误差及分析数据统计处理

合集下载

数据统计中的误差分析与处理

数据统计中的误差分析与处理

数据统计中的误差分析与处理数据统计在科学研究、商业决策以及各行各业的发展中起着重要作用。

然而,在进行数据统计时,我们经常会遇到误差,这可能导致结果的不准确性。

因此,了解误差的来源、分析和处理方法对于获得可靠的统计结果至关重要。

本文将探讨数据统计中的误差分析与处理方法。

一、误差来源1. 观察误差:观察误差是由于人为因素造成的误差,例如测量仪器的不准确性、操作者的主观误差等。

2. 抽样误差:抽样误差是由于样本选择的随机性和偏见导致的误差。

若抽取样本的方法具有偏向性,可能导致样本不具有代表性,进而影响统计结果的准确性。

3. 测量误差:测量误差是指在测量过程中产生的不确定性误差。

这可能是由于测量仪器的限制、测量环境的条件等引起的。

4. 数据采集误差:数据采集误差是指在数据采集过程中产生的误差。

这可能是由于数据录入的错误、丢失数据等原因导致的。

二、误差分析方法1. 统计指标分析:通常,我们可以使用平均值、标准差、方差等统计指标来对数据进行分析。

通过比较统计指标的差异,我们可以判断误差的大小和分布情况。

2. 图表分析:绘制直方图、散点图、折线图等图表可以直观地显示数据的分布情况。

通过观察图表,我们可以发现异常值和偏差,从而进行误差分析。

3. 假设检验:通过对数据进行假设检验,我们可以确定某一假设的真实性。

例如,使用 t 检验、方差分析等方法来比较样本和总体之间的差异,以检验误差是否显著。

三、误差处理方法1. 数据清洗:在数据统计中,数据的准确性至关重要。

因此,在进行统计分析之前,我们应该对数据进行清洗,包括去除异常值、填充缺失值等操作,以确保数据的可靠性。

2. 方法改进:在数据统计中,选择合适的统计方法也是非常重要的。

如果我们发现某种方法在误差较大或不适用的情况下,可以尝试其他方法来提高结果的准确性。

3. 模型修正:如果误差的来源可以被建模和理解,我们可以通过修正模型的参数或结构来降低误差的影响。

这可能涉及到重新拟合模型、调整参数等操作。

实验数据的统计与误差分析方法

实验数据的统计与误差分析方法

实验数据的统计与误差分析方法引言:在科学研究中,实验数据的统计与误差分析方法是十分重要的。

通过对数据进行统计分析和误差分析,可以更加客观地评估实验结果的可靠性和准确性。

本文将介绍实验数据的统计分析方法和误差分析方法,并提出一些相关的实践经验。

一、实验数据的统计分析方法实验数据的统计分析方法主要包括描述统计和推断统计。

描述统计是对数据的基本特征进行总结和描述,推断统计则是通过样本数据对总体参数进行推断。

1. 描述统计描述统计主要包括以下几种方法:(1)中心位置度量:即对数据的集中趋势进行度量,常用的指标有算术平均值、中位数和众数。

算术平均值是最常用的中心位置度量指标,能够反映数据的总体情况。

(2)离散程度度量:即对数据的分散程度进行度量,常用的指标有标准差、方差和极差。

标准差是最常用的离散程度度量指标,能够反映数据的波动情况。

(3)偏态度和峰态度量:即对数据的分布形态进行度量,常用的指标有偏态系数和峰态系数。

偏态系数描述了数据分布的偏斜程度,峰态系数描述了数据分布的陡缓程度。

2. 推断统计推断统计主要包括以下几种方法:(1)参数估计:通过样本数据对总体参数进行估计,常用的方法有点估计和区间估计。

点估计是直接用样本数据估计总体参数的值,区间估计是用样本数据确定总体参数的置信区间。

(2)假设检验:通过样本数据对总体参数的某个假设进行检验,常用的方法有抽样分布检验和假设检验。

抽样分布检验是根据样本数据构建抽样分布,通过比较样本统计量与抽样分布的关系判断总体假设的合理性;假设检验是通过计算样本统计量的概率值,判断总体假设的接受程度。

二、误差分析方法误差是实验数据与真实值之间的差异,误差分析是对误差进行评估和分析的过程。

误差分析方法主要包括系统误差和随机误差的分析。

1. 系统误差分析系统误差是由于实验过程中存在的系统偏差或定性转换引起的误差。

系统误差的来源可以是仪器的误差、环境的影响、实验操作的不准确等。

系统误差分析的方法包括以下几步:(1)确定系统误差的来源和机理;(2)采用适当的方法进行实验设计,降低系统误差;(3)对实验数据进行分析和处理,比较不同条件下的实验结果,确定系统误差的大小。

