplines. Also through wireless audio transmission system, a simple remote control operation of devices and the realization of voice transmission between the two ends. As wireless audio technology becomes more mature, more and more public places such as large meeting rooms, classrooms and other process system using this technique. Compared with wired audio transmission, wireless audio transmission with low cost, easy to install, easy to move and so on.The digital wireless microphone designed is for low cost, simple design goal of the current radio frequency chips, audio chips and microcontrollers were screened compared to the preferred low power consumption is given based on digital wireless microphone hardware nRF24Z1 Structure and software implementation. .Keywords:nRF24Z1 Short-distance communication Wireless Digital Audio目录1.绪论 (1)1.1 研究课题的现状与前景 (1)1.2 此次课题研究的内容 (1)2.短距离无线语音传输系统简介 (3)2.1 短距离无线语音传输系统原理 (3)2.2研究短距离无线语音传输的意义 (3)3.NRF24Z1芯片功能结构 (4)3.1无线音频系统 (4)3.2音频发射器(ATX) (4)3.2.1音频输入接口 (5)3.2.2控制接口 (5)3.2.3直接数据输入引脚 (5)3.2.4中断输出 (6)3.3 音频接收器(ARX) (6)3.3.1音频输出接口 (7)3.3.2音频控制接口 (7)3.4 nRF24Z1音频数据传输射频协议 (7)4 基于NRF24Z1数字无线话筒设计 (10)4.1数字无线话筒系统分析及设计 (10)4.2 发射模块设计 (10)4.2.1 发射模块电路设计 (10)4.2.2 发射模块主程序设计 (12)4.2.3 发射模块部分控制程序设计 (12)4.3 接收模块设计 (13)4.3.1 接收模块电路设计 (13)4.3.2 接收模块主程序设计 (14)4.3.3 接收模块控制部分设计 (15)4.4系统调试及性能测试 (15)4.4.1硬件调试 (15)4.4.2软件调试 (16)4.4.3性能测试 (16)4.4.4测试结果 (16)结论 (18)致谢 (19)参考文献 (19)附录 (20)附录A (21)附录B (26)1.绪论随着计算机网络通信技术的迅猛发展,无线音频传输技术应运而生,其应用也越来越被各行各业所接受。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.4GHz无线数字音频芯片nRF24Z1及其应用【摘要】nRF24Z1是Nordic半导体公司推出的2.4GHz无线数字音频收发芯片。
本文介绍了用nRF24Z1组成音频系统的基本框架,详细阐述了该芯片的音频发射器、音频接收器、音频输入接口、音频输出接口、芯片控制接口和中断输出等模块的结构,分析了射频协议、射频初始化方法和跳频通信方法,并给出应用电路原理图和讲述PCB制板的经验。
在文章的最后,对全文进行了总结。
【关键词】射频,nRF24Z1,无线通信,音频,应用1. 引言nRF24Z1是挪威Nordic半导体公司于2005年推出的单片式CD(Compact Disc,光盘)音质无线数字音频芯片,其能以24位4 8kHz的速度处理数字音频流。
芯片工作于2.4GHz自由频段,工作电压为2.0~3.6伏,片内集成了电压管理器,能够最大限度地抑制噪声。
nRF24Z1有I2S串行接口和S/PDIF接口(索尼/菲利浦数字接口)两种数字音频接口,I2S提供了与各种低成本的A/ D(模/数转换)和D/A(数/模转换)的无缝连接,S/PDIF 接口提供了与PC和环绕设备的直接接口。
