带电粒子在匀强磁场中的运动
第一章 3 带电粒子在匀强磁场中的运动

3 带电粒子在匀强磁场中的运动[学习目标] 1.理解带电粒子初速度方向和磁场方向垂直时,带电粒子在匀强磁场中做匀速圆周运动.2.会根据洛伦兹力提供向心力推导半径公式和周期公式.3.会分析带电粒子在匀强磁场中运动的基本问题.一、带电粒子在匀强磁场中的运动1.若v ∥B ,带电粒子以速度v 做匀速直线运动,其所受洛伦兹力F =0.所以粒子做匀速直线运动.2.若v ⊥B ,此时初速度方向、洛伦兹力的方向均与磁场方向垂直,粒子在垂直于磁场方向的平面内运动.(1)洛伦兹力与粒子的运动方向垂直,只改变粒子速度的方向,不改变粒子速度的大小. (2)带电粒子在垂直于磁场的平面内做匀速圆周运动,洛伦兹力提供向心力. 二、带电粒子在磁场中做圆周运动的半径和周期 1.半径一个电荷量为q 的粒子,在磁感应强度为B 的匀强磁场中以速度v 运动,那么带电粒子所受的洛伦兹力为F =q v B ,由洛伦兹力提供向心力得q v B =m v 2r ,由此可解得圆周运动的半径r=m vqB.从这个结果可以看出,粒子在匀强磁场中做匀速圆周运动的半径与它的质量、速度成正比,与电荷量、磁感应强度成反比. 2.周期由r =m v qB 和T =2πr v ,可得T =2πm qB .带电粒子在匀强磁场中做匀速圆周运动的周期与轨道半径和运动速度无关.1.判断下列说法的正误.(1)运动电荷进入磁场后(无其他场)可能做匀速圆周运动,不可能做类平抛运动.( √ ) (2)带电粒子在匀强磁场中做匀速圆周运动时,轨道半径跟粒子的速率成正比.( √ ) (3)带电粒子在匀强磁场中做匀速圆周运动的周期与轨道半径成正比.( × ) (4)带电粒子在匀强磁场中做圆周运动的周期随速度的增大而减小.( × )2.两个粒子带电荷量相等,在同一匀强磁场中只受到磁场力作用而做匀速圆周运动,则( ) A .若速率相等,则半径必相等 B .若质量相等,则周期必相等 C .若动能相等,则半径必相等 D .若动量相等,则周期必相等 答案 B一、带电粒子在匀强磁场中运动的基本问题 导学探究如图所示,可用洛伦兹力演示仪观察运动电子在匀强磁场中的偏转.(1)不加磁场时,电子束的运动轨迹如何? (2)加上磁场后,电子束的运动轨迹如何?(3)如果保持出射电子的速度不变,增大磁感应强度,轨迹圆半径如何变化? (4)如果保持磁感应强度不变,增大出射电子的速度,轨迹圆半径如何变化? 答案 (1)一条直线 (2)圆 (3)变小 (4)变大 知识深化1.分析带电粒子在匀强磁场中的匀速圆周运动,要紧抓洛伦兹力提供向心力,即q v B =m v 2r .2.同一粒子在同一匀强磁场中做匀速圆周运动,由r =m v qB 知,r 与v 成正比;由T =2πmqB知,T 与速度无关,与半径无关.例1 质子p(11H)和α粒子(42He)以相同的速率在同一匀强磁场中做匀速圆周运动,轨道半径分别为R p 和R α,周期分别为T p 和T α,则下列选项中正确的是( ) A .R p ∶R α=1∶2,T p ∶T α=1∶2 B .R p ∶R α=1∶1,T p ∶T α=1∶1 C .R p ∶R α=1∶1,T p ∶T α=1∶2 D .R p ∶R α=1∶2,T p ∶T α=1∶1 答案 A解析 质子p(11H)和α粒子(42He)的带电荷量之比为q p ∶q α=1∶2,质量之比m p ∶m α=1∶4.由带电粒子在匀强磁场中做匀速圆周运动的规律可知,轨道半径R =m v qB ,周期T =2πm qB ,因为两粒子速率相同,代入q 、m ,可得R p ∶R α=1∶2,T p ∶T α=1∶2,故选项A 正确,B 、C 、D 错误.针对训练1 薄铝板将同一匀强磁场分成 Ⅰ、Ⅱ 两个区域,高速带电粒子可穿过铝板一次,在两个区域内运动的轨迹如图所示,半径R 1>R 2.假定穿过铝板前后粒子带电荷量保持不变,则该粒子( )A .带正电B .在Ⅰ、Ⅱ区域的运动速度大小相同C .在Ⅰ、Ⅱ区域的运动时间相同D .从Ⅱ区域穿过铝板运动到Ⅰ区域 答案 C解析 粒子穿过铝板受到铝板的阻力,速度将减小.由r =m vBq 可得粒子在磁场中做匀速圆周运动的轨道半径将减小,故可得粒子由Ⅰ区域运动到Ⅱ区域,结合左手定则可知粒子带负电,选项A 、B 、D 错误;由T =2πmBq可知粒子运动的周期不变,粒子在Ⅰ区域和Ⅱ区域中运动的时间均为t =12T =πmBq ,选项C 正确.二、带电粒子在匀强磁场中的圆周运动 1.圆心位置确定的两种方法 (1)圆心一定在垂直于速度的直线上已知入射方向和出射方向时,可以过入射点和出射点作垂直于入射方向和出射方向的直线,两条直线的交点就是圆弧轨道的圆心(如图甲所示,P 为入射点,M 为出射点). (2)圆心一定在弦的垂直平分线上已知入射方向和出射点的位置时,可以过入射点作入射方向的垂线,连接入射点和出射点,作其垂直平分线,这两条垂线的交点就是圆弧轨道的圆心(如图乙所示,P 为入射点,M 为出射点).2.半径的确定半径的计算一般利用几何知识解直角三角形.做题时一定要作好辅助线,由圆的半径和其他几何边构成直角三角形.由直角三角形的边角关系或勾股定理求解.3.粒子在匀强磁场中运动时间的确定(1)粒子在匀强磁场中运动一周的时间为T ,当粒子运动轨迹的圆弧所对应的圆心角为α时,其运动时间t =α360°T (或t =α2πT ).确定圆心角时,利用好几个角的关系,即圆心角=偏向角=2倍弦切角. (2)当v 一定时,粒子在匀强磁场中运动的时间t =lv ,l 为带电粒子通过的弧长.例2 如图所示,a 和b 所带电荷量相同,以相同动能从A 点射入磁场,在匀强磁场中做圆周运动的半径r a =2r b ,则可知(重力不计)( )A .两粒子都带正电,质量比m am b =4B .两粒子都带负电,质量比m am b =4C .两粒子都带正电,质量比m a m b =14D .两粒子都带负电,质量比m a m b =14答案 B解析 由于q a =q b ,E k a =E k b ,由动能E k =12m v 2和粒子偏转半径r =m v qB ,可得m =r 2q 2B 22E k ,可见m 与半径r 的二次方成正比,故m a ∶m b =4∶1,再根据左手定则知粒子应带负电,故选B.例3 如图所示,一带电荷量为2.0×10-9 C 、质量为1.8×10-16kg 的粒子,从直线上一点O沿与PO 方向成30°角的方向进入磁感应强度为B 的匀强磁场中,经过1.5×10-6 s 后到达直线上的P 点,求:(1)粒子做圆周运动的周期; (2)磁感应强度B 的大小;(3)若O 、P 之间的距离为0.1 m ,则粒子的运动速度的大小. 答案 (1)1.8×10-6 s (2)0.314 T (3)3.49×105 m/s解析 (1)作出粒子的运动轨迹,如图所示,由图可知粒子由O 到P 的大圆弧所对的圆心角为300°,则t T =300°360°=56,周期T =65t =65×1.5×10-6 s =1.8×10-6 s (2)由q v B =m v 2r ,T =2πr v ,得T =2πm qB ,知B =2πm qT =2×3.14×1.8×10-162.0×10-9×1.8×10-6T =0.314 T.