箱线图(数据分布)分析
数据分布的描述方法

数据分布的描述方法数据分布是统计学中的重要概念,用于描述数据的变化规律和趋势。
通过对数据的描述,我们可以更好地理解数据的特征,为进一步的分析和决策提供依据。
在本文中,我们将介绍几种常用的数据分布描述方法。
一、集中趋势的描述方法集中趋势是用来描述数据集中在哪个位置的指标,常用的集中趋势描述方法有均值、中位数和众数。
1. 均值(Mean):均值是指数据的平均值,可以通过将所有数据求和再除以数据的个数得到。
均值对极端值敏感,当数据中存在异常值时,均值可能会受到影响。
2. 中位数(Median):中位数是将数据按照大小排序后,位于中间位置的数值。
中位数不受极端值的影响,更能反映数据的一般趋势。
3. 众数(Mode):众数是指数据中出现次数最多的数值。
众数常用于描述非数值型数据的分布,如类别变量。
二、离散程度的描述方法离散程度描述了数据的扩散程度或分散程度,常用的离散程度描述方法有极差、方差和标准差。
1. 极差(Range):极差是指数据的最大值与最小值之间的差异。
极差简单直观,但只考虑了两个极端值,忽略了其他数据的分布情况。
2. 方差(Variance):方差是各数据与均值之差的平方的平均值。
方差可以度量数据的波动程度,数值越大表示数据越分散。
3. 标准差(Standard Deviation):标准差是方差的平方根,用于度量数据的波动程度。
与方差相比,标准差更容易理解和解释。
三、偏态的描述方法偏态用来描述数据分布的不对称性,常用的偏态描述方法有偏度和峰度。
1. 偏度(Skewness):偏度描述数据分布的对称性,偏度为正表示数据右偏(正偏),为负表示数据左偏(负偏)。
偏度为0表示数据分布相对对称。
2. 峰度(Kurtosis):峰度描述数据分布的尖峰程度和尾部的厚度。
峰度大于0表示数据分布较陡峭,峰度小于0表示数据分布较平坦。
四、分布形态的描述方法除了上述常用的描述方法外,我们还可以通过绘制直方图、密度曲线和箱线图等来直观地描述数据的分布形态。
箱线图

箱线图(Box plot)箱线图概述箱线图(Boxplot)也称箱须图(Box-whisker Plot),是利用数据中的五个统计量:最小值、第一四分位数、中位数、第三四分位数与最大值来描述数据的一种方法,它也可以粗略地看出数据是否具有有对称性,分布的分散程度等信息,特别可以用于对几个样本的比较。
箱线图的绘制步骤1、画数轴,度量单位大小和数据批的单位一致,起点比最小值稍小,长度比该数据批的全距稍长。
2、画一个矩形盒,两端边的位置分别对应数据批的上下四分位数(Q1和Q3)。
在矩形盒内部中位数(Xm)位置画一条线段为中位线。
3、在Q3+1.5IQR(四分位距)和Q1-1.5IQR处画两条与中位线一样的线段,这两条线段为异常值截断点,称其为内限;在F+3IQR和F-3IQR处画两条线段,称其为外限。
处于内限以外位置的点表示的数据都是异常值,其中在内限与外限之间的异常值为温和的异常值(mild outliers),在外限以外的为极端的异常值(extreme outliers)。
4、从矩形盒两端边向外各画一条线段直到不是异常值的最远点,表示该批数据正常值的分布区间。
5、用“〇”标出温和的异常值,用“*”标出极端的异常值。
相同值的数据点并列标出在同一数据线位置上,不同值的数据点标在不同数据线位置上。
至此一批数据的箱线图便绘出了。
统计软件绘制的箱线图一般没有标出内限和外限。
箱线图的功能箱线图作为描述统计的工具之一,其功能有独特之处,主要有以下几点:1.直观明了地识别数据批中的异常值一批数据中的异常值值得关注,忽视异常值的存在是十分危险的,不加剔除地把异常值包括进数据的计算分析过程中,对结果会带来不良影响;重视异常值的出现,分析其产生的原因,常常成为发现问题进而改进决策的契机。
