几种常用无线收发芯片性能比较.
五大无线技术比较(ZigBee、UWB、Wi-Fi、蓝牙、NFC)

五大无线技术比较(ZigBee、UWB、Wi-Fi、蓝牙、NFC)ZigBee:巨头力挺前途难料ZigBee联盟成立于2001年8月。
但作为该项技术发展过程中具有里程碑意义的是,2002年下半年,英国Invensys公司、日本三菱电气公司、美国摩托罗拉公司以及荷兰飞利浦半导体公司四大巨头共同宣布,它们将加盟「ZigBee联盟」,以研发名为「ZigBee」的下一代无线通信标准。
到目前为止,除了Invensys、三菱电子、摩托罗拉和飞利浦等国际知名的大公司外,该联盟大约已有27家成员企业,并在迅速发展壮大。
Zigbee联盟负责制定网络层以上协议。
ZigBee的芯片和产品已经面市,每个Zigbee通信模块的成本将有望控制在1.5美元到2.5美元之间。
分析家认为,到2006年,ZigBee设备将会达到每年4亿台的市场规模。
预计4~5年内,每个家庭将会安装大约50个ZigBee设备,最终达150个ZigBee设备6~7年内占据家庭自动化市场的三分之二。
但是也有人认为:ZigBee几年前刚出现时,它的支持者曾设想这种基于IEEE 802.15.4规范的无线技术拥有潜在的巨大市场。
但现在看来当初的设想并没有成为现实,目前有消息称由于芯片厂商推迟出货,因而ZigBee的前景并不像先前设想的那样一帆风顺。
UWB:前途无量受困争战UWB是一种无载波通信技术,它不采用正弦载波,而是利用纳秒至微微秒级的非正弦波窄脉冲传输数据,因此其所占的频谱范围很宽。
UWB可在非常宽的带宽上传输信号,美国FCC对UWB的规定为:在3.1~10.6GHz频段中占用500MHz以上的带宽。
由于UWB可以利用低功耗、低复杂度发射/接收机实现高速数据传输而在近年来得到迅速发展。
它在非常宽的频谱范围内采用低功率脉冲传送数据而不会对常规窄带无线通信系统造成大的干扰,并可充分利用频谱资源。
基于UWB技术而构建的高速率数据收发机有着广泛的用途,从无线局域网到Ad hoc网络,从移动IP计算到集中式多媒体应用等。
短距离无线通讯(芯片)技术概述

短距离无线通讯(芯片)技术概述一、各种短距离无线通信使用范围与特性比较无线化是控制领域发展的趋势,尤其是工作于ISM频段的短距离无线通信得到了广泛的应用,各种短距离无线通信都有各自合适的使用范围,本文简介几种常见的无线通讯技术。
关键字:短距离无线通信,红外技术,蓝牙技术,802.11b,无线收发工业应用中,现阶段基本上都是以有线的方式进行连接,实现各种控制功能。
各种总线技术,局域网技术等有线网络的使用的确给人们的生产和生活带来了便利,改变了我们的生活,对社会的发展起到了极大的推动作用。
有线网络速度快,数据流量大,可靠性强,对于基本固定的设备来说无疑是比较理想的选择,的确在实际应用中也达到了比较满意的效果。
但随着射频技术、集成电路技术的发展,无线通信功能的实现越来越容易,数据传输速度也越来越快,并且逐渐达到可以和有线网络相媲美的水平。
而同时有线网络布线麻烦,线路故障难以检查,设备重新布局就要重新布线,且不能随意移动等缺点越发突出。
在向往自由和希望随时随地进行通信的今天,人们把目光转向了无线通信方式,尤其是一些机动性要求较强的设备,或人们不方便随时到达现场的条件下。
因此出现一些典型的无线应用,如:无线智能家居,无线抄表,无线点菜,无线数据采集,无线设备管理和监控,汽车仪表数据的无线读取等等。