(3)由几何知识可知,半径r =OP =0.1 m 则q v B =m v 2r得,粒子的运动速度大小为v =Bqr m =0.314×2.0×10-9×0.11.8×10-16 m/s ≈3.49×105 m/s. 针对训练2 (多选)(2020·天津卷)如图所示,在Oxy 平面的第一象限内存在方向垂直纸面向里,磁感应强度大小为B 的匀强磁场.一带电粒子从y 轴上的M 点射入磁场,速度方向与y 轴正方向的夹角θ=45°.粒子经过磁场偏转后在N 点(图中未画出)垂直穿过x 轴.已知OM =a ,粒子电荷量为q ,质量为m ,重力不计.则( )A .粒子带负电荷B .粒子速度大小为qBa mC .粒子在磁场中运动的轨道半径为aD .N 与O 点相距(2+1)a 答案 AD解析 由题意可知,粒子在磁场中做顺时针圆周运动,根据左手定则可知粒子带负电荷,故A 正确;粒子的运动轨迹如图所示,O ′为粒子做匀速圆周运动的圆心,其轨道半径R =2a ,故C 错误;由洛伦兹力提供向心力可得q v B =m v 2R ,则v =2qBa m ,故B 错误;由图可知,ON =a +2a =(2+1)a ,故D 正确.考点一 周期公式与半径公式的基本应用1.(多选)两个粒子A 和B 带有等量的同种电荷,粒子A 和B 以垂直于磁场的方向射入同一匀强磁场,不计重力,则下列说法正确的是( ) A .如果两粒子的速度v A =v B ,则两粒子的半径R A =R B B .如果两粒子的动能E k A =E k B ,则两粒子的周期T A =T B C .如果两粒子的质量m A =m B ,则两粒子的周期T A =T B D .如果两粒子的动量大小相同,则两粒子的半径R A =R B 答案 CD解析 因为粒子在匀强磁场中做匀速圆周运动的半径r =m v qB ,周期T =2πmqB ,又粒子电荷量相等且在同一匀强磁场中,所以q 、B 相等,r 与m 、v 有关,T 只与m 有关,所以A 、B 错误,C 、D 正确.2.在匀强磁场中,一个带电粒子做匀速圆周运动,如果又顺利垂直进入另一磁感应强度是原来磁感应强度一半的匀强磁场,则( ) A .粒子的速率加倍,周期减半 B .粒子的速率不变,轨道半径减半 C .粒子的速率不变,周期变为原来的2倍D .粒子的速率减半,轨道半径变为原来的2倍 答案 C解析 因洛伦兹力对粒子不做功,故粒子的速率不变;当磁感应强度减半后,由r =m vBq 可知,轨道半径变为原来的2倍;由T =2πmBq 可知,粒子的周期变为原来的2倍,故C 正确,A 、B 、D 错误.3.一个带电粒子沿垂直于磁场的方向射入一匀强磁场.粒子的一段径迹如图所示.径迹上的每一小段都可近似看成圆弧.由于带电粒子能使沿途的空气电离,粒子的能量逐渐减小(电荷量不变).从图中情况可以确定( )A .粒子从a 到b ,带正电B .粒子从a 到b ,带负电C .粒子从b 到a ,带正电D .粒子从b 到a ,带负电 答案 C解析 由于带电粒子使沿途的空气电离,粒子的能量逐渐减小,可知速度逐渐减小;根据粒子在匀强磁场中做匀速圆周运动的半径公式r =m vqB 可知,粒子的运动半径逐渐减小,所以粒子的运动方向是从b 到a ;再根据左手定则可知粒子带正电,选项C 正确,A 、B 、D 错误. 4.质量和带电荷量都相等的带电粒子M 和N ,以不同的速率经小孔S 垂直进入匀强磁场并最终打在金属板上,运动的半圆轨迹如图中虚线所示,不计重力,下列表述正确的是( )A .M 带负电,N 带正电B .M 的速率小于N 的速率C .洛伦兹力对M 、N 做正功D .M 的运动时间大于N 的运动时间 答案 A解析 根据左手定则可知N 带正电,M 带负电,A 正确;因r =m vBq,而M 的轨迹半径大于N的轨迹半径,所以M 的速率大于N 的速率,B 错误;洛伦兹力不做功,C 错误;M 和N 的运动时间都为t =πmBq,D 错误.考点二 带电粒子做匀速圆周运动的分析5.如图,ABCD 是一个正方形的匀强磁场区域,两相同的粒子甲、乙分别以不同的速率从A 、D 两点沿图示方向射入磁场,均从C 点射出,则它们的速率之比v 甲∶v 乙和它们通过该磁场所用时间之比t 甲∶t 乙分别为( )A .1∶1,2∶1B .1∶2,2∶1C .2∶1,1∶2D .1∶2,1∶1答案 C解析 根据q v B =m v 2r ,得v =qBrm ,根据题图可知,甲、乙两粒子的轨迹半径之比为2∶1,又因为两粒子相同,故v 甲∶v 乙=r 甲∶r 乙=2∶1,粒子在磁场中的运动周期T =2πmqB ,两粒子相同,可知甲、乙两粒子的周期之比为1∶1,根据轨迹图可知,甲、乙两粒子转过的圆心角之比为1∶2,故两粒子在磁场中经历的时间之比t 甲∶t 乙=1∶2,选C.6.如图所示,MN 为铝质薄平板,铝板上方和下方分别有垂直于纸面的匀强磁场(未画出),一带电粒子从紧贴铝板上表面的P 点垂直于铝板向上射出,从Q 点穿越铝板后到达PQ 的中点O .已知粒子穿越铝板时,其动能损失一半,速度方向和电荷量不变,不计重力.铝板上方和下方的磁感应强度大小之比为( )A .2∶1 B.2∶1 C .1∶1 D.2∶2 答案 D解析 根据几何关系可知,带电粒子在铝板上方做匀速圆周运动的轨迹半径r 1是其在铝板下方做匀速圆周运动的轨迹半径r 2的2倍,设粒子在P 点的速度大小为v 1,动能为E k ,根据牛顿第二定律可得q v 1B 1=m v 12r 1,则B 1=m v 1qr 1=2mE kqr 1;同理,B 2=m v 2qr 2=2m ·12E kqr 2=mE kqr 2,则B 1B 2=2r 2r 1=22,D 正确.7.(多选)如图所示,分界线MN 上、下两侧有垂直纸面的匀强磁场,磁感应强度分别为B 1和B 2,一质量为m 、电荷量为q 的带电粒子(不计重力)从O 点出发以一定的初速度v 0沿纸面垂直MN 向上射出,经时间t 又回到出发点O ,形成了图示心形轨迹,则( )A .粒子一定带正电荷B .MN 上、下两侧的磁场方向相同C .MN 上、下两侧的磁感应强度的大小之比B 1∶B 2=1∶2D .时间t =2πm qB 2答案 BD解析 题中未给出磁场的方向和粒子绕行的方向,所以不能判定粒子所带电荷的正负,选项A 错误;粒子越过磁场的分界线MN 时,洛伦兹力的方向没有变,根据左手定则可知MN 上、下两侧的磁场方向相同,选项B 正确;设MN 上方的轨迹半径是r 1,下方的轨迹半径是r 2,根据几何关系可知r 1∶r 2=1∶2;洛伦兹力充当粒子做圆周运动的向心力,由q v 0B =m v 02r ,解得B =m v 0qr ,所以B 1∶B 2=r 2∶r 1=2∶1,选项C 错误;由题图知,时间t =T 1+T 22=2πmqB 1+πm qB 2,由B 1∶B 2=2∶1得t =2πm qB 2,选项D 正确. 8.如图所示,两个速度大小不同的同种带电粒子1、2沿水平方向从同一点垂直射入匀强磁场中,磁场方向垂直纸面向里,当它们从磁场下边界飞出时相对入射方向的偏转角分别为90°、60°,则粒子1、2在磁场中运动的( )A .轨迹半径之比为2∶1B .速度之比为1∶2C .时间之比为2∶3D .