基于MATLAB的图像处理的基本运算
MATLAB图像处理基础教程

MATLAB图像处理基础教程第一章:MATLAB图像处理简介MATLAB(Matrix Laboratory)是一种强大的数值计算和数据可视化软件,广泛应用于各个领域,包括图像处理。
图像处理是一门研究如何对数字图像进行分析、增强、重建和压缩的学科。
本教程将引导读者逐步了解MATLAB图像处理的基本概念和技术。
第二章:MATLAB图像的读取与显示在MATLAB中,可以使用imread函数读取不同格式的图像文件,并使用imshow函数显示图像。
此外,还可以使用imfinfo函数获取图像的详细信息,如分辨率、颜色空间和位深度等。
第三章:图像的灰度处理灰度处理是一种常见的图像预处理方法。
通过将彩色图像转换为灰度图像,可以减少图像的数据量,简化图像处理的复杂性。
在MATLAB中,可以使用rgb2gray函数将彩色图像转换为灰度图像,并使用imhist函数查看灰度图像的直方图。
第四章:图像的滤波处理滤波是一种常用的图像处理操作,用于对图像进行平滑、增强或去噪。
MATLAB提供了各种滤波函数,如均值滤波、中值滤波和高斯滤波等。
可以根据具体需求选择合适的滤波方法,并使用imfilter函数进行滤波处理。
第五章:图像的二值化处理图像的二值化是将图像转换为黑白两色的过程,常用于物体检测、识别和分割等应用。
在MATLAB中,可以使用im2bw函数将灰度图像转换为二值图像,并可以调整阈值来控制二值化的效果。
第六章:图像的几何变换几何变换是一种常见的图像处理操作,用于对图像进行旋转、缩放、平移和翻转等操作。
MATLAB提供了imrotate、imresize、imtranslate和flip函数等实现各种几何变换。
通过组合这些函数,可以实现复杂的图像变换。
第七章:图像的特征提取图像的特征提取是图像处理中的重要步骤,用于从图像中提取出具有代表性的信息。
在MATLAB中,可以使用各种特征提取函数,如imgradient、imhistogram和imcontour等。
基于MATLAB GUI图像处理系统的设计与实现

基于MATLAB GUI图像处理系统的设计与实现MATLAB是一种功能强大的图像处理工具,其GUI(图形用户界面)设计及实现可以使图像处理更加直观和简单。
本文将介绍基于MATLAB GUI图像处理系统的设计与实现,包括系统的功能设计、界面设计及实现步骤等内容,旨在为使用MATLAB进行图像处理的读者提供一些参考和帮助。
一、系统功能设计1. 图像基本处理功能:包括图像的读取、显示、保存,以及图像的基本操作(如缩放、旋转、翻转等)。
2. 图像增强功能:包括亮度、对比度、色彩平衡调整,以及直方图均衡化、滤波等操作。
3. 图像特征提取功能:包括边缘检测、角点检测、纹理特征提取等。
4. 图像分割功能:包括阈值分割、边缘分割、区域生长等。
5. 图像识别功能:包括基于模板匹配、人工智能算法的图像识别等。
6. 图像测量功能:包括测量图像中物体的大小、长度、面积等。
二、界面设计1. 主界面设计:主要包括图像显示区域、功能按钮、参数调节控件等。
2. 子功能界面设计:根据不同的功能模块设计相应的子界面,以便用户进行更详细的操作。
3. 界面美化:可以通过添加背景图案、调整按钮颜色、字体等方式美化界面,提高用户体验。
三、实现步骤1. 图像显示与基本处理:通过MATLAB自带的imread()函数读取图像,imshow()函数显示图像,并设置相应的按钮实现放大、缩小、旋转、翻转等基本操作。
2. 图像增强:利用imadjust()函数实现对图像亮度、对比度的调整,利用histeq()函数实现直方图均衡化,利用imfilter()函数实现图像的滤波处理。
3. 图像特征提取:利用edge()函数实现图像的边缘检测,利用corner()函数实现角点检测,利用texture()函数实现纹理特征提取。
4. 图像分割:利用im2bw()函数实现阈值分割,利用edge()函数实现边缘分割,利用regiongrowing()函数实现区域生长。
数字图像处理课程设计基于Matlab的数字图像处理

数字图像处理课程设计--基于Matlab的数字图像处理数字图像处理课程设计基于Matlab的数字图像处理——图像的运算院系信息技术学院专业班级电气6班学号 201107111282姓名何英娜指导教师章瑞平课程设计时间 2012年11月目录一、摘要 (3)二、图像代数运算1、1图像的加法运算 (4)1、2图像的减法运算 (4)1、3图像的除法运算 (4)1、4绝对差值运算 (7)1、 5 图像的求补运算 (7)3三、图像的几何运算2、1 图像插值 (7)2、2图像的旋转 (8)2、3图像的缩放 (9)2、4图像的投影变换 (10)2、4图像的剪切 (11)四、课程设计总结与体会 (13)五、参考文献 (14)摘要图像运算涵盖程序设计、图像点运算、代数运算、几何运算等多种运算;设计目的和任务:1、熟悉图像点运算、代数运算、几何运算的基本定义和常见方法;2、掌握在MTLAB中对图像进行点运算、代数运算、几何运算的方法3、掌握在MATLAB中进行插值的方法4、运用MATLAB语言进行图像的插值缩放和插值旋转5、学会运用图像的投影变换和图像的剪切46、进一步熟悉了解MATLAB语言的应用,将数字图像处理更好的应用于实际7、通过各类算法加强图像各种属性、一、图像的几何运算何运算图像代数运算是指对两幅或两幅以上输入图像对应的像素逐个进行和差积商运算以产生增强效果的图像。
图像运算是一种比较简单有效的增强处理手段是图像处理中常用方法。
四种图像处理代数运算的数学表达式如下:C(x,y)=A(x,y)+B(x,y)C(x,y)=A(x,y)-B(x,y)C(x,y)=A(x,y)*B(x,y)C(x,y)=A(x,y)/B(x,y)1图像加法运算一般用于多幅图像求平均效果,以便有效降低具有叠加性的随机噪声,在matlab中imadd用于图像相加,其调用格式为z=imadd(X,Y);程序演示如下:I=imread('rice.png');subplot(2,2,1),imshow(I),title('原图像1'); J=imread('cameraman.tif');subplot(2,2,2),imshow(J),title('原图像52');K=imadd(I,J,'uint16'););subplot(2,2,3),imshow(K,[]),title('相加后图像'2、图像减法运算也称差分运算,是用于检测图像变化及运动物体的方法;用imsubtract函数实现。