1.几种无线通信方式的简介生产和生活中的控制应用往往是限定到一定地域范围内,比如:主机设备和周边设备的互联互通,智能家居房间内的电器控制,餐厅或饭店内的无线点菜系统,厂房内生产设备的管理和监控等0~200米的范围内,本文着重探讨短距离无线通信实用技术,主要有:红外技术,蓝牙技术,802.11b无线局域网标准技术,微功率短距离无线通信技术,现简介如下:1.1 红外技术红外通信技术采用人眼看不到的红外光传输信息,是使用最广泛的无线技术,它利用红外光的通断表示计算机中的0-1逻辑,通常有效作用半径2米,发射角一般不超过20度,传统速度可达4 Mbit/s,1995年IrDA(InfraRed Data Association)将通信速率扩展到的高达16Mbit/s ,红外技术采用点到点的连接方式,具有方向性,数据传输干扰少,速度快,保密性强,价格便宜,因此广泛应用于各种遥控器,笔记本电脑,PDA,移动电话等移动设备,但红外技术只限于两台设备通讯,无法灵活构成网络,而且红外技术只是一种视距传输技术,传输数据时两个设备之间不能有阻挡物,有效距离小,且无法用于边移动边使用的设备。
无线网卡芯片性能分析与比较

无线网卡芯片性能分析与比较无线终端的进入门槛越来越低,市场上公版方案外加一个壳就能DIY。
除了做工对产品有影响外,成品性能很大程度上依赖于所采用的方案。
因此,只要了解产品所采用的芯片,整机性能就能掌握个大概。
目前市场上主流无线芯片厂商有Intel(英特尔)、Ralink(雷凌)、Realtek(瑞昱)、Atheros(创锐讯通)、Broadcom(博通)等,其中外置无线网卡市场采用Ralink、Realtek 的芯片比较多;Atheros、Broadcom、Intel三家主要耕耘于笔记本电脑内置无线网卡市场。
Ralink最出名的芯片当属RaLink 3070系列,其中有3070L和3070两个版本,都支持802.11b/g/n。
3070可支持300Mb/s的最大速度,3070L可以看作是3070的降速版,最大速度150Mb/s。
Ralink的芯片通常来说品质都比较不错,信号强度好,连接要求低。
由于RaLink 3070系列只能做成单功放方案,所以功耗相对较小,辐射强度相对于其他采用多功放方案的芯片要小。
而RaLink 5370芯片的特点在于体型小,许多厂商的mini USB无线网卡都是采用这颗芯片。
Realtek作为业界老牌IC芯片厂商在业界享有很高的声誉,其产品分布可谓雅俗共赏,特别在中低端领域口碑颇佳。
比较出名的芯片当属Realtek 8187L,其成熟度相当高,虽然Realtek 8187L芯片规格相对落后,但可以做成多功放方案,网络覆盖能力出色,这是RaLink 3070芯片无法比拟的。
Realtek 8187L目前最大支持三功放方案,缺点是功率和辐射相对于单功放芯片就要大得多。
Realtek的另一枚芯片Realtek 8188也比较常见,特点在于支持惠普很多机型。
众所周知,惠普和联想ThinkPad系列的笔记本是电脑很挑网卡的,而Realtek 8188则能提供很好的支持。
另外Realtek8188也经常用于miniUSB无线网卡上。
zigbee芯片厂家对比概况

zigbee 芯片厂家对比主要 ZigBee 芯片供应商 ZigBee 方案竞争能力比较目前市场上主要 ZigBee 芯片提供商 (2.4GHZ , 主要有:TI/CHIPCON、EMBER(ST、 JENNIC(捷力、 FREESCALE 、 MICROCHIP 四家。
目前 ZigBee 技术提供方式有三种:1 ZigBee RF+MCU 例如 :TI CC2420+MSP430 、 FREESCLAEMC13XX+GT60 、 MICROCHIP MJ2440+PIC MCU。