周期之比为1∶2答案 B解析 带电粒子在匀强磁场中运动时,洛伦兹力提供向心力,由牛顿第二定律有q v B =m v 2r,可得r =m v qB ,又T =2πr v ,联立可得T =2πmqB ,故两粒子运动的周期相同,D 错误;速度的偏转角等于轨迹所对的圆心角,故粒子1的运动时间t 1=90°360°T =14T ,粒子2的运动时间t 2=60°360°T=16T ,则时间之比为3∶2,C 错误;粒子1和粒子2运动轨迹的圆心O 1和O 2如图所示,设粒子1的轨迹半径R 1=d ,对于粒子2,由几何关系可得R 2sin 30°+d =R 2,解得R 2=2d ,故轨迹半径之比为1∶2,A 错误;由r =m vqB可知,速度之比为1∶2,B 正确.9.如图所示,在x 轴上方存在垂直于纸面向里的匀强磁场,磁场的磁感应强度为B ,在xOy 平面内,从原点O 处与x 轴正方向成θ角(0<θ<π),以速率v 发射一个带正电的粒子(重力不计),则下列说法正确的是( )A .若v 一定,θ越大,则粒子离开磁场的位置距O 点越远B .若v 一定,θ越大,则粒子在磁场中运动的时间越短C .若θ一定,v 越大,则粒子在磁场中运动的角速度越大D .若θ一定,v 越大,则粒子在磁场中运动的时间越短 答案 B解析 画出粒子在磁场中运动的轨迹如图所示,由几何关系得,轨迹对应的圆心角α=2π-2θ,粒子在磁场中运动的时间t =α2πT =2π-2θ2π·2πm qB =(2π-2θ)m qB ,可得,若v 一定,θ越大,粒子在磁场中运动的时间t 越短,若θ一定,则粒子在磁场中的运动时间一定,故B 正确,D 错误;设粒子的轨迹半径为r ,则r =m v qB ,由图有,AO =2r sin θ=2m v sin θqB ,可得,若θ是锐角,θ越大,AO 越大,若θ是钝角,θ越大,AO 越小,故A 错误;粒子在磁场中运动的角速度ω=2πT ,又T =2πm qB ,则得ω=qBm,与速度v 无关,故C 错误.10.(2019·全国卷Ⅲ)如图,在坐标系的第一和第二象限内存在磁感应强度大小分别为12B 和B 、方向均垂直于纸面向外的匀强磁场.一质量为m 、电荷量为q (q >0)的粒子垂直于x 轴射入第二象限,随后垂直于y 轴进入第一象限,最后经过x 轴离开第一象限.粒子在磁场中运动的时间为( )A.5πm 6qBB.7πm 6qBC.11πm 6qBD.13πm 6qB答案 B解析 设带电粒子进入第二象限的速度为v ,在第二象限和第一象限中运动的轨迹如图所示,对应的轨迹半径分别为R 1和R 2,由洛伦兹力提供向心力,有q v B =m v 2R、T =2πR v ,可得R 1=m v qB 、R 2=2m v qB 、T 1=2πm qB 、T 2=4πm qB ,带电粒子在第二象限中运动的时间为t 1=T 14,在第一象限中运动的时间为t 2=θ2πT 2,又由几何关系有cos θ=R 2-R 1R 2=12,可得t 2=T 26,则粒子在磁场中运动的时间为t =t 1+t 2,联立以上各式解得t =7πm 6qB,选项B 正确,A 、C 、D 错误.11.一带电粒子的质量m =1.7×10-27 kg ,电荷量q =+1.6×10-19 C ,该粒子以大小为v =3.2×106 m/s 的速度沿垂直于磁场同时又垂直于磁场边界的方向进入匀强磁场中,磁场的磁感应强度为B =0.17 T ,磁场的宽度L =10 cm ,如图所示.(粒子重力不计,g 取10 m/s 2,结果均保留两位有效数字)(1)带电粒子离开磁场时的速度多大?(2)带电粒子在磁场中运动多长时间?(3)带电粒子在离开磁场时偏离入射方向的距离d 为多大?答案 (1)3.2×106 m/s (2)3.3×10-8 s (3)2.7×10-2 m解析 (1)由于洛伦兹力不做功,所以带电粒子离开磁场时的速度大小仍为3.2×106 m/s.(2)由q v B =m v 2r 得, 轨迹半径r =m v qB =1.7×10-27×3.2×1061.6×10-19×0.17m =0.2 m. 由题图可知偏转角θ满足:sin θ=L r =0.1 m 0.2 m=0.5, 所以θ=30°=π6, 由q v B =m v 2r 及v =2πr T可得 带电粒子在磁场中运动的周期T =2πm qB, 所以带电粒子在磁场中运动的时间t =θ2π·T =112T , 所以t =πm 6qB = 3.14×1.7×10-276×1.6×10-19×0.17s ≈3.3×10-8 s. (3)带电粒子在离开磁场时偏离入射方向的距离d =r (1-cos θ)=0.2×(1-32) m ≈2.7×10-2 m.12.(2020·江苏卷改编)空间存在两个垂直于Oxy 平面的匀强磁场,y 轴为两磁场的边界,磁感应强度分别为2B 0、3B 0.质量为m 、带电荷量为q 的粒子从原点O 沿x 轴正向射入磁场,速度为v .粒子第1次、第2次经过y 轴的位置分别为P 、Q ,其轨迹如图所示.不考虑粒子重力影响.求:(1)Q 到O 的距离d ;(2)粒子两次经过P 点的时间间隔Δt .答案 (1)m v 3qB 0 (2)2πm qB 0解析 (1)粒子先后在两磁场中做匀速圆周运动,设半径分别为r 1、r 2由q v B =m v 2r 可知r =m v qB故r 1=m v 2qB 0,r 2=m v 3qB 0且d =2r 1-2r 2,解得d =m v 3qB 0(2)粒子先后在两磁场中做匀速圆周运动,设运动时间分别为t 1、t 2由T =2πr v =2πm qB 得t 1=πm 2qB 0,t 2=πm 3qB 0, 且Δt =2t 1+3t 2解得Δt =2πm qB 0.。
初中物理:带电粒子在匀强磁场中的运动

第6节 带电粒子在匀强磁场中的运动1.洛伦兹力方向总是垂直于速度方向,所以洛伦兹力不对带电粒子做功,它只改变带电粒子速度的方向,不改变带电粒子速度的大小.2.垂直射入匀强磁场的带电粒子,在匀强磁场中做匀速圆周运动.洛伦兹力充当向心力.即Bq v =m v 2r ,所以r =m v Bq ,由v =2πr T ,得知T =2πmBq3.质谱仪的原理和应用 (1)原理图:如图1所示.图1(2)加速:带电粒子进入质谱仪的加速电场,由动能定理得:qU =12m v 2①(3)偏转:带电粒子进入质谱仪的偏转磁场做匀速圆周运动,洛伦兹力提供向心力:q v B =m v 2r②(4)由①②两式可以求出粒子的质量、比荷、半径等,其中由r =1B 2mUq可知电荷量相同时,半径将随质量变化.(5)质谱仪的应用:可以测定带电粒子的质量和分析同位素 4.回旋加速器的原理及应用 (1)构造图:如图2所示.回旋加速器的核心部件是两个D 形盒.图2(2)原理回旋加速器有两个铜质的D 形盒D 1、D 2,其间留有一空隙,加以加速电压,离子源处在中心O 附近,匀强磁场垂直于D 形盒表面.粒子在两盒空间的匀强磁场中,做匀速圆周运动,在两盒间的空隙中,被电场加速.如果交变电场的周期与粒子在磁场中的运动周期相同,粒子在空隙中总被加速,半径r 逐渐增大,达到预定速率后,用静电偏转极将高能粒子引出D 形盒用于科学研究.(3)用途加速器是使带电粒子获得高能量的装置,是科学家探究原子核的有力工具,而且在工、农、医药等行业得到广泛应用.5.一个质量为m 、电荷量为q 的粒子,在磁感应强度为B 的匀强磁场中做匀速圆周运动,则下列说法中正确的是( )A .它所受的洛伦兹力是恒定不变的B .它的速度是恒定不变的C .它的速度与磁感应强度B 成正比D .