利用Matlab进行图像处理的常用方法

利用Matlab进行图像处理的常用方法概述:图像处理是数字信号处理的一个重要分支,也是计算机视觉领域的核心内容之一。
随着计算机技术的不断发展,利用Matlab进行图像处理的方法变得越来越重要。
本文将介绍一些常用的Matlab图像处理方法,包括图像的读取与显示、图像的预处理、图像的滤波处理、基本的图像增强方法以及图像的分割与检测等。
一、图像的读取与显示在Matlab中,可以使用imread函数直接读取图像。
通过指定图像的路径,我们可以将图像读取为一个矩阵,并且可以选择性地将其转换为灰度图像或彩色图像。
对于灰度图像,可以使用imshow函数将其显示出来,也可以使用imwrite函数将其保存为指定格式的图像文件。
对于彩色图像,可以使用imshow函数直接显示,也可以使用imwrite函数保存为指定格式的图像文件。
此外,还可以使用impixel函数获取图像中指定像素点的RGB值。
二、图像的预处理图像的预处理是指在进一步处理之前对图像进行调整和修复以消除图像中的噪声和不良的影响。
常用的图像预处理方法包括图像的平滑处理、图像增强和图像修复等。
1. 图像平滑处理:常用的图像平滑方法有均值滤波、中值滤波和高斯滤波等。
其中,均值滤波将每个像素点的值替换为其周围像素点的平均值,中值滤波将每个像素点的值替换为其周围像素点的中值,高斯滤波则通过加权平均的方式平滑图像。
2. 图像增强:图像增强是指通过一些方法提高图像的质量和信息内容。
常用的图像增强方法包括直方图均衡化、对比度拉伸和锐化等。
直方图均衡化通过调整图像的灰度分布,以提高图像的对比度和细节。
对比度拉伸是通过将图像的像素值线性拉伸到整个灰度范围内,以增强图像的对比度。
锐化则是通过增强图像的边缘和细节,使图像更加清晰。
三、图像的滤波处理图像的滤波处理是指通过对图像进行一系列滤波操作,来提取图像中的特征和信息。
常用的图像滤波方法包括模板滤波、频域滤波和小波变换等。
1. 模板滤波:模板滤波是基于局部像素邻域的滤波方法,通过定义一个滤波模板,将其与图像进行卷积操作,从而实现图像的滤波。
基于matlab的图像处理与几何变换基础

基于matlab的图像处理与几何变换基础【关键词】:直方图;图像均衡化;灰度;旋转;测时【摘要】:读入图像,在屏幕上显示图像,得到图像尺寸。
查看图像直方图,进行直方图均衡,对图像进行不同的灰度和反差修改。
观察不同图像的直方图。
在屏幕上显示直方图均衡和灰度调整后的图像及其直方图。
将处理后的图像存盘。
用imrotate.m函数对图像进行旋转,观察分别采用nearest neighbor,bilinear,bicubic三种方法的图像质量,用tic、toc函数测量所用时间并作比较。
1简介1.1引言MA TLAB 是目前在国际上被广泛接受和使用的科学与工程计算软件。
MA TLAB 已经不仅仅解决矩阵与数值计算的软件,更是一种集数值与符号运算、数据可视化图形表示与图形界面设计、程序设计、仿真等多种功能于一体的集成软件。
另外,数字图像处理技术涉及光学技术、微电子技术、计算机技术和数学分析等领域,是一门综合性强、应用范围广的新兴学科。
具体包括图像视觉基础、图像变换、图像增强、图像恢复、图像压缩、图像编码、图像解码、图像传输、图像识别和图像分析等技术。
其理论推导和数学分析很多,而上述理论的验证和工程实现可通过MA TLAB完成。
因此,数字图像处理与MArIZAB紧密相关。
二:图像处理2.1图像的直方图均衡化直方图均衡化(histogram equalization)直方图均衡化是利用直方图的统计数据进行直方图的修改,能有效的处理原始图象的直方图分布情况,使各灰度级具有均匀的概率分布,通过调整图像灰度值的动态范围,自动地增加整个图像的对比度,以致图像具有较大的反差,大部分细节比较清晰. 传统算法根据直方图增强技术理论:设原始图像在(x,y)处的灰度为f,而改变后的图像为g,对于离散图像,则对图像增强的方法为:g=EH(f). EH(f)为映射函数,必须满足两个条件(其中图象的象素总数为n,分L个灰度等级):①EH(f)在0≤f≤L-1范围内是一个单值单增函数;②对于0≤f≤L-1有0≤g≤L-1. 则直方图均衡化法的映射函数为:gk=EH(fk)==Σk〖〗i=0ni〖〗N=Σk〖〗I=0pf(fi)(k=0,1,2,……,L-1)(0≤fk≤1)根据该方程可以由原图像的各象素灰度值直接得到直方图均衡化后各象素的灰度值[5]. 由于算术计算过程复杂,本文利用MA TLAB的Image toolbox工具箱中直方图均衡化histeq()函数同样可以实现对图像的增强,imread()函数用于读入各种图像文件,imshow()函数用于显示图像,imhist()函数用于显示直方图. 在Command Window窗口执行如下命令:clear,close allQ=imread‘D:/zhang.jpg’);W=rgb2gray(Q);I=imresize(W,0.75);J=histeq(I);imshow(I);figure,imshow(J);figure,imhis t(I);figure,imhist(J);处理前的图像50100150200250501001502002500200400600处理前图像的直方图100200处理后的图像501001502002505010015020025005001000处理后的图像的直方图1002002.2图像的插值运算与几何旋转图像的差值运算有三种包括:{'nearest'}:1最邻近线性插值(Nearest-neighbor interpolation );2'bilinear': 双线性插值(Bilinear interpolation );3'bicubic': 双三次插值(或叫做双立方插值)(Bicubic interpolation )对于最近邻插值来说,输出像素的赋值为当前点的像素点。