第二章 误差与分析数据的统计处理

第二章 误差与分析数据的统计处理

《分析化学》第二章
随机误差
1. 随机误差 由于某些难以控制和无法避免的原因所造成的
误差。如温度、湿度、电流强度等的偶然波动,给试验结果 带来的影响。
2. 随机误差的特点
①分布对称可抵偿:绝对值相同的正负误差出现机会相等, 它们的总代数和等于0; ②单峰且有界:小误差出现的机会大,大误差出现的机会小, 极大误差出现的机会趋于零。
《分析化学》第二章
分 析 化 学
Analytical Chemistry
西北大学化学与材料科学学院
《分析化学》第二章
第二章 误差与分析数据的统计处理
《分析化学》第二章
2-1 定量分析中的误差 2-2 分析结果的数据处理
内容
2-3 误差的传递 2-4 有效数字及其运算规则 2-5 标准曲线的回归分析
吸光度A
0 0.032
0.02 0.135
0.04 0.187
0.06 0.268
0.08 0.359
0.10 0.435
试列出标准曲线的回归方程并计算未知试样中Mn的含量。
0.5 0.4 0.3 0.2 0.1 0 0 0.05 0.1 0.15 y = 3.9543x + 0.0383 R 2 = 0.9953
《分析化学》第二章
第二章


2.1 误差的基本概念: 准确度与精密度、误差与 偏差、系统误 差与随机误差;
2.2 有限数据的统计处理:
异常值的检验(Q检验法,G检验法);
2.4 有效数字:定义、修约规则、运算规则 。 2.5 标准曲线的回归分析
《分析化学》第二章
本章作业
P27---P28
习题2、6、10、11
G计算 x x1 s

分析化学误差及分析数据的统计处理ppt课件

分析化学误差及分析数据的统计处理ppt课件

修约规则
保留四位 14.2442 14.24 26.4863 26.49 15.0250 15.02 15.0150 15.02 15.0251 15.03
精选ppt课件
42
运算规则
加减法 按绝对误差大者保留
乘除法 按相对误差大者保留
采用安全数字 先修约? 先计算?
精选ppt课件
Xn - Xn-1 或 X2 -X1
(4) 计算:
QXnXn1 或 QX2X1
XnX1
XnX1
精选ppt课件
35
可疑数据的取舍
(5) 根据测定次数和要求的置信度,(如90%)查表:
测定次数 3 4 8
表1--2
Q90
0.94 0.76 0.47
不同置信度下,舍弃可疑数据的Q值表
Q95
0.98
Q99
2.误差及分析数据的统计处理
1--定量分析中的误差 2--分析结果的数据处理 3--有效数字及其运算规则
精选ppt课件
1
上叶
1—定量分析中的误差
分析过程是测量过程 测量的基本方法是比较 误差的存在不可避免
2
精选ppt课件
误差与准确度
误差—测定值与真值之差 绝对误差:
Exi
相对误差:
Er
0.99
0.85
0.93
0.54
0.63
(6)将Q与QX (如 Q90 )相比, 若Q > QX 舍弃该数据, (过失误差造成) 若Q < QX 舍弃该数据, (偶然误差所致)
当数据较少时 舍去一个后,应补加一个数据。
精选ppt课件
36
平均值与标准值得比较(方法准确度/系统误差)
t 检验法