它的运动周期与速度的大小无关 答案 D解析 粒子在匀强磁场中做匀速圆周运动时洛伦兹力提供向心力,沦伦兹力的大小不变,方向始终指向圆心,不断改变,所以A 错.速度的大小不变,方向不断改变,所以B 错.由于粒子进入磁场后洛伦兹力不做功,因此粒子的速度大小不改变,粒子速度大小始终等于其进入磁场时的值,与磁感应强度B 无关,所以C 错.由运动周期公式T =2πmBq ,可知T 与速度v 的大小无关.即D 正确.6.两个粒子,带电量相等,在同一匀强磁场中只受洛伦兹力而做匀速圆周运动( ) A .若速率相等,则半径必相等 B .若质量相等,则周期必相等 C .若动能相等,则周期必相等 D .若质量相等,则半径必相等 答案 B解析 根据粒子在磁场中的运动轨道半径r =m v qB 和周期T =2πmBq 公式可知,在q 、B 一定的情况下,轨道半径r 与v 和m 的大小有关,而周期T 只与m 有关.【概念规律练】知识点一 带电粒子在匀强磁场中的圆周运动1.在匀强磁场中,一个带电粒子做匀速圆周运动,如果又垂直进入另一磁感应强度是原来的磁感应强度2倍的匀强磁场,则( )A .粒子的速率加倍,周期减半B .粒子的速率不变,轨道半径减半C .粒子的速率减半,轨道半径为原来的四分之一D .粒子的速率不变,周期减半 答案 BD解析 洛伦兹力不改变带电粒子的速率,A 、C 错.由r =m v qB ,T =2πmqB 知:磁感应强度加倍时,轨道半径减半、周期减半,故B 、D 正确.2.质子(p)和α粒子以相同的速率在同一匀强磁场中做匀速圆周运动,轨道半径分别为R p 和R α,周期分别为T p 和T α,则下列选项正确的是( )A .R p ∶R α=1∶2 T p ∶T α=1∶2B .R p ∶R α=1∶1 T p ∶T α=1∶1C .R p ∶R α=1∶1 T p ∶T α=1∶2D .R p ∶R α=1∶2 T p ∶T α=1∶1 答案 A解析 质子(11H)和α粒子(42He)带电荷量之比q p ∶q α=1∶2,质量之比m p ∶m α=1∶4.由带电粒子在匀强磁场中做匀速圆周运动规律,R =m v qB ,T =2πmqB,粒子速率相同,代入q 、m 可得R p ∶R α=1∶2,T p ∶T α=1∶2,故选项A 正确.知识点二 带电粒子在有界磁场中的圆周运动3. 如图3所示,一束电子的电荷量为e ,以速度v 垂直射入磁感应强度为B 、宽度为d 的有界匀强磁场中,穿过磁场时的速度方向与原来电子的入射方向的夹角是30°,则电子的质量是多少?电子穿过磁场的时间又是多少?图3答案2deB v πd3v解析 电子在磁场中运动时,只受洛伦兹力作用,故其轨道是圆弧的一部分.又因洛伦兹力与速度v 垂直,故圆心应在电子穿入和穿出时洛伦兹力延长线的交点上.从图中可以看出,AB 弧所对的圆心角θ=30°=π6,OB 即为半径r ,由几何关系可得:r =d sin θ=2d.由半径公式 r =m v Bq 得:m =qBr v =2deB v. 带电粒子通过AB 弧所用的时间,即穿过磁场的时间为: t =θ2πT =112×T =112×2πm Be =πm 6Be =πd 3v. 点评 作出辅助线,构成直角三角形,利用几何知识求解半径.求时间有两种方法:一种是利用公式t =θ2πT ,另一种是利用公式t =Rθv求解.4. 一磁场宽度为L ,磁感应强度为B ,如图4所示,一电荷质量为m 、带电荷量为-q ,不计重力,以某一速度(方向如图)射入磁场.若不使其从右边界飞出,则电荷的速度应为多大?图4答案 v ≤BqLm (1+cos θ)解析 若要粒子不从右边界飞出,当达最大速度时运动轨迹如图,由几何知识可求得半径r ,即r +rcos θ=L ,r =L1+cos θ,又Bq v =m v 2r ,所以v =Bqr m =BqLm (1+cos θ).知识点三 质谱仪5. 质谱仪原理如图5所示,a 为粒子加速器,电压为U 1;b 为速度选择器,磁场与电场正交,磁感应强度为B 1,板间距离为d ;c 为偏转分离器,磁感应强度为B 2.今有一质量为m 、电荷量为e 的正粒子(不计重力),经加速后,该粒子恰能通过速度选择器,粒子进入分离器后做匀速圆周运动.求:图5(1)粒子的速度v 为多少?(2)速度选择器的电压U 2为多少?(3)粒子在B 2磁场中做匀速圆周运动的半径R 为多大?答案 (1) 2eU 1m (2)B 1d 2eU 1m (3)1B 2 2U 1me解析 根据动能定理可求出速度v ,据电场力和洛伦兹力相等可得到v 2,再据粒子在磁场中做匀速圆周运动的知识可求得半径.(1)在a 中,e 被加速电场U 1加速,由动能定理有eU 1=12m v 2得v = 2eU 1m.(2)在b 中,e 受的电场力和洛伦兹力大小相等,即e U 2d=e v B 1,代入v 值得U 2=B 1d2eU 1m. (3)在c 中,e 受洛伦兹力作用而做圆周运动,回转半径R =m v B 2e ,代入v 值解得R =1B 2 2U 1m e.点评 分析带电粒子在场中的受力,依据其运动特点,选择物理规律进行求解分析. 知识点四 回旋加速器 6.在回旋加速器中( )A .电场用来加速带电粒子,磁场则使带电粒子回旋B .电场和磁场同时用来加速带电粒子C .在交流电压一定的条件下,回旋加速器的半径越大,则带电粒子获得的动能越大D .同一带电粒子获得的最大动能只与交流电压的大小有关,而与交流电压的频率无关. 答案 AC解析 电场的作用是使粒子加速,磁场的作用是使粒子回旋,故A 选项正确;粒子获得的动能E k =(qBR )22m ,对同一粒子,回旋加速器的半径越大,粒子获得的动能越大,故C选项正确.7.有一回旋加速器,它的高频电源的频率为1.2×107 Hz ,D 形盒的半径为0.532 m ,求加速氘核时所需的磁感应强度为多大?氘核所能达到的最大动能为多少?(氘核的质量为3.3×10-27 kg ,氘核的电荷量为1.6×10-19C)答案 1.55 T 2.64×10-12 J解析 氘核在磁场中做圆周运动,由洛伦兹力提供向心力,据牛顿第二定律q v B =m v 2R,周期T =2πR v,解得圆周运动的周期T =2πmqB .要使氘核每次经过电场均被加速,则其在磁场中做圆周运动的周期等于交变电压的周期,即T =1f.所以B =2πfm q =2×3.14×1.2×107×3.3×10-271.6×10-19T=1.55 T.设氘核的最大速度为v ,对应的圆周运动的半径恰好等于D 形盒的半径,所以v =qBRm .故氘核所能达到的最大动能E max =12m v 2=12m·(qBR m )2=q 2B 2R 22m=(1.6×10-19)2×1.552×0.53222×3.3×10-27J =2.64×10-12 J.【方法技巧练】一、带电粒子在磁场中运动时间的确定方法8. 如图6所示,在第一象限内有垂直纸面向里的匀强磁场,一对正、负电子分别以相同速度沿与x 轴成60°角从原点射入磁场,则正、负电子在磁场中运动时间之比为( )图6A .1∶2B .2∶1C .1∶ 3D .1∶1 答案 B9. 如图7所示,半径为r 的圆形空间内,存在着垂直于纸面向外的匀强磁场,一个带电粒子(不计重力),从A 点沿半径方向以速度v 0垂直于磁场方向射入磁场中,并由B 点射出,且∠AOB =120°,则该粒子在磁场中运动的时间为( )图7A.2πr 3v 0B.23πr 3v 0C.