基于MATLAB的数字图像处理的设计与实现

基于MATLAB的数字图像处理的设计与实现摘要数字图像处理是一门新兴技术,随着计算机硬件的发展,数字图像的实时处理已经成可能,由于数字图像处理的各种算法的出现,使得其处理速度越来越快,能更好的为人们服务。
数字图像处理是一种通过计算机采用一定的算法对图形图像进行处理的技术。
目的:改善医学图像质量,使图像得到增强。
方法:利用Matlab工具箱函数,采用灰度直方图均衡化和高通滤波的方法对一幅X线图像进行增强处理。
结果:用直方图均衡化的算法,将原始图像密集的灰度分布变得比较稀疏,处理后的图像视觉效果得以改善。
高通滤波对于局部细节增强显著,高通滤波后使不易观察到的细节变得清晰。
结论:使用Matlab工具箱大大简化了编程工作,为医学图像处理提供了一种技术平台。
经过直方图均衡化和高通滤波处理后的医学图像,视觉效果得到改善。
关键词:MATLAB;直方图均衡化;高通滤波;图像增强AbstractDigital image processing is an emerging technology, with the development of computer hardware, real—time digital image processing has become possible due to digital image processing algorithms to appear,making it faster and faster processing speed,better for people services .Digital image processing is used by some algorithms computer graphics image pro cessing technology. Objective:To improve the quality of medical image by enhancing the details。
MATLAB课程设计(基于MATLAB的图像处理的基本运算)

MATLAB课程设计(基于MATLAB的图像处理的基本运算)课程设计任务书学⽣姓名:专业班级:指导教师:⼯作单位:题⽬: 基于MATLAB的图像处理的基本运算初始条件①MATLAB软件②数字信号处理与图像处理基础知识要求完成的主要任务:(1)能够对图像亮度和对⽐度变化调整,并⽐较结果。
(2)编写程序通过最近邻插值和双线性插值等算法将⽤户所选取的图像区域进⾏放⼤和缩⼩整数倍的和旋转操作,并保存,⽐较⼏种插值的效果。
(3)图像直⽅图统计和直⽅图均衡,要求显⽰直⽅图统计,⽐较直⽅图均衡后的效果。
(4)对图像加⼊各种噪声,⽐较效果。
时间安排:第1周:安排任务,分组第2-17周:设计仿真,撰写报告第18周:完成设计,提交报告,答辩地点:鉴主3楼计算机实验室指导教师签名: 2010年⽉⽇系主任(或责任教师)签名: 2010年⽉⽇摘要MATLAB是—套⾼性能的数值计算和可视化软件,它集数值分析、矩阵运算、信号处理和图形显⽰于⼀体,构成—个⽅便的、界⾯友好的⽤户环境。
MATLAB强⼤的扩展功能为各个领域的应⽤提供了基础,由各个领域的专家相继给出了MATLAB ⼯具箱,其中主要有信号处理,控制系统,神经⽹络,图像处助,鲁棒控制,⾮线性系统控制设计,最优化,⼩波,通信等⼯具箱,这此⼯具箱给各个领域的研究和⼯程应⽤提供了有⼒的⼯具。
借助于这些“巨⼈肩膀上的⼯具”,各个层次的研究⼈员可直现⽅便地进⾏分析、计算及设计⼯作,从⽽⼤⼤地节省了时间。
本次课程设计的⽬的在于较全⾯了解常⽤的数据分析与处理原理及⽅法,能够运⽤相关软件进⾏模拟分析。
通过对采集的图像进⾏常规的图像的亮度和对⽐度的调整,并进⾏最近邻插值和双线性插值等算法将⽤户所选取的图像区域进⾏放⼤和缩⼩整数倍的和旋转操作,并保存,⽐较⼏种插值的效果,以及对图像进⾏直⽅图和直⽅图均衡并加⼊噪声进⾏对⽐,达到本次课程设计的⽬的关键词:MATLAB 亮度和对⽐度插值放⼤旋转噪声AbstractMATLAB is - set of high-performance numerical computation and visualization software, which combines numerical analysis, matrix computation, signal processing and graphics in one form - a convenient, user-friendly user environment.MATLAB is a powerful extension application in various fields to provide a basis by experts in various fields have been given a MATLAB toolbox, which are signal processing, control systems, neural networks, image processing support, robust control, nonlinearcontrol system design, optimization, wavelets, communications toolkit, which this kit to the various areas of research and engineering applications a powerful tool.With these "tools on the shoulders of giants," researchers at all levels can now be easily analyzed directly, calculation and design work, which greatly saves time.The training aims to