箱线图为我们提供了识别异常值的一个标准:异常值被定义为小于Q1-1.5IQR或大于Q3+1.5IQR的值。
虽然这种标准有点任意性,但它来源于经验判断,经验表明它在处理需要特别注意的数据方面表现不错。
什么是箱线图

什么是箱线图什么是箱线图箱线图在文献中经常见到,是对数据分布的一种常用表示方法。
但是所见资料中往往说的不是特别清楚,因此需要了解一下箱线图的绘制过程,与部分的意义。
计算过程:1 计算上四分位数,中位数,下四分位数2 计算上四分位数和下四分位数之间的差值,即四分位数差(IQR,interquartile range)3 绘制箱线图的上下范围,上限为上四分位数,下限为下四分位数。
在箱子内部中位数的位置绘制横线。
4 大于上四分位数1.5倍四分位数差的值,或者小于下四分位数1.5倍四分位数差的值,划为异常值(outliers)。
5 异常值之外,最靠近上边缘和下边缘的两个值处,画横线,作为箱线图的触须。
6 极端异常值,即超出四分位数差3倍距离的异常值,用实心点表示;较为温和的异常值,即处于1.5倍-3倍四分位数差之间的异常值,用空心点表示。
7 为箱线图添加名称,数轴等。
在SPSS,SigmaPlot, R,SPlus,Origin等软件中,绘制箱线图非常方便。
下面是R中的一个箱线图举例箱线图举例:在R软件中输入如下命令:x<-c(25, 45, 50, 54, 55, 61, 64, 68, 72, 75, 75,78, 79, 81, 83, 84, 84, 84, 85, 86, 86, 86, 87, 89, 89, 89, 90, 91, 91, 92, 100)boxplot(x)对c向量绘制箱线图。
箱线图(Box plot)箱线图概述箱线图(Boxplot)也称箱须图(Box-whisker Plot),是利用数据中的五个统计量:最小值、第一四分位数、中位数、第三四分位数与最大值来描述数据的一种方法,它也可以粗略地看出数据是否具有有对称性,分布的分散程度等信息,特别可以用于对几个样本的比较。
[编辑]箱线图的绘制步骤[1](1)画数轴(2)画矩形盒两端边的位置分别对应数据的上下四分位数矩形盒:端边的位置分别对应数据的上下四分位数(Q1和Q3)。
箱线图(数据分布)分析

Excel-箱线图(数据分布)分析标签:excel数据分析六西格玛箱线图数据分布2014-01-18 11:13 25396人阅读评论(0) 收藏举报分类:Excel(14)网站分析(9)版权声明:本文为博主原创文章,未经博主允许不得转载。
本文摘自作者《网站数据分析:数据驱动的网站管理、优化和运营》:/11295690.html箱线图(Boxplot)也称箱须图(Box-whisker Plot),它是用一组数据中的最小值、第一四分位数、中位数、第三四分位数和最大值来反映数据分布的中心位置和散布范围,可以粗略地看出数据是否具有对称性。
通过将多组数据的箱线图画在同一坐标上,则可以清晰地显示各组数据的分布差异,为发现问题、改进流程提供线索。
1.什么是四分位数箱线图需要用到统计学的四分位数(Quartile)的概念,所谓四分位数,就是把组中所有数据由小到大排列并分成四等份,处于三个分割点位置的数字就是四分位数。
•第一四分位数(Q1),又称“较小四分位数”或“下四分位数”,等于该样本中所有数值由小到大排列后第25%的数字。
•第二四分位数(Q2),又称“中位数”,等于该样本中所有数值由小到大排列后第50%的数字。
•第三四分位数(Q3),又称“较大四分位数”或“上四分位数”,等于该样本中所有数值由小到大排列后第75%的数字。