πr 3v 0D.3πr 3v 0 答案 D 解析由图中的几何关系可知,圆弧AB 所对的轨迹圆心角为60°,O 、O ′的连线为该圆心角的角平分线,由此可得带电粒子圆轨迹半径为R =rcot 30°=3r.故带电粒子在磁场中运动的周期为 T =2πR v 0=23πr v 0.带电粒子在磁场区域中运动的时间t =60°360°T =16T =3πr 3v 0.方法总结 粒子在磁场中运动一周的时间为T ,当粒子运动的圆弧所对应的圆心角为α时,其运动时间可由下式表示:t =α360°T 或t =α2πT.1.运动电荷进入磁场后(无其他力作用)可能做( ) A .匀速圆周运动 B .匀速直线运动 C .匀加速直线运动 D .平抛运动 答案 AB解析 若运动电荷垂直于磁场方向进入匀强磁场,则做匀速圆周运动;若运动方向和匀强磁场方向平行,则做匀速直线运动,故A 、B 正确,由于洛伦兹力不做功,故电荷的动能和速度不变,C 错误.由于洛伦兹力是变力,故D 错误.2.有三束粒子,分别是质子(p)、氚核(31H)和α粒子(42He)束,如果它们以相同的速度沿垂直于磁场方向射入匀强磁场(磁场方向垂直纸面向里),在下面所示的四个图中,能正确表示出这三束粒子运动轨迹的是( )答案 C3.带电粒子进入云室会使云室中的气体电离,从而显示其运动轨迹.如图8所示是在有匀强磁场的云室中观察到的粒子的轨迹,a 和b 是轨迹上的两点,匀强磁场B 垂直于纸面向里.该粒子在运动时,其质量和电荷量不变,而动能逐渐减少,下列说法正确的是( )图8A .粒子先经过a 点,再经过b 点B .粒子先经过b 点,再经过a 点C .粒子带负电D .粒子带正电答案 AC解析 由于粒子的速度减小,所以轨道半径不断减小,所以A 对,B 错;由左手定则得粒子应带负电,C 对,D 错.4.质子(11H)和α粒子(42He)在同一匀强磁场中做半径相同的圆周运动.由此可知质子的动能E 1和α粒子的动能E 2之比E 1∶E 2等于( )A .4∶1B .1∶1C .1∶2D .2∶1 答案 B解析 由r =m v qB ,E =12m v 2得E =r 2B 2q 22m,所以E 1∶E 2=q 21m 1∶q 22m 2=1∶1. 5. 长为l 的水平极板间有垂直纸面向里的匀强磁场,磁感应强度为B ,板间距离也为l ,板不带电.现有质量为m 、电荷量为q 的带正电粒子(不计重力),从左边极板间中点处垂直磁感线以速度v 水平射入磁场,欲使粒子不打在极板上,可采用的办法是( )A .使粒子的速度v <Bql4mB .使粒子的速度v >5Bql4mC .使粒子的速度v >BqlmD .使粒子的速度Bql 4m <v <5Bql4m答案 AB 解析如右图所示,带电粒子刚好打在极板右边缘时,有r 21=(r 1-l 2)2+l 2又r 1=m v 1Bq ,所以v 1=5Bql4m粒子刚好打在极板左边缘时,有r 2=l 4=m v 2Bq,v 2=Bql 4m综合上述分析可知,选项A 、B 正确.6.如图9所示,在边界PQ 上方有垂直纸面向里的匀强磁场,一对正、负电子同时从边界上的O 点沿与PQ 成θ角的方向以相同的速度v 射入磁场中,则关于正、负电子,下列说法不正确的是( )图9A.在磁场中的运动时间相同B.在磁场中运动的轨道半径相同C.出边界时两者的速度相同D.出边界点到O点处的距离相等答案 A7. 如图10所示,ab是一弯管,其中心线是半径为R的一段圆弧,将它置于一给定的匀强磁场中,磁场方向垂直于圆弧所在平面,并且指向纸外.有一束粒子对准a端射入弯管,粒子有不同的质量、不同的速度,但都是一价正离子()图10A.只有速度v大小一定的粒子可以沿中心线通过弯管B.只有质量m大小一定的粒子可以沿中心线通过弯管C.只有m、v的乘积大小一定的粒子可以沿中心线通过弯管D.只有动能E k大小一定的粒子可以沿中心线通过弯管答案 C解析因为粒子能通过弯管要有一定的半径,其半径r=R.所以r=R=m vqB,由q和B相同,则只有当m v一定时,粒子才能通过弯管.8. 如图11所示,一带负电的质点在固定的正的点电荷作用下绕该正电荷做匀速圆周运动,周期为T0,轨道平面位于纸面内,质点的速度方向如图中箭头所示.现加一垂直于轨道平面的匀强磁场,已知轨道半径并不因此而改变,则()图11A.若磁场方向指向纸里,质点运动的周期将大于T0B.若磁场方向指向纸里,质点运动的周期将小于T0C.若磁场方向指向纸外,质点运动的周期将大于T0D.若磁场方向指向纸外,质点运动的周期将小于T0答案AD解析不加磁场时:F E=mR(2πT0)2,若磁场方向向里,则有F E-F B=mR(2πT1)2,若磁场方向向外,则有F E+F B=mR(2πT2)2,比较知:T1>T0,T2<T0,选项A、D正确.9.回旋加速器是加速带电粒子的装置,其核心部分是分别与高频交流电极相连接的两个D形金属盒,两盒间的狭缝中形成的周期性变化的电场,使粒子在通过狭缝时都能得到加速,两D形金属盒处于垂直于盒底面的匀强磁场中,如图12所示,要增大带电粒子射出时的动能,下列说法中正确的是()图12A.增大匀强电场间的加速电压B.增大磁场的磁感应强度C .减小狭缝间的距离D .增大D 形金属盒的半径 答案 BD解析 当带电粒子的速度最大时,其运动半径也最大,由牛顿第二定律q v B =m v 2r,得v =qBr m.若D 形盒的半径为R ,则r =R 时,带电粒子的最终动能E km =12m v 2=q 2B 2R 22m ,所以要提高加速粒子射出时的动能,应尽可能增大磁感应强度B 和加速器的半径R.10. 质谱仪是一种测定带电粒子质量和分析同位素的重要工具,它的构造原理如图13所示,离子源S 产生一个质量为m ,电荷量为q 的正离子,离子产生出来时的速度很小,可以看作是静止的,离子产生出来后经过电压U 加速,进入磁感应强度为B 的匀强磁场,沿着半圆运动而达到记录它的照相底片P 上,测得它在P 上的位置到入口处S 1的距离为x ,则下列说法正确的是( )图13A .若某离子经上述装置后,测得它在P 上的位置到入口处S 1的距离大于x ,则说明离子的质量一定变大B .若某离子经上述装置后,测得它在P 上的位置到入口处S 1的距离大于x ,则说明加速电压U 一定变大C .若某离子经上述装置后,测得它在P 上的位置到入口处S 1的距离大于x ,则说明磁感应强度B 一定变大D .若某离子经上述装置后,测得它在P 上的位置到入口处S 1的距离大于x ,则说明离子所带电荷量q 可能变小答案 D解析 由qU =12m v 2,得v =2qU m ,x =2R ,所以R =x 2=m vqB ,x =2m v qB =2m qB 2qU m=8mUqB 2,可以看出,x 变大,可能是因为m 变大,U 变大,q 变小,B 变小,故只有D 对.11.回旋加速器D 形盒中央为质子流,D 形盒的交流电压为U ,静止质子经电场加速后,进入D 形盒,其最大轨道半径为R ,磁场的磁感应强度为B ,质子质量为m.求:(1)质子最初进入D 形盒的动能多大;(2)质子经回旋加速器最后得到的动能多大; (3)交流电源的频率是多少.答案 (1)eU (2)e 2B 2R 22m (3)eB2πm解析 (1)粒子在电场中加速,由动能定理得: eU =E k -0,解得E k =eU.