strengthen the basis of a more comprehensive understanding of commonly used data analysis and processing principles and methods related to the use of simulation software.Images collected by conventional image brightness and contrast adjustments, and the nearest neighbor interpolation and bilinear interpolation algorithm to the user selected image area to zoom in and out several times and rotate the whole operation, and save, comparethe effect of several interpolation and the image histogram and histogram and compared with noise, to the purpose of this course design.Keywords: MATLAB brightness and contrast rotation interpolation noise amplification ⽬录1.MATLAB简介 (1)1.1 MATLA的基本⽤途 (1)1.2 MATLAB的语⾔特点 (1)1.3 MATLAB系统构成 (1)2.数据采集 (2)2.1图像的选取 (2)2.2 图像亮度和对⽐度的调整 (2)2.2.1 编辑M⽂件 (2)2.2.2 MATLAB⽀持的图像格式和类型 (3)2.2.3 图像的读取 (3)2.2.4调整图像亮度和对⽐度 (4)3.图像的⼏何操作 (6)3.1插补操作 (6)3.1.1 插补功能介绍 (6)3.1.2 插补具体操作 (6)3.2 放缩操作 (8)3.2.1放缩功能介绍 (8)3.2.2 具体操作 (9)3.3 旋转操作 (10)3.3.1 旋转功能介绍 (10)3.3.2 具体操作 (10)4.直⽅图统计 (12)4.1灰度图的获取 (12)4.1.1 灰度图的转换功能介绍 (12)4.1.2 具体操作 (12)4.2直⽅图以及直⽅图均衡 (13)4.2.1 直⽅图函数功能介绍 (13)4.2.2 直⽅图具体操作 (14)5.图像的噪声处理 (15)5.1添加噪声的功能介绍 (15)5.2添加噪声的具体操作 (16)6.总结(⼼得体会) (18)7.参考⽂献 (19)1.MATLAB简介1.1 MATLA的基本⽤途MATLAB是矩阵实验室(Matrix Laboratory)之意。
图像分析MATLAB实现的图像的基本操作1灰度化、二值化,图像的加、减、乘、除运算,图像的与、或、非

大学生作业科目:数字图像分析与理解学号:姓名:时间:通过matlab对图像的一些基本操作如下:定义move函数代码:function J = move( I,a,b )%UNTITLED 此处显示有关此函数的摘要% 此处显示详细说明%a,b为平移量,I为原图像,J为平移后图像[M,N,G]=size(I);I=im2double(I);J=ones(M,N,G);for i=1:Mfor j=1:Nif((i+a)>=1&&(i+a)<=M&&(j+b)>=1&&(j+b)<=N) %判断平移后行列是否超过范围J(i+a,j+b,:)=I(i,j,:);endendend主函数代码:A=imread('happyC.jpg');B=imread('happyI.jpg');C=imread('happyP.jpg');imshow(A);A_gray=rgb2gray(A);A_bw=im2bw(A);B_bw=im2bw(B);C_bw=rgb2gray(C);figure,imshow(A_gray);figure,imshow(A_bw)addP=imadd(A,B);subP=imsubtract(A,B);mulP=immultiply(A,B);divP=imdivide(A,B);andP=A_bw&B_bw;orP=A_bw|B_bw;noP=~B_bw;R=2;% 变化后图像[row,col,color] = size(C); % 获得图像的行列数及色板数row = round(row*R); % 新图像行col = round(col*R); % 新图像列% 新图像初始化% 使用class获得原图像的数据类型,使得新图像数据类型与原图像保持一致img_new = zeros(row,col,color,class(C));% 对新图像的行、列、色板赋值for i = 1:rowfor j = 1:colfor n = 1:colorx = round(i/R);y = round(j/R);if x == 0x = x+1;endif y ==0y = y+1;endu = i/R-floor(i/R); %求取水平方向上的权重v = j/R-floor(j/R); %求取垂直方向上的权重% 此处需要对图像边缘进行例外处理% 本例对图像右边缘及下边缘用最近邻插值计算if i >= row-R || j >= col-Rimg_new(i,j,n) = C(x,y,n);elseimg_new(i,j,n) =u*v*C(x,y,n)+(1-u)*v*C(x+1,y,n)+u*(1-v)*C(x,y+1,n)+(1-u)*(1-v)*C(x+1,y+ 