分析数据时常见的误差与处理方法

分析数据时常见的误差与处理方法

分析数据时常见的误差与处理方法数据分析在现代社会中起着至关重要的作用,它帮助人们更好地理解和解释现象,从而指导决策和行动。

然而,在数据分析过程中,常常会出现各种误差,对结果的准确性和可靠性产生负面影响。

本文将从以下六个方面展开详细论述常见的数据分析误差及其处理方法。

一、采样误差采样误差是由于抽样方法不当或样本代表性不足而引起的误差。

例如,在进行社会调查时,如果采样方法不具备随机性,会导致调查结果的偏差。

处理采样误差的方法可以是增加样本的大小,提高样本的代表性以及采用更合理的抽样方法,如随机抽样或分层抽样。

二、测量误差测量误差指的是由于测量仪器的不准确性或被测对象的个体差异而导致的误差。

在进行实验研究或数据收集时,使用的测量工具和方法可能存在不确定性,从而引入测量误差。

要处理这种误差,可以提高测量仪器的精确度和可靠性,对被测对象进行多次测量并取平均值,或者通过使用标准化方法来校正测量结果。

三、数据处理误差数据处理误差是在数据输入、转换和存储过程中产生的误差。

常见的数据处理误差包括数据录入错误、数据丢失和数据转换错误等。

为了减少这种误差,可以使用自动化的数据采集和处理工具,加强对数据的质量控制,以及定期进行数据的核对和修正。

四、样本偏倚误差样本偏倚误差指的是样本在统计特征上与总体存在显著差异所引起的误差。

当样本不具备代表性时,会导致研究结果的偏离真实情况。

为了纠正样本偏倚误差,可以使用加权抽样法或启发式抽样法,以确保样本更接近总体的特征。

五、缺失数据误差缺失数据误差是由于数据的丢失或缺失引起的误差。

在进行数据分析时,常常会遇到数据缺失的情况,如果不处理好这些缺失数据,会导致结果的不准确性。

处理缺失数据误差的方法可以是使用插补法,将缺失数据进行估计和补全,或者通过合理的数据筛选和清洗来剔除缺失数据影响。

六、模型假设误差模型假设误差指的是在建模过程中所做出的假设与真实情况之间存在偏差。

在进行数据分析时,所使用的模型和方法都基于一定的假设前提,如果这些假设与真实情况不符,结果可能会产生误差。

误差及数据分析的统计处理

误差及数据分析的统计处理

误差及数据分析的统计处理
3. 说明 (1) 绝对误差相等,相对误差并不一定相同; (2) 同样的绝对误差,被测定的量较大时,相对误差就比较小 , 测定的准确度也就比较高;
(3) 用相对误差来表示各种情况下测定结果的准确度更为确切;
(4) 绝对误差和相对误差都有正值和负值。正值表示分析结果 偏高,负值表示分析结果偏低; (5) 实际工作中,真值实际上是无法获得; 常用纯物质的理论值、国家标准局提供的标准参考物质的证
误差及数据分析的统计处理
3. 精密度 (1)精密度:在确定条件下,将测试方法实施多次,求出
所得结果之间的一致程度。精密度的大小常用偏差表示。
( 2)精密度的高低还常用重复性( Repeatability )和再现性 (Reproducibility)表示。 重复性 (r) :同一操作者,在相同条件下,获得一系列结果 之间的一致程度。 再现性(R):不同的操作者,在不同条件下,用相同方法获 得的单个结果之间的一致程度。
有限次测定无法计算总体标准差 σ 和总体平均值 μ, 则偶然误差并不完全服从正态分布,服从类似于正态 分布的 t 分布( t 分布由英国统计学家与化学家 W.S.Gosset提 出,以Student的笔名发表)。 t 的定义与 u 一致
x t s n
误差及数据分析的统计处理
t 分布曲线
t 分布曲线随自由度 f ( f = n - 1)而变,当 f >20时,
dr
xi x x
100%
误差及数据分析的统计处理
算术平均偏差(Average Deviation):
1 n 1 n d d i xi x n i 1 n i 1
相对平均偏差表示为:
d d r 100% x

第一章 误差以及数据处理

第一章   误差以及数据处理

D、Pka=1.80
11、对于系统误差的特性,下列说法不正确的是: ( D )
A、具有可测性
C、具有重复性
B、具有单向性
D、具有随机性
12. 下列定义中不正确的是( D )
A、绝对误差是测量值与真实值之差;
B、相对误差是绝对误差在真实值中所占的百 分数;
C、偏差是指测定结果与平均结果之差; D、相对标准偏差是标准偏差与真实值之比。
2.3.2 减小随机误差 减小随机误差的方法:在保证精密度符合要 求的前提下,多次测定取平均值。 2.3.3 减小系统误差 1. 减小仪器误差:校准仪器;
2. 减小试剂误差:空白实验;
3.减小方法误差:对照实验,回收实验。
§2-4 有效数字及运算规则
2.4.1 有效数字 有效数字:实际能测量到的数字。规定只有最 后一位数字是估读的,如万分之一的分析天平读 数应记为3.2340g, 50mL滴定管体积读数应记为 18.10ml. 0.002013 (四位有效数字), 2.10x108( 三位)
A、(19.05 ± 0.01)ml
C、(19.05 ± 0.02)ml
B、(19.15 ± 0.01)ml
D、(19.15 ± 0.02)ml
8、分析某一试样的含铁量,每次称取试样2.0g , D 分析结果报告合理的是_____
A、0.03015 0.03020% B、0.0301% C、0.03% 0.03% D、0.030% 0.0298% 0.030%
相对误差 Er = (E/ μ) ×100%
误差有正负之分;正误差表示测 定结果偏高,负误差表示测定结果偏
低。误差越小,测定结果准确度越高。
误差是不可避免的
[例1] 利用差减法用万分之一分析天平称量两试样, 测得质量分别为0.0051g和5.1253g。计算两次称量 的相对误差。说明什么问题? 解:

误差及分析数据的统计处理

误差及分析数据的统计处理

第2章误差及分析数据的统计处理2.1有效数字及其运算规则2.2定量分析中的误差3.3分析结果的数据处理2.1 有效数字及运算规则2.1.1有效数字: 分析工作中实际能测量得到的数字,包括全部可靠数字及一位不确定数字在内(1)数字前0不计,数字后计入: 0.03400 (4位有效数字)(2)数字后的0含义不清楚时, 最好用指数形式表示: 1000(1.0×103, 1.00×103, 1.000 ×103) (分别是2位、3位、4位有效数字)(3)自然数和常数可看成具有无限多位数(如倍数、分数关系)(4)数据的第一位数大于等于8的,可多计一位有效数字,如9.45×104, 95.2%, 8.65 (它们都是4位有效数字)(5)对数与指数的有效数字位数按尾数计,如pH=10.28, 则[H+]=5.2×10-11(2位有效数字)(6)误差只需保留1~2位2m◇分析天平(称至0.1mg):12.8228g(6),0.2348g(4) , 0.0600g(3)◇千分之一天平(称至0.001g): 0.235g(3)◇1%天平(称至0.01g): 4.03g(3), 0.23g(2)◇台秤(称至0.1g): 4.0g(2), 0.2g(1)V☆滴定管(量至0.01mL):26.32mL(4), 3.97mL(3)☆容量瓶:100.0mL(4),250.0mL (4)☆移液管:25.00mL(4);☆量筒(量至1mL或0.1mL):25mL(2), 4.0mL(2)32.1.2 有效数字运算中的修约规则四舍六入五成双2.1.2.1有效数字的修约例如, 要修约为四位有效数字时:尾数≤4时舍, 0.52664 -------0.5266尾数≥6时入, 0.36266 -------0.3627尾数=5时, 若后面数为0, 舍5成双:10.2350----10.24, 250.650----250.6若5后面还有不是0的任何数皆入:18.0850001----18.0945禁止连续多次修约运算时可多保留一位有效数字进行0.57490.570.5750.58×2.1.2.2有效数字的计算规则A加减法: 结果的绝对误差应不小于各项中绝对误差最大的数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
精密度的高低用偏差衡量
偏差越小,精密度越高
分析化学 7/18/2020
18.07.2020
2 误差及分析数据的统计处理
2. 偏差的表示
2.1 定量分析中的误差
绝对偏差和相对偏差
❖绝对偏差d :单次测定值(x)与平均值( x )之差 d=x-x
❖相对偏差dr :绝对偏差在平均值中所占的分数
dr(%=)dx/
1、理论真值(如化合物的理论组成) 2、计量学约定真值(如国际计量大会确定的长度、质量、物
质的量单位等 等) 3、相对真值(如高一级精度的测量值相对于低一级精度的测
量值) 例如,标准样品的标准值
分析化学 7/18/2020
18.07.2020
2 误差及分析数据的统计处理
2. 误差
2.1 定量分析中的误差
校准仪器——校正仪器系统误差
空白试验:校正试剂系统误差
空白试验:除了不加试样外,其它试验步骤与试样试验
步 骤完全一样的实验,所得结果称为空白值。
回收实验:是在测定试样某组分含量的(x1)的基础 上,加入已知量的该组分(x2),再次测定其组分 含量(x3)。
回收率= x3 x1 100% x2
分析化学 7/18/2020
x
1.0 4% 3
s di28.61 0 74.61 0 40.04 % 6
n1
4
s10% 0 0.04% 6 10% 0 0.4% 4
x
1.0 43
分析化学 7/18/2020
18.07.2020
2 误差及分析数据的统计处理
例2-2
2.1 定量分析中的误差
用标准偏差比用平均偏差更科学更准确。 例: 两组数据
18.07.2020
2 误差及分析数据的统计处理
2.1 定量分析中的误差
四、误差的分类及减免误差的方法
(一)系统误差(可定误差): 由可定原因产生
1. 产生原因 a.方法误差:方法不恰当产生 b.试剂误差:试剂中含被测组分或不纯组分产生 c. 仪器误差:测量仪器本身缺陷造成的误差 d.操作误差: 操作方法不当引起
分析化学 7/18/2020
18.07.2020
2 误差及分析数据的统计处理
2.1 定量分析中的误差
三 、准确度和精密度的关系
例2-3:A、B、C、D 四个分析工作者对同一铁
标样(WFe=37.40%)中的铁含量进行测量,得 结果如图示,比较其准确度与精密度。
D
精密度低,表观准确度高
(不可靠)
C
精密度高,准确度高
分析化学 7/18/2020
18.07.2020
2 误差及分析数据的统计处理
一、误差与准确度
2.1 定量分析中的误差
1. 准确度
❖准确度是指测定结果与真值的接近程度
❖准确度的高低用误差衡量
真值T (True value)
某一物理量本身具有的客观存在的真实值。真值是未知的、
客观存在的量。在特定情况下认为是已知的:
B
精密度高,准确度低
A
精密度低,准确度低
36.00 36.50 37.00 37.50 38.00
测量点
平均值
真值
分析化学 7/18/2020
18.07.2020
2 误差及分析数据的统计处理
•续前 结论:
2.1 定量分析中的误差
1、精密度是保证准确度的前提。
2、精密度高,不一定准确度就高。
分析化学 7/18/2020
❖相对标准偏差 μ已知
CV(%)= s
相差和相对相差
x
❖相差=| x1- x2|
❖相对相差(%)=| x1- x2| / x
分析化学 7/18/2020
2.1 定量分析中的误差
n
(xi x)2
Sx
i 1
n 1
μ未知
18.07.2020
2 误差及分析数据的统计处理
例2-1
2.1 定量分析中的误差
2 误差及分析数据的统计处理
第二章 误差及分析数据的统计处理
第一节 定量分析中的误差 第二节 分析结果的数据处理 第三节 有效数字及其运算规则
分析化学 7/18/2020
18.07.2020
2 误差及分析数据的统计处理
第一节 定量分析中的误差
一、误差与准确度 二、 偏差与精密度 三、准确度与精密度的关系 四、误差的分类及减免误差的方法 五、随机误差的分布服从正态分布 六、有限次测定中随机误差服从t分布
18.07.2020
2 误差及分析数据的统计处理
(二) 随机误差
2.1 定量分析中的误差
1.产生原因:(偶然误差,不可定误差): 由不确定原因引起
2. 性质 1)不确定性(大小、正负不定) 2)不可消除(原因不定) 但可减小(测定次数↑) 3) 分布服从统计学规律(正态分布)
平均偏差和相对平均偏差
❖平均偏差 :各单次测定结果的偏差绝对值的平均