•第三四分位数与第一四分位数的差距又称四分位间距(InterQuartile Range,IQR)。
计算四分位数首先要确定Q1、Q2、Q3的位置(n表示数字的总个数):•Q1的位置=(n+1)/4•Q2的位置=(n+1)/2•Q3的位置=3(n+1)/4对于数字个数为奇数的,其四分位数比较容易确定。
例如,数字“5、47、48、15、42、41、7、39、45、40、35”共有11项,由小到大排列的结果为“5、7、15、35、39、40、41、42、45、47、48”,计算结果如下:•Q1的位置=(11+1)/4=3,该位置的数字是15。
箱线图课件

揭示科目间的分数关系
详细描述
在同一班级内,不同科目的分数分布可能存在差异。通过箱线图,可以直观地比较同一班级内不同科目之间的分 数关系。通过观察箱体之间的相对位置、中位数和异常值,可以了解各科目之间的分数差异,进而分析科目的难 易程度和学生的学习情况。
实例三:不同年份的数据比较
总结词
展示时间序列的分数变化趋势
比较数据集的分布
01 02
数据分布比较
箱线图可以用于比较不同数据集的分布情况。通过将不同数据集的箱线 图进行对比,可以直观地看出各个数据集的集中趋势、离散程度以及异 常值情况。
差异分析
通过比较不同数据集的箱线图,可以分析出各个数据集之间的差异,进 而对不同数据集进行比较和分析。
03
应用场景
箱线图在数据分析、统计学、质量管理等领域都有广泛应用,可以帮助
人们更好地理解数据的分布情况。
识别数据的偏态和尾重
偏态和尾重定义
偏态是指数据分布的不对称性,尾重是指数据分布的尾部偏向某一方向的情况。
箱线图的识别
通过箱线图,可以清晰地识别出数据的偏态和尾重情况。如果箱线图的形状明显不对称或尾部偏向某一方向,则说明 数据存在偏态或尾重。
处理建议
在分析数据时,对于存在偏态或尾重的数据需要进行适当的处理,以避免对数据分析结果产生不良影响 。例如,可以采用对称化处理、取对数转换等方法来消除偏态或尾重的影响。
箱线图课件
目录
• 箱线图简介 • 箱线图的制作方法 • 箱线图的应用 • 箱线图的优缺点 • 箱线图与其他统计图比较 • 箱线图实例分析
箱线图简介
01
定义与特点
定义
箱线图(Box Plot)也称为箱状 图或箱状分布图,是一种用于展 示一组数据分散情况资料的统计 图。
箱线图怎么看

箱线图怎么看
看箱线图的方法如下:
箱子的中间一条线,是数据的中位数,代表了样本数据的平均水平。
箱子的上下限,分别是数据的上四分位数和下四分位数。
这意味着箱子包含了50%的数据。
因此,箱子的宽度在一定程度上反映了数据的波动程度。
在箱子的上方和下方,又各有一条线。
有时候代表着最大最小值,有时候会有一些点“冒出去”。
请千万不要纠结,理解成“异常值”就好。
箱线图
箱线图(Boxplot)又称盒须图、盒式图或箱形图,是一种用作显示一组数据分散情况资料的统计图,在数据分析中经常被使用到,可以被用于异常值的检测。
利用数据中的五个统计量:最小值、第一四分位数、中位数、第三四分位数与最大值来描述数据的一种方法,它也可以粗略地看出数据是否具有有对称性,分布的分散程度等信息,特别可以用于对几个样本的比较。
箱形图最大的优点就是不受异常值的影响,能够准确稳定地描绘出数据的离散分布情况,同时也利于数据的清洗。
标准化的箱线图
通过将数据进行标准化,可以解决箱线图被压缩的问题。
标准化后的数据均值为0,方差为1。
标准化之后可以清楚的看到,每个特征的异常值分布情况。
初中数学 什么是数据的箱线图 如何绘制数据的箱线图

初中数学什么是数据的箱线图如何绘制数据的箱线图数据的箱线图是一种用于展示数据分布和离散程度的图表。