2 单芯片集成 SOC 如:TI CC2430/CC2431(8051内核、 FREESCALEMC1321X 、 EM250。
3 单芯片内置 ZIGBEE 协议栈+外挂芯片 JENNIC SOC+EEPROM、 EMBER 260+MCU。
主要四个公司按上述几方面分析如下:A 微处理器:除了 CC2430/CC2431外 , 其他四家公司都是采用自己的微处理器。
只有 CC2430/CC2431采用标准的 8051处理器。
该项评分:CC2430/CC2431胜出因为:8051微处理器诞生 30多年,目前在国内最为普及。
大学中专,都有广泛的课程,各种参考书,到处都有。
开发软件 KEIL 、 IAR已被大家熟悉,用起来最顺手。
有言论说8051“老了” 怕不能担当此重任, 也有言论说 8051会产生数字噪声, 影响无线通讯… 以专家的眼光看,这些都是没有科学依据的说法。
随着芯片科技的发展, 今天的 8051早已经脱胎换骨, 只是片上系统 (SoC的一小部分, 而且在低功耗、高速度、低噪声等方面,有了质的飞跃。
CC2430/CC243的 8051内核经过特别设计,可以和 2.4GHZ 的 ZigBee 无线收发电路完美的配合工作,绝不会因为其 8051内核的高速运行而对高频无线通讯有任何影响。
采用从 8051对用户而言好处如下 :1、无需重新学习微处理器结构原理 , 无需重新熟悉编译 /调试工具;2、对片上系统的 I/O,定时器, A/D, PWM ,看门狗等等,也无需重新学习;3、如果你没有单片机的基础,学起来也非常容易,也容易找到人请教、交流;从技术眼光看, ZigBee 技术的核心是软件。
wifi模块开发 芯片选型对比

Wifi模块开发调研本文对几款主流的wifi芯片进行对比,包括TI公司的cc3200,乐鑫的esp8266,联发科的mt7681。
通过了解它们的特点和开发环境等方面的需求,选取适用于自己使用的芯片来进行物联网wifi模块的开发。
1CC32001.1芯片简介CC3200是TI无线连接SimpleLink Wi-Fi和物联网(IoT)解决方案最新推出的一款Wi-Fi MCU,是业界第一个具有内置Wi-Fi的MCU,是针对物联网应用、集成高性能ARM Cortex-M4的无线MCU。
客户能够使用单个集成电路开发整个应用,借助片上Wi-Fi、互联网和强大的安全协议,无需Wi-Fi经验即可实现快速的开发。
CC3200是一个完整平台解决方案,其中包括软件、示例应用、工具、用户和编程指南、参考设计以及TI E2E支持社区。
CC3200采用易于布局的四方扁平无引线(QFN)封装。
有人科技的USR-C322模块采用的是TI的CC3200方案,基于ARM Cortex-M4内核,运行频率高达80MHz;超低功耗:低功耗,在网待机低至3.5mA,深度休眠最低25uA;Simplelink 功能:实现一键联入Wi-Fi网络;另外支持自定义网页、websocket、httpd client等功能。
1.2特点Wi-Fi网络处理器(CC3200)包含一个Wi-Fi片上互联网和一个可完全免除应用MCU处理负担的专用ARM MCU。
Wi-Fi片上互联网包含802.11b/g/n射频、基带和具有强大加密引擎的MAC,可以实现支持256位加密的快速安全的互联网连接。
Wi-Fi片上互联网还包括嵌入式TCP/IP和TLS/SSL协议栈、HTTP服务器和多种互联网协议。
CC3200支持站点、接入点和Wi-Fi直连3种模式,支持WPA2个人和企业安全性以及WPS2。