∑n di
d = i=1
n
❖相对平均偏差 :平均偏差占平均值的分数
dr(%=)d/x
分析化学 7/18/2020
18.07.2020
2 误差及分析数据的统计处理
续前
标准偏差和相对标准偏差
❖ 标准偏差
n
(xi )2
x i1 n
(1) X- x : 0.11, -0.73, 0.24, 0.51,
-0.14, 0.00, 0.30, -0.21,
n=8 d1=0.28 s1=0.38
(2) X- x :0.18,0.26,-0.25,-0.37,
0.32 , -0.28, 0.31, -0.27
n=8 d2=0.28 s2=0.29 d1=d2, s1>s2
2.性质: 重复性:重复测定重复出现 单向性:(大小、正负一定 ) 恒定性:(原因固定)
分析化学 7/18/2020
18.07.2020
2 误差及分析数据的统计处理
3.校正方法
2.1 定量分析中的误差
对照试验:校正方法系统误差
对照试验:选择一种标准方法与所采用的方法作对照试 验或选择与试样组成接近的标准试样作对照试验
❖误差为测定值(x)与真值(T)的差值 ❖误差越小,准确度越高 ❖误差可分为
➢绝对误差 E = x-T ➢相对误差 Er(%)= E / T 。
分析化学 7/18/2020
18.07.2020
2 误差及分析数据的统计处理
二 、偏差与精密度
பைடு நூலகம்
2.1 定量分析中的误差
1.精密度定义:精密度表示同一测量中,各次 平行测定结果的相互接近程度。
用丁二酮肟重量法测定钢铁中Ni的百分含量, 结果 为10.48%,10.37%,10.47%,10.43%,10.40%;计 算单次分析结果的平均偏差,相对平均偏差,标准 偏差和相对标准偏差。
用解丁:
x10.43%
d di 0.1% 80.03% 6
n
5
d10% 00.03% 610% 00.3% 5
相关文档
最新文档