它主要由五个关键统计量组成:最小值、下四分位数(Q1)、中位数(Q2)、上四分位数(Q3)和最大值。
通过箱线图,我们可以直观地了解数据的中心位置、离散程度以及异常值的存在。
下面是关于数据的箱线图以及如何绘制数据的箱线图的详细解释:1. 什么是数据的箱线图?数据的箱线图是一种用于展示数据分布和离散程度的图表。
它由一个矩形箱体和两条延伸出的线(也称为“须”)组成。
箱体中的水平线代表数据的中位数(Q2),箱体的上边界和下边界分别代表上四分位数(Q3)和下四分位数(Q1)。
须的长度表示数据的离散程度,通常与1.5倍的四分位距(IQR = Q3 - Q1)相关联。
任何超过须长度1.5倍IQR的数据点都被认为是异常值。
2. 如何绘制数据的箱线图?绘制数据的箱线图可以按照以下步骤进行:a. 收集数据:首先,收集需要绘制箱线图的数据。
确保数据集包含足够的样本量,以便能够准确地描述数据分布和离散程度。
b. 计算统计量:根据收集到的数据,计算五个关键统计量:最小值、下四分位数(Q1)、中位数(Q2)、上四分位数(Q3)和最大值。
c. 绘制箱体:在一个数轴上,绘制一个矩形箱体。
箱体的上边界和下边界分别对应Q3和Q1,而箱体内部的水平线对应Q2。
d. 绘制须:从箱体的上边界和下边界延伸出两条线,也称为“须”。
须的长度通常与1.5倍的四分位距(IQR = Q3 - Q1)相关联。
如果有异常值存在,须的末端将停留在最大值和最小值处。
e. 标记异常值:如果有异常值存在,可以使用标记(如小圆点)将其标记在图表上,以便更清楚地识别。
f. 添加其他信息:为了使图表更具可读性,可以添加标题、数轴标签和其他必要的信息。
通过绘制数据的箱线图,我们可以直观地了解数据的中心位置、离散程度以及异常值的存在。
箱线图能够提供数据集整体分布的重要信息,帮助我们进行数据分析和决策。
如何在Excel中使用BoxandWhiskerPlot进行箱线图分析分析

如何在Excel中使用BoxandWhiskerPlot进行箱线图分析分析如何在Excel中使用Box and Whisker Plot进行箱线图分析箱线图是一种常用的统计图表,用于展示一组数据的分布情况,特别适用于比较多组数据的情况下。
在Excel中,通过使用Box and Whisker Plot(箱线图)的功能,我们可以快速、直观地进行箱线图分析。
本文将介绍如何在Excel中使用Box and Whisker Plot进行箱线图分析。
第一步:准备数据在进行箱线图分析之前,首先需要准备好要分析的数据。
数据可以包括一组数据的多个变量或者多组数据的同一变量。
在Excel中,数据可以以列或者行的形式进行记录,确保每个数据值都标明对应的变量或组别。
第二步:插入箱线图在Excel中插入箱线图非常简单。
首先,选择您准备好的数据区域。
然后,在顶部的工具栏中找到“插入”选项卡,点击“统计图表”中的“Box and Whisker Plot”图标。
第三步:调整图表设置插入箱线图后,您可以进行一些设置以满足特定的分析需求。
例如,您可以更改图表的标题、坐标轴的标签或者调整图表的样式等。
在Excel中,您可以通过右键点击图表区域选择“编辑数据”,进一步调整数据范围或者添加新的数据。
此外,您还可以通过右键点击图表区域选择“更改图表类型”,选择其他类型的箱线图样式。
第四步:分析箱线图一旦箱线图生成,您就可以通过观察图表来分析数据的分布情况。
箱线图通常可以提供以下信息:1. 中位数:箱线图上的中间线代表数据的中位数。
2. 四分位数:箱线图上的箱体代表了数据的四分位数范围,即数据的中间50%范围。