1,n);endendendendfigure,imshow(B);figure;subplot(2,2,1);imshow(addP);title('加法');subplot(2,2,2);imshow(subP);title('减法');subplot(2,2,3);imshow(mulP);title('乘法');subplot(2,2,4);imshow(divP);title('除法');C_mov=move(C,50,50);C_res=imresize(C,2,'bilinear');C_rot=imrotate(C,45,'loose');C_mir1=flip(C,1);%原图像的水平镜像C_mir2=flip(C,2);%原图像的垂直镜像figure;subplot(1,3,1);imshow(andP);title('与运算'); subplot(1,3,2);imshow(orP);title('或运算');subplot(1,3,3);imshow(noP);title('非运算');figure;subplot(121);imshow(C);title('原图');subplot(122);imshow(C_mov);title('平移后'); figure;%subplot(121);imshow(C);title('原图');%subplot(122);figure;imshow(C_res);title('放大后');figure;subplot(121);imshow(C);title('原图');subplot(122);imshow(C_rot);title('旋转后'); figure;subplot(131);imshow(C);title('原图');subplot(132);imshow(C_mir1);title('水平镜像后'); subplot(133);imshow(C_mir2);title('垂直镜像后'); figure;%subplot(121);imshow(C);title('原图');%subplot(122);figure;imshow(img_new);title('插值后');基本操作图像如下:。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
基于MATLAB的图像处理的基本运算————————————————————————————————作者:————————————————————————————————日期:课程设计任务书学生姓名:专业班级:指导教师:工作单位:题目: 基于MATLAB的图像处理的基本运算初始条件:要求完成的主要任务:(包括课程设计工作量及其技术要求,以及说明书撰写等具体要求)(1)能够对图像亮度和对比度变化调整,并比较结果(2)编写程序通过最近邻插值和双线性插值等算法将用户所选取的图像区域进行放大和缩小整数倍的和旋转操作,并保存,比较几种插值的效果(3)图像直方图统计和直方图均衡,要求显示直方图统计,比较直方图均衡后的效果。
(4)对图像加入各种噪声,比较效果。
时间安排:指导教师签名:年月日系主任(或责任教师)签名:年月日目录摘要..................................................................................................................................................... - 2 -1 MATLAB简介 ................................................................................................................................... - 2 -2图像选择及变换.............................................................................................................................. - 3 -2.1 原始图像选择读取.................................................................................................................. - 3 -2.1.1 原理图的读入与基本变换 ............................................................................................... - 3 -2.1.2 程序源代码及调试结果 ................................................................................................... - 4 -2.2 转换图像为灰阶图像.............................................................................................................. - 5 -3 图像处理及代码程序 ..................................................................................................................... - 6 -3.1 图像亮度对比度调整.............................................................................................................. - 6 -3.1.1 函数说明及参数选择....................................................................................................... - 6 -3.1.2 源程序及运行结果........................................................................................................... - 6 -3.2 