通过SPI或I2C接口来对芯片进行控制。
同时还提供了控制信息如音量,平衡,显示等双向传输的功能,是一个使用、性能、成本相结合的数字音频芯片。
可应用于CD无线耳机、无线音箱、MP3无线耳机、无线音频下载器等系统中。
2. 无线音频系统nRF24Z1能够以高达1.54Mbit/s的速率处理音频流,音频数据的输入/输出、射频协议和射频连接等工作由片内的硬件完成。
图1所示为使用nRF24Z1的无线音频系统的结构框图,在该系统中,只需使用简单的或低速的微控制器或DSP(数字信号处理器)即可完成系统的控制,微控制器通常通过串行口或并行口控制一些简单的任务,如音量调节等。
图1使用nRF24Z1的无线音频系统框图由图1可见,音频数据的传输是由一对nRF24Z1实现的,音频数据最终提供给接收端的立体声DAC(数模转换器)。
nRF24Z1的初始配置由微控制器通过SPI或I2S接口进行控制。
在接收端,外围电路如DAC的控制可以由发送端的nRF24Z1通过控制信道进行控制[1]。
如果设计中没有使用微控制器,则配置数据可以通过片外的EEPROM/FLASH存储器进行加载。
在无线音频流处理系统中,音频数据的流向总是从声源(如CD播放器)到声宿(如扬声器)。
本系统中,在声源端使用nRF24Z1进行音频数据的发送,在声宿端使用nRF24Z1进行音频数据的接收。
鉴于上述的收发差异性,nRF24Z1可能通过MODE引脚设置其工作于发射器模式或接收器模式,这两种模式下,nRF24Z1片内工作的模块和I/O引脚功能都有很大差异。
1. 芯片结构3.1音频发射器当nRF24Z1作为音频发射器时,MODE引脚必须置为高电平。
nRF24Z1作为音频发射器时,其片内功能结构如图2所示。
I2S 接口或S/PDIF接口可以用作音频数据的输入接口。
I2S接口由CLK、DATA和WS三个引脚组成,S/PDIF接口只需要SPDIO 一个引脚,在声源与nRF24Z1距离比较近时,推荐使用I2S接口,反之,推荐使用S/PDIF接口。
图2nRF24Z1作为音频发射器时的功能结构图3..1.1音频输入接口[2]音频发射器的I2S接口支持8、11.025、12、16、22.05、24、32、48和96kHz多种接口速率,音频数据可以采用16位、20位或24位三种数字格式。
nRF24Z1同时也可以用于模拟声源的数据采样,其采样频率为256Hz,此时,MCLK引脚作为模数转换器的采样时钟引脚。
S/PDIF接口支持32、44.1和48kHz三种采样速率,音频数据可以采用16位、20位或24位三种数字格式。
3..1.2控制接口当使用外部微控制器来控制nRF24Z1时,音频发射器与音频接收器的配置和控制数据可以通过标准2线接口或SPI接口提供,这两个接口也可用于从音频接收器读回状态信息。
这两个接口的寄存器地址相同,不能同时使用。
2线接口和SPI接口通过SS EL引脚选用,SSEL引脚为低时选用SPI接口,SSEL引脚为高时,选用标准2线接口。
当不使用外部微控制器来控制nRF24Z1时,可以在SPI接口或标准2线接口外挂EEPROM或FLASH存储器,nRF24Z1在上电或复位时,从存储器读取默认的配置数据。
1.1. 3直接数据输入引脚nRF24Z1音频发射器有两个通用输入引脚DD1和DD0,当SSEL引脚为高,DD2引脚和DD1、DD0引脚一起用于直接数据输入,此时,音频接收器端的DO2、DO1和DO0三个引脚的信号为DD2、DD1和DD0引脚的镜像。
这些用于控制音频接收器的一些外部开关,这样,音频接收器在没有微控制器的参与也能实现一些简单功能(如音量开关)的控制。
3.1.4中断输出在nRF24Z1检测到没有音频输入、射频连接断开等信息时,其可以通过IRQ引脚给微控制器提供中断信号,此时,微控制器可以通过控制接口读取nRF24Z1的状态信息。
3.2音频接收器nRF24Z1用作音频接收器时,MODE引脚必须为低电平。
nRF24Z1作为音频接收器时,其片内功能结构如图3所示。
此时,I2 S接口或S/PDIF接口用作音频数据或其它实时数据的输出接口。
图3nRF24Z1作为音频接收器时的功能结构图射频连接建立后,用户可以通过音频发射器控制音频接收器的SPI接口或标准2线接口。
这个特性使音频发射器能够对音频接收器的DAC和放大器实现遥控。
1.1. 1音频输出接口音频接收器的I2S接口支持8、11.025、12、16、22.05、24、32和48 kHz多种接口速率,音频数据为16位格式。
在音频接收器模式下,MCLK引脚给外部DAC(数模转换器)256Hz的输出频率。
音频接收器的S/PDIF接口支持32、44.1和48kHz三种采样速率,音频数据可以采用16位或24位三种格式。