3. 上下限:箱线图上的须子和须线表示了数据的最大值和最小值,同时也可以标记出异常值。
根据箱线图的观察,您可以判断数据的分布是否对称、偏态或者存在异常值。
您还可以通过比较多组数据的箱线图,进行数据之间的比较和分析。
第五步:输出分析结果完成箱线图分析后,您可以将结果输出为Excel表格或者保存为图片。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Excel-箱线图(数据分布)分析
标签:excel数据分析六西格玛箱线图数据分布
2014-01-18 11:13 25396人阅读评论(0) 收藏举报
分类:
Excel(14)网站分析(9)
版权声明:本文为博主原创文章,未经博主允许不得转载。
目录()[+]本文摘自作者《网站数据分析:数据驱动的网站管理、优化和运营》:箱线图(Boxplot)也称箱须图(Box-whisker Plot),它是用一组数据中的最小值、第一四分位数、中位数、第三四分位数和最大值来反映数据分布的中心位置和散布范围,可以粗略地看出数据是否具有对称性。
通过将多组数据的箱线图画在同一坐标上,则可以清晰地显示各组数据的分布差异,为发现问题、改进流程提供线索。
1.什么是四分位数
箱线图需要用到统计学的四分位数(Quartile)的概念,所谓四分位数,就是把组中所有数据由小到大排列并分成四等份,处于三个分割点位置的数字就是四分位数。
第一四分位数(Q1),又称“较小四分位数”或“下四分位数”,等于该
样本中所有数值由小到大排列后第25%的数字。
第二四分位数(Q2),又称“中位数”,等于该样本中所有数值由小到大排列后第
50%的数字。
第三四分位数(Q3),又称“较大四分位数”或“上四分位数”,等于该样本中所有数值由小到大排列后第75%的数字。
第三四分位数与第一四分位数的差距又称四分位间距(InterQuartile Range,
IQR)。
计算四分位数首先要确定Q1、Q2、Q3的位置(n表示数字的总个数):
Q1的位置=(n+1)/4
Q2的位置=(n+1)/2
Q3的位置=3(n+1)/4
对于数字个数为奇数的,其四分位数比较容易确定。
例如,数字“5、47、48、15、42、41、7、39、45、40、35”共有11项,由小到大排列的结果为“5、7、15、35、39、40、41、42、45、47、48”,计算结果如下:
Q1的位置=(11+1)/4=3,该位置的数字是15。
Q2的位置=(11+1)/2=6,该位置的数字是40。
Q3的位置=3(11+1)/4=9,该位置的数字是45。
而对于数字个数为偶数的,其四分位数确定起来稍微繁琐一点。
例如,数字“8、17、38、39、42、44”共有6项,位置计算结果如下:
Q1的位置=(6+1)/4=
Q2的位置=(6+1)/2=
Q3的位置=3(6+1)/4=
这时的数字以数据连续为前提,由所确定位置的前后两个数字共同确定。
例如,Q2的位置为,则由第3个数字38和第4个数字39共同确定,计算方法是:38+(39-38)×的小数部分,即38+1×=。
该结果实际上是38和39的平均数。
同理,Q1、Q3的计算结果如下:
Q1 = 8+(17-8)×=
Q3 = 42+(44-42)×=
Excel为计算四分位数提供了QUARTILE(array,quart)函数,其中array参数用于指定要计算四分位数值的数组或数值型单元格区域,quart指定返回哪一个四分位值,可用值如下:
0,返回最小值;
1,返回第一个四分位数;
2,返回第二个四分位数,即中位数;
3,返回第三个四分位数;
4,返回最大值。
2.箱线图的结构
箱线图包括一个矩形箱体和上下两条竖线,箱体表示数据的集中范围,上下两条竖线分别表示数据向上和向下的延伸范围,结构如图9-51所示。