(2)粒子在回旋加速器的磁场中绕行的最大半径为R ,由牛顿第二定律得:e v B =m v 2R①质子的最大动能:E km =12m v 2②解①②式得:E km =e 2B 2R 22m(3)f =1T =eB 2πm12. 如图14所示,在x 轴上方有磁感应强度大小为B ,方向垂直纸面向里的匀强磁场.x 轴下方有磁感应强度大小为B/2,方向垂直纸面向外的匀强磁场.一质量为m 、电荷量为-q 的带电粒子(不计重力),从x 轴上O 点以速度v 0垂直x 轴向上射出.求:图14(1)射出之后经多长时间粒子第二次到达x 轴? (2)粒子第二次到达x 轴时离O 点的距离.答案 (1)3πmqB (2)6m v 0qB解析 粒子射出后受洛伦兹力做匀速圆周运动,运动半个圆周后第一次到达x 轴,以向下的速度v 0进入x 轴下方磁场,又运动半个圆周后第二次到达x 轴.如下图所示.(1)由牛顿第二定律q v 0B =m v 20r①T =2πr v 0②得T 1=2πm qB ,T 2=4πmqB ,粒子第二次到达x 轴需时间 t =12T 1+12T 2=3πm qB. (2)由①式可知r 1=m v 0qB ,r 2=2m v 0qB ,粒子第二次到达x 轴时离O 点的距离 x =2r 1+2r 2=6m v 0qB.。
带电粒子在匀强磁场中的运动 课件

二、质谱仪
阅读教材第100页“例题”部分,了解质谱仪的结构和作用。
1.质谱仪的组成
由粒子源容器、加速电场、偏转磁场和底片组成。
2.质谱仪的用途
质谱仪最初是由汤姆生的学生阿斯顿设计的。他用质谱仪发现
了氖20和氖22,证实了同位素的存在。质谱仪是测量带电粒子的
质量和分析同位素的重要工具。
三、回旋加速器
B.两粒子都带负电,质量比 =4
1
C.两粒子都带正电,质量比 =
4
1
D.两粒子都带负电,质量比 =
4
A.两粒子都带正电,质量比
1
解析:由于 qa=qb、Eka=Ekb,动能 Ek=2mv2 和粒子偏转半径 r= ,
2 2 2
可得 m= 2 ,可见 m 与半径
k
r 的二次方成正比,故 ma∶mb=4∶1,
再根据左手定则判知粒子应带负电,故选 B。
答案:B
【例题2】如图所示,一束电荷量为e的电子以垂直于磁场方向
(磁感应强度为B)并垂直于磁场边界的速度v射入宽度为d的磁场中,
穿出磁场时速度方向和原来射入方向的夹角为θ=60°。求电子的
质量和穿越磁场的时间。
解析:过 M、N 作入射方向和出射方向的垂线,
两垂线交于 O 点,O 点即电子在磁场中做匀速圆周运动的圆心,
连结 ON,过 N 作 OM 的垂线,垂足为 P,如图所示。由直角三角形 OPN
2 3
知,电子的轨迹半径 r=sin60° = 3 d
2
由圆周运动知 evB=m
2 3
联立①②解得 m= 3 。
带电粒子在匀强磁场中的运动
带电粒子在匀强磁场中的运动

带电粒子在匀强磁场中的运动带电粒子在匀强磁场中的运动在带电粒子只受洛伦兹力作用、重力可以忽略的情况下,其在匀强磁场中有两种典型的运动:(1)若带电粒子的速度方向与磁场方向平行时,不受洛伦兹力,做匀速直线运动.(2)若带电粒子的速度方向与磁场方向垂直,带电粒子在垂直于磁感线的平面内以入射速度v做匀速圆周运动,其运动所需的向心力即洛伦兹力.可见T与v及r无关,只与B及粒子的比荷有关.荷质比q/m相同的粒子在同样的匀强磁场中,T,f和ω相同.(3)圆心的确定.因为洛伦兹力f指向圆心,根据f⊥v,画出粒子运动轨迹上任意两点(一般是射入和出磁场的两点)的f的方向,其延长线的交点即为圆心.(4)半径的确定和计算.圆心找到以后,自然就有了半径(一般是利用粒子入、出磁场时的半径).半径的计算一般是利用几何知识,常用解三角形的方法及圆心角等于圆弧上弦切角的两倍等知识.(5)在磁场中运动时间的确定.利用圆心角与弦切角的关系,或者是四边形内角和等于360°计算出圆心角θ的大小,由公式t=θ/360°×T可求出运动时间.有时也用弧长与线速度的比.如图所示,注意到:①速度的偏向角ψ等于弧AB所对的圆心角θ.②偏向角ψ与弦切角α的关系为:ψ<180°,ψ=2α;ψ>180°,ψ=360°-2α;(6)注意圆周运动中有关对称规律如从同一直线边界射入的粒子,再从这一边射出时,速度与边界的夹角相等;在圆形磁场区域内,沿径向射入的粒子,必沿径向射出.确定粒子在磁场中运动圆心的方法①已知粒子运动轨迹上两点的速度方向,作这两速度方向的垂线,交点即为圆心。
②已知粒子入射点、入射方向及运动轨迹上的一条弦,作速度方向的垂线及弦的垂直平分线,交点即为圆心。
③已知粒子运动轨迹上的两条弦,作出两弦垂直平分线,交点即为圆心。
④已知粒子在磁场中的入射点、入射方向和出射方向(不一定在磁场中),延长(或反向延长)两速度方向所在直线使之成一夹角,作出这一夹角的角平分线,角平分线上到两直线距离等于半径的点即为圆心。
带电粒子在匀强磁场中的运动

三、加速器(回旋加速器) 3、注意
1)交变电场的往复变化周期和粒子的运动周期T 相同,这样就可以保证粒子在每次经过交变电场 时都被加速
2)带电粒子每经电场加速一次,回旋半径就增大 一次,每次增加的动能为 E =qU
K
所以各次半径之比为 1 ∶ 2∶ 3∶ ... 3)带电粒子在回旋加速器中飞出的速度为
三、粒子加速器(直线加速)
为了认识原子核内部结构 方案一:利用电场加速
U m q
1 2 qU mv 2
v
2qU U m
可知电压越高,粒子获得的能量越 高,速度越大,但电压不可能无限制地 提高(为什么?)
方案二:多级电场加速
1 2 nqU mv 2
+
粒子
一级 二级 三级
+ ……
n级
世界上最大的直线加速器:
世界上最长的直线加速器位于美国斯坦福大 学一座毫不起眼的灰色建筑群内。美国斯坦 福大学直线加速器实验室的科学家们曾获得 过三次诺贝尔奖,他们目前正在收集首个科 学证据,通过对撞正电子与电子,证明宇宙 中的物质比反物质更多。这个庞然大物长约 3公里 。
美国斯坦福大学直线加速器
在直线加速器末端,600吨重的电磁石坐落在庞大的建筑物— —终端站A的地面,它被用来改变加速器射出的高能粒子束路 径。在磁铁工作时,电阻会产生大量热量,周围的橙色管起到 冷却、散热的作用。
一、带电粒子在匀强磁场中的运动 实验结论: 1.沿着与磁场垂直的方向射入磁场的带电粒子, 在匀强磁场中做 匀速圆周运动 2.洛伦兹力提供了带电粒子做匀速圆周运动所 需的 向心力 3.磁场强度不变,粒子射入的速度增加,轨道半 径 增大 4.粒子射入速度不变,磁场强度增大,轨道半径 减小
1.3带电粒子在匀强磁场中的运动

依据所给数据分别计算出带电粒子所受的重力和洛伦兹力,就可求出
所受重力与洛伦兹力之比。带电粒子在匀强磁场中受洛伦兹力并做匀速圆
周运动,由此可以求出粒子运动的轨道半径及周期。
完全解答:
重力与洛伦兹力之比
(1)粒子所受的重力
G= mg = 1.67×10-27kg×9.8 N= 1.64×10-26N
匀强磁场中。求电子做匀速圆周运动的轨道半径和周期。
解:洛伦兹力提供向心力,首先列:
2
v
qvB m
r
2πr
T
v
mv
9.110 31 1.6 10 6
2
.
55
10
m
r
19
4
1.6 10 2 10
qB
2m
T
qB
2 9.110 31
7
5
.