3.2.2控制接口可以在SPI接口或标准2线接口外挂EEPROM或FLASH存储器,nRF24Z1在上电或复位时,从存储器读取默认的配置数据。
如果没有外挂存储器,芯片将使用其自身的默认值。
在音频接收器的配置中,SPI接口可以工作于1MHz或0.5MHz的速率。
当音频接收器与音频发射器建立了射频连接之后,用户可以通过音频发射器来控制音频接收器的SPI接口。
在重新启动时,音频接收器的2线接口工作于100kHz的速率,之后,用户可以通过音频发射器配置其工作于100kHz、400kHz或1MHz。
与音频发射器一样,nRF24Z1音频接收器工作于SPI接口还是标准2线接口,是由SSEL引脚的电平决定的。
2. 射频通信4.1射频协议nRF24Z1的射频协议完全由其片内硬件处理,用户只需配置射频通信的地址长度和接收器的地址。
协议地址长度最大为5个字节,地址的内容存放在片内存储器ADDR0~ADDR5,5个字节依次存放,低字节在前,高字节在后。
4.2射频连接初始化在射频连接建立之前,音频发射器在所有可用的频道上,反复地向音频接收器发送搜索信息包,在每个频道上搜索一段时间,以使音频接收器能够接收和处理搜索信息。
与此同时,音频接收器也在所有可用的频道上监听信息,每个频道监听一段时间,一旦监听到来自音频发射器的搜索信息包,音频接收器发送应答信息,音频接收器和音频发射器都锁定该频道,以准备通信。
nRF24Z1的这种连接方式有助于防止干扰,减少与在2.4G频段上工作的其它射频设备之间的通信碰撞。
4.3跳频通信为了提高射频通信的抗干扰性和可靠性,nRF24Z1支持自适应跳频通信。
nRF24Z1具有38个自适应通信的工作频率,各个频率分别由跳频寄存器CH0~CH37控制。
在跳频时,nRF24Z1根据跳频寄存器中的内容,按顺序改变工作频率,也就是说,当CH0的频率受到干扰而无法进行射频连接时,nRF24Z1会使用CH1进行连接,如果CH1受到干扰,则使用CH2,依次类推。
因此,在跳频通信之前,各个跳频寄存器要通过外部EEPROM或微控制器进行初始化。
如果想CH0对应于频率2420MHz,则只需在CH0寄存器中写入20,如果想CH0对应于频率2440MHz,则只需在CH0寄存器中写入40,这样,在跳频通信时,芯片就能够按顺序跳频到相应的频道。
3. 应用详述图4nRF24Z1发射器的硬件原理nRF24Z1发射器的外围元器件及其与微控制器的接口原理如图4所示,nRF24Z1使用SPI接口与外部微控制器进行数据传输,使用I2S接口与音频采样设备连接。
ANT1和ANT2两个引脚为nRF24Z1的天线引脚,射频信号从这两个引脚平衡输出。
由图4可知,VDD_PA引脚给天线部分提供直流电源。
当ANT1和ANT2引脚的两端负载阻抗随输出功率的变化而改变,目标输出功率为芯片的最大输出功率0dbm时,该两引脚的负载阻抗最好是100Ω+j175Ω,在一般应用中,可使用50Ω简单负载匹配网络。
图4中,电阻R3可以保证当微控制器复位时,nRF24Z1寄存中的内容保持不变,电阻R4用于防止SPI接口的误激活,这两个电阻在使用中可以省去,但这样做会降低系统的稳定性。
电阻R2为nRF24Z1提供参考电流,该电阻为22kΩ时,芯片的通信性能最优,改变该电阻的阻值会影响芯片的通信性能。
DVDD引脚为nRF24Z1片内数字供电电压的可调整输出引脚,该引脚的主要作用是为芯片提供去耦通路。
在应用中,DVDD引脚需要接一个33nF的电容到数字地,而不能用于为其它片外器件的提供电源,也不能直接和VDD引脚连在一起。
PCB(印制电路板)的设计对整个nRF24Z1通信系统的射频性能影响很大,PCB设计不好,可能会造成通信误码率高或发射功率达到目标值,直接影响射频通信的距离。
根据Nordic公司的推荐,nRF24Z1的电路板至少用两层板,直流供电电源模块尽量靠近VDD引脚,尽量避免电源线过长,以减少因电路板工作过程中,因线路耦合带入过大的干扰[3]。
直流供电电源模块应该并接一个4.7uF的电容到数字地,以达到稳压和滤波的目的。
此外,应该把nRF24Z1的电源跟电路板上其它器件的电源隔离开,以减少因其它器件工作过程中电流变化所产生的干扰。
nRF24Z1芯片的所有VSS引脚应该直接连接到数字地敷铜层,并在这些引脚附近打些过孔,以使顶层和底层间的敷铜层连接良好。
数字控制信号线最好能够离晶振部分和电源部分远些。
总之,在设计P CB时,主要考虑周围元器件的布置、天线匹配网络、走线、电路板的体积和敷铜等方面的影响,设计者可以从Nordic公司的网站更多的参考资料。
1. 结论根据应用的需求,挪威Nordic半导体公司推出的CD音质的2.4GHz无线数字音频收发芯片nRF24Z1,给无线音频处理系统提供低成本的选择,很好的满足了市场的需求。