1.3开发支持官方提供的SDK包含用于CC3200可编程MCU的驱动程序、40个以上的示例应用以及使用该解决方案所需的文档。
433M、2.4G无线模块特性对比

433M、2.4G无线模块特性对比
无线模块(RF wireless Module),是数字数传电台(Digitalradio)的模块化产品,是指借助单片机技术和无线电技术实现的高性能专业数据传输模块。
无线模块在实际应用中比有线通讯如下优点:
1.成本低
2.建设工程周期短
3.适应性好
4.扩展性好
无线模块的重要用途就是配合单片机来实现数据通讯,但是在操作的时候需要一定知晓以下的技巧:
⏹合理的空中速率(无线模块的空中速率与接口串口波特率是两个概念)
⏹合理的信息码格式
⏹单片机对接收模块的干扰
现如今无线模块市场日益繁杂,但是大体可以分为三个大类别,
1.ASK超外差模块:我们可以作为一个简单的遥控和数据传输;
2.无线收发模块:主要运用一款单片机来控制无线模块收发数据,常用的调制模式有FSK,GFSK;
总而言之,我们可以根据不同的组网方式而选择不同频率的模块。
如果组网方式比较容易,要求也比较简单,一个主机多个从机,成本要求低,使用环境比较复杂,我们就可以使用433MHz的无线模块;相对的来说,如果是网络拓扑比较复杂、功能繁多、网络健壮性强、低功耗要求、开发简单、2.4GHz带组网功能的产品会是您是不二的选择。
三种主流RF方案及其优缺点比较

三种主流RF方案及其优缺点比较一:主流的三种RF方案及其优缺点比较1):蓝牙方案(IEEE802.15)蓝牙,是一种支持设备短距离通信(一般10m内)的无线电技术。
能在包括移动电话、PDA、无线耳机、笔记本电脑、相关外设等众多设备之间进行无线信息交换。
利用“蓝牙”技术,能够有效地简化移动通信终端设备之间的通信,也能够成功地简化设备与因特网Internet之间的通信,从而数据传输变得更加迅速高效,为无线通信拓宽道路。
蓝牙采用分散式网络结构以及快跳频和短包技术,支持点对点及点对多点通信,工作在全球通用的2.4GHz ISM(即工业、科学、医学)频段。
其数据速率为1Mbps.采用时分双工传输方案实现全双工传输。
信息时代最大的特点便是更加方便快速的信息传播,正是基于这一点,技术人员也在努力开发更加出色的信息数据传输方式。
蓝牙,对于手机乃至整个IT业而言已经不仅仅是一项简单的技术,而是一种概念。
当蓝牙联盟信誓旦旦地对未来前景作着美好的憧憬时,整个业界都为之震动。
抛开传统连线的束缚,彻底地享受无拘无束的乐趣,蓝牙给予我们的承诺足以让人精神振奋。
蓝牙协议允许数据在1个主设备和最多7个从设备,最高传输速率为723kbit/s.不过,实际实际的速率会比这个数值小。
高斯频移键控(GFSK)调制模式,在2.4G频段内使用83个1Mbps的频道。
在送到载波之前,GFSK在基带信号上使用高斯过滤。
可以平滑高电平(“1”)低电平(“0”)。
与频移键控(FSK)的直接方法相比,可以给传输信号提供一个较狭和“更干净”的频谱。
蓝牙设备有三种基本功率电平:1级(100米线视距)、2级(10米)和3级(2-3米)。
目前常用的设备为2级。
在蓝牙网络中的每一个设备都有一个独一无二的48比特识别号码。
第一个识别设备(通常在2秒钟内)成为主设备,接着设定为在频段中每秒使用1600次,所有网络中的其他设备将与这个主设备锁定并与其同步。
主设备以偶时隙传送,从设备以奇时隙响应。
通讯设备常用芯片

通讯设备常用芯片1. 介绍通讯设备常用芯片是指在通讯设备中广泛使用的集成电路芯片,它们负责处理和控制通讯信号的传输和处理。