6875
洛伦兹力提供向心力
v2
qvB m
r
圆周运动的半径
mv
r
qB
粒子在匀强磁场中做匀速圆周运动的半径与它的质量、速度成
正比,与电荷量、磁感应强度成反比。
观察带电粒子的运动径迹
洛伦兹力演示仪示意图
洛伦兹力演示仪
励磁线圈
玻璃泡
电子枪
加速极电压
励磁电流
选择档
选择档
电子枪可以发射电子束
玻璃泡内充有稀薄的气体,在电
2 m
T
eB
电子在矩形磁场中沿圆弧从
a点运动到c点的时间
t
T
带电粒子在匀强磁场中运动轨迹

带电粒子在匀强磁场中运动轨迹带电粒子在匀强磁场中运动轨迹一、带电粒子在匀强磁场中运动轨迹带电粒子只受洛伦兹力作用的条件下,在匀强磁场中的运动有:1.粒子初速度方向平行磁场方向(V ∥B ):运动轨迹:匀速直线运动2.粒子初速度方向垂直磁场方向(V ⊥B ):(1)动力学角度:洛伦兹力提供了带电粒子做匀速圆周运动所需的向心力(2)运动学角度:加速度方向始终和运动方向垂直,而且加速度大小不变。
运动轨迹:匀速圆周运动二、轨道半径和运动周期1.轨道半径r :qBm v r = 在匀强磁场中做匀速圆周运动的带电粒子,轨道半径跟运动速率成正比。
2.运动周期T :qBm T π2= (1)周期跟轨道半径和运动速率均无关(2)粒子运动不满一个圆周的运动时间:qB m t θ=,θ为带电粒子运动所通过的圆弧所对的圆心角三、有界磁场专题:(三个确定)1、圆心的确定已知进出磁场速度方向已知进出磁场位置和一个速度方向2. 半径的确定:半径一般都在确定圆心的基础上用平面几何知识求解,常常要解三角形带电粒子在匀强磁场中运动轨迹3、时间的确定(由圆心角确定时间)粒子速度的偏转角(?)等于回旋角(α),并等于AB 弦与切线的夹角(弦切角θ)的2倍即.θα?2==粒子在磁场中运动一周的时间为T ,当粒子运动的圆弧所对应的圆心角为α时,其运动时间可由下式表示:T t πα2= (1)直界磁场区: 如图,虚线上方存在无穷大的磁场B ,一带正电的粒子质量m 、电量q 、若它以速度v 沿与虚线成o o o o o o*****6030、、、、、角分别射入,请你作出上述几种情况下粒子的轨迹、并求其在磁场中运动的半径和时间。
粒子在直界磁场(足够大)的对称规律:从同一边界射入的粒子,从同一边界射出时,速度与边界的夹角相等。
(2)、圆界磁场带电粒子在匀强磁场中运动轨迹偏转角:rR =2tan θR :磁场半径r:圆周运动半径经历时间:qBmt θ= 圆运动的半径:qBm v r = 圆界磁场对称规律:在圆形磁场区域内,沿径向射入的粒子,必沿径向射出。
带电粒子在匀强磁场中的运动

k k
e2 r2 e2 r2
>Bev >Bev
,则电子不能做匀速圆周运动
e
,则电子角速度
ω
可能有两个值
解见下页
解: 设F= ke2 /r2 f=Bev 受力情况如图示:
若F<f ,若磁感线指向纸外,则电子不能做匀速圆周运动
若F<f , 若磁感线指向纸内,磁场力和电场力之和作为 向心力, A对。
若F>f ,若磁感线指向纸外, F-f =mω1 r2 若F>f ,若磁感线指向纸内, F+f =mω2r2 所以,若F>f ,角速度可能有两个值,D对C错。
有各种不同的数值.若这些粒子与三角形框架碰撞时
均无能量损失,且每一次碰撞时速度方向垂直于被碰
的边.试求:
(1)带电粒子的速度v为多大时,能够打到E点?
(2)为使S点发出的粒子最终又
F
回到S点,且运动时间最短,v应
B
为多大?最短时间为多少?
(a)D
S
E
L
v 第3页 第4页
(3)若磁场是半径为 a ( 3 1 )L. 的圆柱形区域,
题目
20 、 如图所示,在区域足够大的空间中充满磁感应
强度大小为B的匀强磁场,其方向垂直于纸面向里.在纸
面内固定放置一绝缘材料制成的边长为L的等边三角
形框架DEF, ,DE中点S处有一粒子发射源,发射粒
子的方向皆在图中截面内且垂直于DE边向下,如图
(a)所示.发射粒子的电量为+q,质量为m,但速度v
若2F=f , 磁感线一定指向纸内,
f
F+f =mωr2 3f =mωr2
3Bev =mωr2 =mωv
3Be
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
学乐教育2010年秋季八年级物理一对一讲义第七讲带电粒子在匀强磁场中的运动(复合场)(一)复习引入[问题1]什么是洛伦兹力?[磁场对运动电荷的作用力][问题2]带电粒子在磁场中是否一定受洛伦兹力?[不一定,洛伦兹力的计算公式为F=qvB sinθ,θ为电荷运动方向与磁场方向的夹角,当θ=90°时,F=qvB;当θ=0°时,F=0.][问题3]带电粒子垂直磁场方向进入匀强磁场时会做什么运动呢?—带电粒子在匀强磁场中的运动、质谱仪.(二)新课讲解---带电粒子在匀强磁场中的运动【演示】先介绍洛伦兹力演示仪的工作原理,由电子枪发出的电子射线可以使管内的低压水银蒸气发出辉光,显示出电子的径迹。
后进行实验.[实验现象]在暗室中可以清楚地看到,在没有磁场作用时,电子的径迹是直线;在管外加上匀强磁场(这个磁场是由两个平行的通电环形线圈产生的),电子的径迹变弯曲成圆形.[分析得出结论]当带电粒子的初速度方向与磁场方向垂直时,粒子在匀强磁场中做匀速圆周运动.带电粒子垂直进入匀强磁场中的受力及运动情况分析(动态课件).一是要明确所研究的物理现象的条件----在匀强磁场中垂直于磁场方向运动的带电粒子。
二是分析带电粒子的受力情况,用左手定则明确带电粒子初速度与所受到的洛伦兹力在同一平面内,所以只可能做平面运动。
三是洛伦兹力不对运动的带电粒子做功,它的速率不变,同时洛伦兹力的大小也不变。
四是根据牛顿第二定律,洛伦兹力使运动的带电粒子产生加速度(向心加速度)①.电子受到怎样的力的作用?这个力和电子的速度的关系是怎样的?(电子受到垂直于速度方向的洛伦兹力的作用.)②.洛伦兹力对电子的运动有什么作用?(.洛伦兹力只改变速度的方向,不改变速度的大小)③.有没有其他力作用使电子离开磁场方向垂直的平面?(没有力作用使电子离开磁场方向垂直的平面)④.洛伦兹力做功吗?(洛伦兹力对运动电荷不做功)1.带电粒子在匀强磁场中的运动(1)、运动轨迹:沿着与磁场垂直的方向射入磁场的带电粒子,粒子在垂直磁场方向的平面内做匀速圆周运动,此洛伦兹力不做功.【注意】带电粒子做圆周运动的向心力由洛伦兹力提供。
使学生理解带电粒子在匀强磁场中做匀速圆周运动,的轨道半径r和周期T与粒子所带电量、质量、粒子的速度、磁感应强度有什么关系。
一为带电量q,质量为m ,速度为v的带电粒子垂直进入磁感应强度为B的匀强磁场中,其半径r和周期T为多大?[问题1]什么力给带电粒子做圆周运动提供向心力?[洛伦兹力给带电粒子做圆周运动提供向心力][问题2]向心力的计算公式是什么?[F=mv2/r][推导]粒子做匀速圆周运动所需的向心力F =m rv 2是由粒子所受的洛伦兹力提供的,所以qvB =mv 2/ r 由此得出r =qB mv T =qBmv r ππ22=可得T =qB m π2(2)、轨道半径和周期带电粒子在匀强磁场中做匀速圆周运动的轨道半径及周期公式.1、轨道半径r =qBmv2、周期T =2πm/ qB 【说明】:(1)轨道半径和粒子的运动速率成正比.(2)带电粒子在磁场中做匀速圆周运动的周期跟轨道半径和运动速率无关.【讨论】:在匀强磁场中如果带电粒子的运动方向不和磁感应强度方向垂直,它的运动轨道是什么样的曲线?分析:当带电粒子的速度分别为垂直于B 的分量v 1和平行于B 的分量v 2,因为v 1和B 垂直,受到洛伦兹力qv 1B ,此力使粒子q 在垂直于B 的平面内做匀速圆周运动,v 1和B 平行,不受洛伦兹力,故粒子在沿B 方向上做匀速曲线运动,可见粒子的运动是一等距螺旋运动.再用洛伦兹力演示仪演示 [例题]如图所示,一质量为m ,电荷量为q 的粒子从容器A 下方小孔S 1飘入电势差为U 的加速电场,然后让粒子垂直进入磁感应强度为B 的磁场中,最后打到底片D 上.(1)粒子进入磁场时的速率。