图像放大和缩小...................................................................................................................... - 7 -3.2.1 函数说明及参数选择....................................................................................................... - 7 -3.2.2 源程序及运行结果........................................................................................................... - 7 -3.3 图像任意角度的旋转.............................................................................................................. - 8 -3.3.1 函数说明及参数旋转....................................................................................................... - 8 -3.3.2 源程序及运行结果........................................................................................................... - 9 -3.4图像直方图统计和均衡........................................................................................................... - 9 -3.4.1 函数说明及参数选择....................................................................................................... - 9 -3.4.2 源程序及运行结果......................................................................................................... - 10 -3.5 图像加入噪声........................................................................................................................ - 11 -3.5.1 函数说明及参数选择..................................................................................................... - 11 -3.5.2 源程序及运行结果......................................................................................................... - 12 -4 图像处理结果比较分析 ............................................................................................................... - 14 -4.1 调整对比度和亮度后图像比较 ............................................................................................ - 14 -4.2 图像放大缩小及旋转后比较 ................................................................................................ - 14 -4.3 进行直方图均衡后图像比较 ................................................................................................ - 15 -4.4加入各种噪声后图像比较 ..................................................................................................... - 16 -5感悟体会小结................................................................................................................................ - 16 -参考文献........................................................................................................................................... - 17 -摘要本篇设计通过matlab进行图像的亮度对比度变化、亮度的缩小放大和旋转、直方图统计和直方图均衡、以及加入各种噪声,使用各种程序和函数,来完成上述功能,并分别对结果进行分析与调试。
总结了程序调试的经验及各个函数的使用技巧。
很好的实现了matlab的图像处理功能。
关键字matlab 图像处理函数经验总结1 MATLAB简介MATLAB是由美国mathworks公司发布的主要面对科学计算、可视化以及交互式程序设计的高科技计算环境。