随着通讯技术的发展,通讯设备常用芯片在实现高速、高效、可靠通讯的同时,也在不断创新和进化。
本文将介绍一些常见的通讯设备常用芯片及其特点。
2. 无线通讯芯片2.1 蓝牙芯片蓝牙芯片是一种短距离无线通讯技术,广泛应用于手机、耳机、音箱等设备中。
蓝牙芯片通过无线方式传输音频、数据和图像,具有低功耗、低成本、简单易用的特点。
常见的蓝牙芯片有CSR、Nordic、TI等。
2.2 Wi-Fi芯片Wi-Fi芯片是一种无线局域网技术,用于实现电子设备之间的无线通讯。
Wi-Fi芯片通过无线方式传输数据,具有高速、稳定的特点,广泛应用于路由器、智能家居、物联网等领域。
常见的Wi-Fi芯片有Broadcom、Realtek、Marvell等。
2.3 射频芯片射频芯片是一种用于无线通讯中的射频信号处理芯片,用于将数字信号转换为射频信号或将射频信号转换为数字信号。
射频芯片广泛应用于手机、无线电、卫星通讯等设备中,具有高频率、高速率的特点。
常见的射频芯片有Skyworks、RF Micro Devices、Qorvo等。
3. 有线通讯芯片3.1 以太网芯片以太网芯片是一种用于有线网络通讯的芯片,常用于计算机、网络交换机、路由器等设备中。
以太网芯片通过有线方式传输数据,具有高速、稳定、可靠的特点。
常见的以太网芯片有Broadcom、Intel、Realtek等。
3.2 光纤通讯芯片光纤通讯芯片是一种用于光纤通讯的芯片,常用于光纤传输设备中。
光纤通讯芯片通过光信号传输数据,具有高带宽、抗干扰、长距离传输的特点。
常见的光纤通讯芯片有Broadcom、Finisar、Lumentum等。
3.3 USB芯片USB芯片是一种用于通用串行总线(USB)通讯的芯片,常用于计算机、外部设备等设备中。
USB芯片通过有线方式传输数据,具有插拔方便、高速传输的特点。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
几种常用无线收发芯片性能比较表
由于无线收发芯片的种类和数量比较多,如何在你的设计中选择你所需要的芯片是非常关键的,正确的选择可以使你少走弯路,降低成本,更快地将你的产品推向市场。
下面几点有助于你选择你所需要的产品:
1、收发芯片的数据传输是否需要进行曼彻斯特编码?
采用曼彻斯特编码的芯片,在编程上会需要较高的技巧和经验,需要更多的内存和程序容量,并且曼彻斯特编码大大降低数据传输的效率,一般仅能达到标称速率的1/3。
而采用串口传输的芯片(如nRF401),应用及编程非常简单,传送的效率很高,标称速率就是实际速率,因为串口对大家来说是再熟悉不过的了,编程也很方便。
2、收发芯片所需的外围元件数量
芯片外围元件的数量的直接决定你的产品的成本,因此应该选择外围元件少的收发芯片。
有些芯片似乎比较便宜,可是外围元件使用很多昂贵的元件如变容管以及声表滤波器等;有些芯片收发分别需要两根天线,会大大加大成本。
这方面nRF401做得很好,外围元件仅10
个左右,无需声表滤波器、变容管等昂贵的元件,只需要便宜且易于获得的4MHz晶体,收发天线合一。
3、功耗
大多数无线收发芯片是应用在便携式产品上的,因此功耗也非常重要,应该根据需要选择综合功耗较小的产品.
4、发射功率
在同等条件下,为了保证有效和可靠的通信,应该选用发射功率较高的产品。
但是也应该注意,有些产品号称的发射功率虽然较高,但是由于其外围元件多,调试复杂,往往实际的发射功率远远达不到标称值。
5、收发芯片的封装和管脚数
较少的管脚以及较小的封装,有利于减少PCB面积降低成本,适合便携式产品的设计,也有利于开发和生产。
nRF401仅20脚,是管脚数和体积最小的。