(2)求粒子在磁场中运动的轨道半径。
注意:在解决这类问题时,如何确定圆心、画出粒子的运动轨迹、半径及圆心角,找出几何关系是解题的关键。
例题给我们展示的是一种十分精密的仪器------质谱仪补充例题: 如图所示,半径为r 的圆形空间内,存在着垂直于纸面向里的匀强磁场,一个带电粒子(不计重力),从A 点以速度v 0垂直磁场方向射入磁场中,并从B 点射出,已知∠AOB =120°,求该带电粒子在磁场中运动的时间。
分析:首先通过已知条件找到所对应的圆心O ′,画出粒子的运动轨迹并画出几何图形。
(3)、质谱仪阅读课文及例题,回答以下问题:1.试述质谱仪的结构.2.试述质谱仪的工作原理.3.什么是同位素?4.质谱仪最初是由谁设计的?5.试述质谱仪的主要用途.阅读后学生回答:1.质谱仪由静电加速极、速度选择器、偏转磁场、显示屏等组成.2.电荷量相同而质量有微小差别的粒子,它们进入磁场后将沿着不同的半径做圆周运动,打到照相底片不同的地方,在底片上形成若干谱线状的细条,叫质谱线,每一条对应于一定的质量,从谱线的位置可以知道圆周的半径r,如果再已知带电粒子的电荷量q,就可算出它的质量.3.质子数相同而质量数不同的原子互称为同位素.4.质谱仪最初是由汤姆生的学生阿斯顿设计.5.质谱仪是一种十分精密的仪器,是测量带电粒子的质量和分析同位素的重要工具.---2.回旋加速器(1)直线加速器①加速原理:利用加速电场对带电粒子做正功使带电的粒子动能增加,即qU =ΔE k②直线加速器的多级加速:教材图3.6—5所示的是多级加速装置的原理图,由动能定理可知,带电粒子经N级的电场加速后增加的动能,ΔE k=q(U1+U2+U3+U4+…U n)③直线加速器占有的空间范围大,在有限的空间内制造直线加速器受到一定的限制。
(2)回旋加速器①由美国物理学家劳伦斯于1932年发明。
②其结构核心部件为两个D形盒(加匀强磁场)和其间的夹缝(加交变电场)③加速原理:带电粒子做匀速圆周运动的周期公式T = 2πm/q B,明确带电粒子的周期在q、m、B不变的情况下与速度和轨道半径无关,从而理解回旋加速器的原理。
归纳各部件的作用:(如图)磁场的作用:交变电场以某一速度垂直磁场方向进入匀强磁场后,在洛伦兹力的作用下做匀速圆周运动,其周期在q、m、B不变的情况下与速度和轨道半径无关,带电粒子每次进入D 形盒都运动相等的时间(半个周期)后平行电场方向进入电场加速。
电场的作用:回旋加速器的的两个D 形盒之间的夹缝区域存在周期性变化的并垂直于两个D 形盒正对截面的匀强电场,带电粒子经过该区域时被加速。
交变电压的作用:为保证交变电场每次经过夹缝时都被加速,使之能量不断提高,须在在夹缝两侧加上跟带电粒子在D 形盒中运动周期相同的交变电压。
带电粒子经加速后的最终能量:(运动半径最大为D 形盒的半径R )由R =mv/qB 有 v=qBR/m 所以最终能量为 E m =mv 2/2 = q 2B 2R 2/2m讨论:要提高带电粒子的最终能量,应采取什么措施?(可由上式分析)例:1989年初,我国投入运行的高能粒子回旋加速器可以把电子的能量加速到2.8GeV;若改用直线加速器加速,设每级的加速电压为U =2.0×105V ,则需要几级加速? 解:设经n 级加速,由neU=E 有 n=E/eU =1.4×104(级)【】质子和α粒子从静止开始经相同的电势差加速例1 (H)(He)1124后垂直进入同一匀强磁场作圆周运动,则这两粒子的动能之比E k1∶E k2=________,轨道半径之比r 1∶r 2=________,周期之比T 1∶T 2=________.【例2】如图16-60所示,一束电子(电量为e)以速度v 垂直射入磁感强度为B ,宽度为d 的匀强磁场中,穿透磁场时速度方向与原来入射方向的夹角是30°,则电子的质量是________,穿透磁场的时间是________.【例3】如图16-61所示,在屏上MN 的上侧有磁感应强度为B 的匀强磁场,一群带负电的同种粒子以相同的速度v 从屏上P 处的孔中沿垂直于磁场的方向射入磁场.粒子入射方向在与B 垂直的平面内,且散开在与MN 的垂线PC 的夹角为θ的范围内,粒子质量为m ,电量为q ,试确定粒子打在萤光屏上的位置.【例4】如图16-62所示,电子枪发出的电子,初速度为零,当被一定的电势差U加速后,从N点沿MN方向出射,在MN的正下方距N点为d处有一个靶P,若加上垂直于纸面的匀强磁场,则电子恰能击中靶P.已知U、d,电子电量e,质量m以及∠MNP=α,则所加磁场的磁感应强度方向为________,大小为________.例. 设在地面上方的真空室内,存在匀强电场和匀强磁场。
已知电场强度和磁感应强度的方向是相同的,电场强度的大小E=4.0V/m,磁感应强度的大小B=0.15T。
今有一个带负电的质点以v=20m/s的速度在此区域内沿垂直场强方向做匀速直线运动,求此带电质点的电荷量与质量之比q/m以及磁场的所有可能方向(角度可用反三角函数表示)。
例. 如图所示,在y>0的空间中存在匀强电场,场强沿y轴负方向;在y<0的空间中,存在匀强磁场,磁场方向垂直xy平面(纸面)向外。
一电量为q、质量为m的带正电的运动粒子,经过y轴上y=h处的点P1时速率为v0,方向沿x轴正方向;然后,经过x轴上x=2h处的P2点进入磁场,并经过y轴上y=-2h处的P3点。
不计重力。
求:(1)电场强度的大小。
(2)粒子到达P2时速度的大小和方向。
(3)磁感应强度的大小。
【模拟试题】1. 如图所示,虚线所示的区域内有方向垂直纸面的匀强磁场,一束速度大小各不相同的质子正对该区域的圆心O射入这个磁场。
发现有的质子在磁场里运动的时间长,有的较短,其中运动时间较长的质子()A. 入射的速度一定较大B. 在该磁场中运动路程一定较长C. 在该磁场中偏转的角度一定较大D. 轨迹所对应的圆心角较大2. 如图所示,左右边界分别为PP'、QQ'的匀强磁场的宽度为d ,磁感应强度大小为B ,方向垂直纸面向里,一个质量为m 、电量的数值为q 的粒子,沿图示方向以速度v 0垂直射入磁场。
欲使粒子不能从边界QQ'射出,粒子入射速度v 0的最大值可能是( )A. B q dmB. ()22+Bqd mC. ()22-Bqd mD.22B q dm3. 如图所示,两电子沿MN 方向射入两平行直线间的匀强磁场,它们分别以v v 12、的速率射出磁场,则v v 12∶=___________,通过匀强磁场所需时间之比t t 12∶=__________。
4. 关于带电粒子在匀强电场和匀强磁场中的运动,下列说法正确的是( ) A. 带电粒子沿电场线射入,电场力对带电粒子做正功,粒子动能一定增加 B. 带电粒子垂直电场线方向射入,电场力对带电粒子不做功、粒子动能不变C. 带电粒子沿磁感线方向射入,洛仑兹力对带电粒子做正功,粒子动能一定增加D. 不管带电粒子怎样射入磁场,洛仑兹力对带电粒子都不做功,粒子动能不变5. 如图所示,长方形区域存在磁感应强度为B 的匀强磁场,一束速度不同的电子从O 处沿与磁场垂直方向射入磁场,磁场方向垂直于边界,若从a 、b 、c 、d 四处射出的电子在磁场中运动时间分别为t t t t a b c d 、、、,则( )A. t t t t a b c d ===B. t t t t a b c d >>=C. t t t t a b c d=>>D. t t t t a b c d<<< 6. 如图所示,是等离子体发电机示意图,平行金属板间匀强磁场的磁感应强度B =0.5T ,两板间距离d =20 cm ,要使输出电压为220V ,则等离子体垂直射入磁场的速度v =_________,a 是电源的__________极。