图9-51箱线图的结构
四分位间距框的顶部线条是第三四分位数的位置,即Q3,表示有75%的数据小于等于此值。
底部线条是第一四分位数的位置,即Q1,表示有25%的数据小于此值。
则整个四分位间距框所代表的是数据集中50%(即75%-25%)的数据,四分位间距框的高度就是这些数据涉及的范围,能够表现出数据的集中程度。
Q2是数据中位数的位置。
Whisker上限是延伸至距框顶部倍框高范围内的最大数据点,Whisker下限是延伸至距框底部倍框高范围内的最小数据点,超出Whisker上限或下限的数值将使用星号“*”表示。
但是,在Excel中绘制箱线图需要借助股价图来实现,因此无法展现异常值,Whisker上限将延伸至数据最大值的位置,Whisker下限将延伸至数据最小值的位置。
3.绘制箱线图
图9-52中的A2:F8区域和H2:M8区域分别是华北和华南是某段时间客户订单收货天数的统计结果,C11:C15和J11:J15是利用QUARTILE函数计算的华北、华南收货天数的四分位数结果。
图9-52收货天数的四分位数计算结果
在Excel中绘制箱线图需要借助股价图的“开盘-盘高-盘底-收盘”图来实现。
根据Excel绘图时放置数据系列的位置,开盘、盘高、盘底、收盘应分别对应Q1、Q0、Q2、Q4。
下面是绘图步骤:
准备图表数据。
根据对应关系,在表格的B18:E18区域分别输入华北客户的Q1、Q0、Q2、Q4统计数字,将Q3输入到最后的F18单元格中,在A18中输入一个日期型数据(注意,必须为日期型),如
“2013/1/1”。
然后在第19行中输入华南客户的数据,A19中的日期递增1天,最终结果如图9-53所示。
图9-53准备图表数据
插入图表。
选定A18:E19区域,在“插入”功能区的“图表”模块中单击“其他图表”,选择股价图部分的“开盘-盘高-盘底-收盘图”按钮,即可看到绘制的股价图,如图9-54所示。
图9-54插入股价图
添加Q3数据系列。
由图9-54可以看出,四分位间距框的顶部线条使用的是Q4(最大值)位置,而是不是箱线图要求的Q3位置。
右击绘图
区,在弹出的快捷菜单中选择“选择数据”命令,打开“选择数据源”
对话框。
单击“添加”按钮打开“编辑数据系列”对话框,在“系列名称”折叠框中输入“Q3”,在系列值折叠框中选择F18:F19区域,单击
“确定”按钮即可看到股价图变成了箱线图,如图9-55所示。
四分位间距框的高度小了很多,单击顶部线条与Whisker上限交汇处,可以看到
使用的是Q3数据。
图9-55 添加Q3数据系列
显示中位数线。
至此,四分位间距框虽然已经绘制正确了,但是还缺少中位数线,即Q2。
选择图例中的“系列3”标签,然后单击鼠标右键,在弹出的快捷菜单中选择“设置数据系列格式”命令,打开“设置数据系列格式”对话框。
在“数据标记选项”中将标记类型设置为内置的“-”形状,单击“关闭”按钮即可看到中位线显示了出来,如图9-56所
示。
图9-56显示中位数线
美化图表。
首先要修改分类轴(横轴)标签,由于插入股价图时的限制在A18和A19单元格中输入了日期型数据,但是在图表插入后,可以将
其修改为其他数据类型的值,因此在A18和A19单元格分别输入“华
北”、“华南”。
其次是删除图例栏,对于箱线图而言这并不需要。
最后,可以为图表添加一个标题。
最终美化后结果如图9-57所示。
图9-57美化后的图表
由图9-57可以看出,华北和华南客户的中位数位置、四分位间距框的位置与高度基本相同,说明两区域的客户收货天数基本相同。
但是,从Whisker上限和Whisker下限看,华南客户的收货天数范围小于华北客户,说明流程更加稳定。